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REPRESENTING TATE COHOMOLOGY OF G-SPACES

by J. P. C. GREENLEES

(Received 14th March 1986)

0. Introduction

Tate cohomology of finite groups [5] is very good at emphasising periodic
cohomological behaviour and hence at the study of free actions on spheres [8]. Tate
cohomology of spaces was introduced by Swan [10] for finite dimensional spaces to
systematically ignore free actions, and hence to simplify various arguments in fixed
point theory.

There is also a geometric way of ignoring free actions, and we show (Theorem 2) that
it can be used to represent Tate cohomology in any reasonable category of equivariant
spectra (see for instance [1, 6 or 7]), and hence extend the definition to infinite
dimensional spaces and spectra. There are several important consequences of this.
Firstly that Tate cohomology admits suspension isomorphisms for arbitrary
representations of G, and hence that there is a transfer for finite coverings. Secondly it
points out a natural generalisation of the condition that G has periodic cohomology
(Corollary 6). Furthermore the methods make clear how one could define cohomology
theories at the chain level which ignore actions more general than free ones.

From the other direction the represented theory arises naturally in an attempt to
understand Borel homology and cohomology [6]. Theorem 2 is then seen as identifying
this represented theory in more familiar terms.

The proof is a byproduct of the construction of a geometric realisation of the Tate
(complete) resolution.

1. Cohomology and nitrations of G-spaces

Throughout, G will be a fixed finite group.
In this section we will work in the G-equivariant Spanier-Whitehead category [1]; it

is only for the representation of cohomology theories that we need more general G-
spectra.

The most effective technique in the equivariant world is escape to a simpler world.
Thus if EG is a contractible G-CW complex on which G acts freely, we construct EG +
by adding a disjoint basepoint, and EG as the unreduced suspension of it. We then have
the enormously useful cofibering exploited by Carlsson:

EG+-+S°->EG. (*)

Thus EG is a nonequivariantly contractible space with fixed point sets EGH = S° for all
H A 1. Hence it provides the geometric means for ignoring free G-spaces.
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To motivate our realisation of Tate resolutions we first recall the method for ordinary
resolutions. We start in the algebraic world.

To calculate ordinary cohomology, H*(G; M), we take a resolution of Z by projective
Z[G]-modules,

0«-Z«-P0«-P1«-P2«—• (?)

apply HomZ[C]( , M) and take cohomology of the resulting complex.
To calculate Tate cohomology, ft*(G; M), we take a projective resolution as" above,

and also a backwards resolution of Z by Z[G]-projectives,

- « - P _ 3 - P _ 2 « - P - i « - Z « - 0 . (I)

We splice (f) and (I) together to form the Tate resolution,

•••«-P_3«-P_2«-P_1«-P0«-P1«_P2«—• (I)

Z

apply HomZ[C]( , M) and take cohomology.
The geometric analogue of (f) comes by taking the skeletal filtration of EG+,

i i i
Ro Rt R2

(where Rt: = £G(i)/£G(i~1)) and applying ordinary nonequivariant homology uj( ) (which
is defined by um(X): — HJ^UX), where UX is the underlying space of X, with G-action
forgotten).

Thus we consider the spectral sequence with E$ , = us+t(Rs); since Rs is a wedge of G-
free cells Ss A G + we find that the spectral sequence collapses at the £2-level. Since it is
also convergent, we find that the homology of the chain complex

is u^(£G+) = Z, and hence the complex provides a resolution of Z by free Z[G]-
modules.

Just as the backwards resolution (J.) can be constructed by dualising a (finitely
generated) resolution (|), even so we may obtain a backwards geometric resolution by
Spanier-Whitehead duality.

Now, since^ the cofibering S°—>£G—»,S£G+ is filtration preserving, the skeletal
filtration of £G has subquotients as follows:

» £G(2)— £G(3»->- • •
1 i
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It is therefore appropriate to consider the filtration

S° = DEG{I

i
DR0

B><— DEG"
I

DRi

>+-DEG™
1

DR2

^-D£G(3)

1
DR3

(In the category of spectra we can take the horizontals to be inclusions of subspectra
and DRt to be the appropriate quotients; for the moment it suffices that DRt is the
cofibre of the map D£G(I+1)-*D£G(l)).

In fact EG, which is S°uC£G+ by the cofibering (*), provides the correct framework
for splicing the resolutions. Thus we define a filtration,

>F_2-*F_1-»F0-»F1->F2->-- of£G
| 1 | | I
Q-2 6-1 <2o 6i Q2

where Qt is the cofiber of Fi_i—>-Fi, by taking

*~|0EG<-('-1) k<0.

Thus we have the picture
I— I, f ^ - ^ j

(Gt)

We apply «„( ) to obtain a spectral sequence with

and which collapses at the E2 stage since Qs is equivalent to a wedge of G-free cells
Ss+1 A G+ (for s^O this is clear and for s<0 we use the identification DG/H+^G/H+).

Lemma 1. The chain complex

• • •^uJ.SQ-l)^ut{Q0)^um(S- 1Ql)-u^(S-2Q2)^- • •

is a Tate resolution O/Z = MJS1) by Z[G] projectives.

Proof. We could argue that the spectral sequence converged, and hence, since EG is
contractible, that the above complex was exact. It seems more elementary to say that
exactness in positive dimensions follows from convergence of the SEG+ filtration
spectral sequence above, and in negative dimensions from the SEG+ filtration spectral
sequence in cohomology.

EM.S.-E
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Exactness in the middle comes since u^(QQ)—*uilt(S
1) and M^(S1)—•M^(SQ_1) are the

edge homomorphisms for these spectral sequences. •

3. Borel and Tate cohomology

We must now introduce the two cohomology theories we are going to show to be
equal.

Definition ([4, VII.7]). If X is a finite dimensional G-CW complex, M a G-module,
then we define H^(X; M), the cellular Tate cohomology of X, to be the cohomology of
the total complex of HomZ[C](P., C*(X; M)) (where P. is a Tate resolution for G, and
C*(X; M) is the complex of reduced cellular cochains).

For the representable definition we must first define Borel cohomology [3] as a
functor on the G Spanier-Whitehead category: that is we must show that it admits
suspension isomorphisms by arbitrary real representations of G. If M is any Z-module
and X a based G-CW complex then we may define

br(X; M): = H'{EG + A G X; M) (re I),

and this agrees with ordinary (reduced) equivariant cohomology theory H£(X; M) ([4,
VII.7, Exercise 3]).

It is a consequence of work of Waner [11] and May [9] that this cohomology theory
extends to one defined on the category of G-spaces and spectra stable for suspension by
arbitrary representations of G. Under the additional assumption that if G is of even
order M is an F2 vector space, there is the following more elementary description
known to many. We define

b"(X;M):=HM(EG+ A0X; M) for oceRO(G),

and obtain a theory which has the property that b"(X; M) depends only on the virtual
dimension |a| of a. Henceforth we will omit the coefficient module M.

Suspensions come from Thorn isomorphisms:

b°(X) > ba+lv\Sy A X)
= I = I

HM(EG xcX,EG xGpt)^+HM + m(EG xG(Sy x X),EG xG(5K x ptKjpt x X))

By Brown representability or direct construction, Borel cohomology is represented by
a G-spectrum b.

Definition. The Tate spectrum t is defined by t:=b A EG, and hence representable
Tate cohomology is defined on integer gradings by

We may now state our main theorem:
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Theorem 2. / / X is a finite dimensional G-CW complex and M is a G-trivial module,
then there is a natural isomorphism,

T

t

T
_! A X{1)

t
. , A X 1 0 1 -

—>Ft

- F o

T
A

T

r
A

T
A

Proof. The proof is now a single spectral sequence, namely the one obtained by
doubly filtering EG A X (by skeleta of X and by the (GJ) filtration of EG), and
applying Borel cohomology.

Now that we are unavoidably in the category of spectra we take the filtration (GJ) to
be by strict subspectra.

Consider the double filtration:

>F_X A X™ >F0 A Xid) >Ft A Xid) >F2 A

t t
-»F 1 A X{"-1)^F2 A

T t
T t

>FX A X ( 1 ) >F2 A

T T

— > F X A x * 0 ' — > F 2 A A : ( 0 > — ,

From it we may form the single filtration

>AS •Aj+i » A s + 2 >

4 1 I
As/Aj-i As+1/As As + 2/As + 1

by diagonals.

Thus As: = ( J 1 + J = s F j A A"01; and, by considering ziggurats,

i + 7=s

Lemma 3. b*(R A A'(J)/Ar°-1)) = Hom2[c]*(u^R)C
J(A:)) naturally in R, where R is any

wedge of cells S" A G+.

Proof. It suffices to check the result for R = G+ and X = SJ A (G/H)+. D

Now we may identify the F^-term:

if

and zero ifs + t=/=s+l (since As/A,_1 consists entirely of cells S '+ 1 A G+ A SjA (G/H) +

for i+ j=s) .
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A check of differentials shows that

E2' = H*G(X) if t= 1, and zero if tj= 1.

It remains to see what this has to do with t*( ).
In fact

f(X) = \X,b A EGJG

= lim [X, b A EG(k)YG (since X is finite dimensional and b
"k is nonequivalently bounded below)

= lim [DEGm A X, bJG (since EGlk) is finite)
-•*

= lim br(DEG(k) A X),

and we can form another filtration of EG A X whose spectral sequence has clearer
convergence to this.

Thus we use the filtration by using the filtration of EG only, and apply b*( ) to get
the spectral sequence with unravelled exact couple [2]:

•••« b*(FsAX)< b*(Fs+l A *)« b*(Fs+2 A X)< ••• (+)

\ / \ /
b*(Qs+1*X) b*(Qs+2*X)

We observe:

(1) the associated filtration is Hausdorff and complete;

and

(2) limfc*(Fs A X) = \im b*{DEGis) A X) = t*(X).

Proof (of (1)). Indeed we have the Milnor exact sequence

0 > R lim b*(SFs A X) >b* hol imFsA X) >\im b*(Fs A X) >0

On the other hand b*[ holim F s A X ) = b*(EG A X), which is zero since EG A EG+ ^ *.
\ -s /

D

Thus the spectral sequence of (+) is conditionally convergent [2] to t*(X); by finite
dimensionality of X the spectral sequence collapses at some stage and is therefore
strongly convergent.
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Finally (also since X is finite dimensional) the spectral sequence of the double
filtration has the analogous properties to (1) and (2) for its filtered chain complex and is
therefore also conditionally convergent. So the theorem is proved. •

Remark, ^ o see t*( ) does ignore G-free actions we use the fact that [G+,fe A £ G J G =

[S°, Ub A UEG]1 (a slight extension of Adams' result [1, 5.1])_and the fact that UEG^*;
then argue by cofiberings and limits to see t*{X) = [X, b A EG]£ = 0 for a general G-free
spectrum X.

There is also a homological version of the theorem, but since its proof is very similar,
and its usefulness less certain, we just state it.

Thus if

and if H%(X; M) is the homology of the total complex of P.®Zic^Cm(X; M) then we have

Theorem 2 .̂ ifX is any G-spectrum and M is any G-trivial module,
then

The proof is by applying Borel homology to the same two filtrations as in Theorem 2;
it is convenient to deal with the case that X is finite and then pass to limits. Remember
that if AT is finite then b,(X) = b-'(DX).

4. Applications

We have already commented that Theorem 2 extends the definition of Tate
cohomology to arbitrary spaces and spectra and that it shows Tate cohomology admits
transfer for finite coverings.

Let us next see what Theorem 2 has to say about periodic cohomology. Suppose first
that G acts freely on the unit sphere S(K) of the representation V. It follows that

= \JkzoS(kV) provides a model for EG, and hence that we have

From this we immediately deduce the familiar fact that the Tate cohomology of any
finite X is a localisation of ordinary cohomology:

[ ] S
-k

= b*(X)[e(V)-l~\ (where e(V)eblV] is the Euler class of V).
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For instance, taking X=S°, and working with mod 2 coefficients if G is of even order,
I* = H*(G)[e(F)"1] (where e(K)eH|K|(G) is the ordinary Euler class). Considering the
fact that Tate cohomology is ordinary cohomology in positive codegrees and homology
in negative codegrees we see that we have proved the familiar fact that G has periodic
cohomology.

Now suppose that G acts freely on S(V)xS(W). This means that for any subgroup H
except 1, either VH = 0 or WH = 0. We thus have the following result.

Proposition 5. / / G is a finite group acting freely on S(V) x S(W) then there is a stable
cofibering

EG >S°°KvS°°*'^-^SooKet''.

Proof. We have the inclusion of V in F© W, and hence the map iv:S
xV^>S'Dy'BW,

and similarly for W. After a single suspension we may form the difference iv — iw, and
use it to start a cofiber sequence in which the following occurs:

C >S2(Smy v S00"') >S2Sa>V9W.

Even if we stabilise with respect to G-trivial suspensions only, this has the exactness
properties of a fibration.

Now, since S°°K is nonequivariantly contractible, we may extend the inclusion
S°—yScoV over the rest of E~G (which consists of G-free cells), and similarly for W;
furthermore these extensions are unique by the same argument.

Hence we may pose the problem:

This is soluble since the restriction of EG—*Sa>y®w to S° is null (again we extend the
nullhomotopy by obstruction theory). Now, by the equivariant Whitehead Theorem
stabilised with respect to G-trivial representations, it follows that the solution provides
an equivalence EG^S~2C. •

By smashing with b and mapping in the finite complex X we obtain the following.

Corollary 6. // G is a finite group which acts freely on S(V) x S(W) then for any finite
X we obtain the following natural long exact sequence connecting Tate cohomology with
localised forms of ordinary cohomology:
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Remarks. (1) As before we can consider the case X = S° and use mod 2 coefficients if
G is of even order, and obtain conditions generalising those of periodic cohomology.
These will take the form of restrictions on H*(G) as a module over Z[e(K), e(W)].

(2) Evidently a similar construction will apply to connect Tate and localised ordinary
cohomology whenever G acts freely and linearly on a product of spheres; for instance
this applies to arbitrary p-groups. However in general there will be several long exact
sequences required.

Finally, the construction of a Tate resolution clearly generalises. Thus if E!F is the
classifying space for a family 5F of subgroups of G so that the fixed points of H? are
nonequivariantly as follows

— „ fS° if
\* if

It follows by obstruction theory that the theory represented by b A E3F vanishes on any
space which may be constructed from cells G/H+ A S" for He^. The associated
geometric Tate resolution of £ J r = S°uC£Jr+, and the proof of Theorem 2 show how
to define the theory by cellular methods.
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