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Abstract
This study introduces a novel approach to radar-based hand gesture recognition (HGR),
addressing the challenges of energy efficiency and reliability by employing real-time ges-
ture recognition at the frame level. Our solution bypasses the computationally expensive
preprocessing steps, such as 2D fast Fourier transforms (FFTs), traditionally employed for
range-Doppler information generation. Instead, we capitalize on time-domain radar data and
harness the energy-efficient capabilities of spiking neural networks (SNNs)models, recognized
for their sparsity and spikes-based communication, thus optimizing the overall energy effi-
ciency of our proposed solution. Experimental results affirm the effectiveness of our approach,
showcasing significant classification accuracy on the test dataset, with peak performance
achieving a mean accuracy of 99.75%. To further validate the reliability of our solution, indi-
viduals who have not participated in the dataset collection conduct real-time live testing,
demonstrating the consistency of our theoretical findings. Real-time inference reveals a sub-
stantial degree of spikes sparsity, ranging from 75% to 97%, depending on the presence or
absence of a performed gesture. By eliminating the computational burden of preprocessing
steps and leveraging the power of (SNNs), our solution presents a promising alternative that
enhances the performance and usability of radar-based (HGR) systems.

Introduction

Hand gesture recognition (HGR) is a rapidly growing field with potential applications in a wide
range of domains, including smart TVs, automotive systems, and virtual reality [1]. Camera-
based (HGR) systems are widely used, but they suffer from privacy concerns and performance
issues in challenging environments [2, 3]. Non-vision solutions such as wearable sensors have
been proposed to address these limitations, but they can be uncomfortable to wear [4, 5]. Radar-
based (HGR) solutions offer distinct advantages, including privacy preservation, immunity
to illumination variations, and seamless integration into various operating environments [6].
As a result, extensive research has been conducted to explore the use of conventional artifi-
cial neural networks (ANNs) for gesture recognition using radar technology [7–10]. However,
the utilization of ANNs, such as convolutional neural networks (CNNs), for inference requires
extensive non-sparse multiply-accumulate (MAC) operations between network layers, making
them unsuitable for AI applications that require great computational efficiency and resource
optimization [11].

Spiking neural networks (SNNs) [12] represent a type of ANN designed to emulate the
behavior of biological neurons in the human brain. Communication within SNNs is achieved
through discrete electrical pulses called spikes, in contrast to the continuous-valued activation
functions employed by conventional ANNs. SNNs have several advantages over conventional
ANNs. They exhibit prominent energy efficiency since energy consumption is limited to
spike generation, rendering them particularly suitable for low-power devices and applications.
Additionally, SNNs can exploit the dynamic temporal nature of data, as they can track the tim-
ing of spikes to learn temporal patterns, making them highly suitable for analyzing sequential
datasets, including HGR data.

SNNs have been used for their inherent benefits in gesture recognition. In [13], the authors
explored gesture classification on the Soli [14] and Dop-NET [15] datasets using a spik-
ing liquid state machine along with traditional machine learning classifiers. The Soli and
DopNETdatasets are provided in a preprocessed format (non-time-domain data).Therefore, an
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additional conversion step is employed to transform the prepro-
cessed range-Doppler maps (RDMs) and micro-Doppler radar
signals into spike representations. Also, their approach utilizes a
single receiving antenna output signal. Authors in [16] performed
gesture recognition on datasets from [17] and Soli [14]. The [17]
dataset, range profiles are obtained through discrete Fourier trans-
form (DFT) and short-time Fourier transform (STFT), followed by
conversion into spikes using a time-to-first-spike scheme [18] and
classification using a convolutional-based SNN. The Soli range-
Doppler signals are directly encoded into spikes using thresholding
and then classified through the SNNmodel. In [19], a self-recorded
dataset of three gestures (Push, SwipeLeft, SwipeRight) and a
Background class is classified using a fully connected SNN. They
preprocess the raw data with 2D fast Fourier transforms (FFTs) to
obtain RDMs and calculate the azimuth angle information using
two out of three receiving antennas. The maps and angles are then
encoded into spikes using binary encoding. Their results showed
improved accuracy by incorporating both RDMs and angles, sur-
passing a recurrent neural network (RNN)-based baseline perfor-
mance while being computationally efficient.

The existing solutions, including ANNs and sparse SNNs, typ-
ically depend on the conventional radar preprocessing chain to
extract range, Doppler, or angular information as the initial step
in the network input procedure. Nevertheless, this preprocess-
ing chain is computationally expensive and introduces substantial
complexity. The solution proposed in [20] addresses these chal-
lenges using only raw time-domain radar data with simplified
processing. They skip the 2D FFTs for RDMs and emulate DFT
operations in the initial layer of their SNN network. Also, they
exclude Doppler information and angular data, achieving 98.1%
accuracy in distinguishing four self-recorded gestures. The time-
domain to spikes conversion is integratedwithin the SNNnetwork,
eliminating the need for a separate step.

In our earlier work, presented at the EUMW2022 conference
and published in its proceedings [1], we propose a gesture recog-
nition solution that combines time-domain radar data with a
spiking convolutional neural network (SCNN) architecture. Our
approach achieves comparable performance to a solution that
incorporates 2D FFTs, azimuth, elevation angle extraction, and
classification using a conventional CNN. In a subsequent work
[21], we demonstrated that our proposed solution outperforms
ANNs when applied to SNNs. Unlike [13, 16, 19], our approach in
[1] avoids the complexity and computational cost of radar prepro-
cessing 2D FFT steps and eliminates the need for encoding data
into spikes by directly processing the time-domain data through
the SNN network, preserving all information without loss. In con-
trast to [20], we utilized all 32 chirps to capture the entire Doppler
information from the time-domain data, and unlike [13, 16,
19, 20], we leverage signals from all three receiving antennas to
capture complete angular information. This enables effective dif-
ferentiation between gestures with similar range-Doppler charac-
teristics, such as distinguishing between SwipeLeft and SwipeRight
gestures.

Our current work presents the following contributions in com-
parison to the conference paper [1]:

(1) Dataset Enhancement: We utilize a more complex dataset
with a larger size and diverse recording specifications, surpass-
ing the previous work [1].

(2) Gesture Frame Detection:We introduce and utilize this pro-
cess to effectively discriminate between specific gesture frames
and non-gesture frames.

(3) Enhanced Time-Domain Processing: Our proposed time-
domain processing approach in [1] is modified to enable the
direct prediction of gestures on a frame basis, aligning with
the new labeling format based on the gesture frame detection
process.

(4) Simplified SCNN Architecture: We streamline the proposed
(SCNN) architecture in [1], by replacing complex synaptic
spiking neurons with simpler leaky integrate and fire (LIF)
spiking neurons [22] and reducing the number of layers.

(5) Live Testing and Evaluation: We conduct live testing to vali-
date our results and comprehensively assess the capabilities of
our solution, including real-time control of presentation slides
and engaging in online gaming activities.

(6) Computational Complexity Analysis: We provide a detailed
estimation of the computational complexity associated with
our solution, offering insights into its computational efficiency.

To the best of our knowledge, this study, in contrast to exist-
ing works [1, 13, 16, 19–21], introduces and evaluates frame-based
HGR prediction, enabling real-time utilization for the first time.
Consequently, it also demonstrates live testing of this approach,
thereby validating the presented results and directly assessing the
computational complexity and sparsity of the solution in real-time
scenarios.

The remainder of this article is structured as follows:
Section “Radar System Design” outlines the radar hardware
and configuration utilized in this study and provides com-
prehensive insights into the gesture dataset. Section “Gesture
Frame Detection: A Key Step in Data Preprocessing for Training
Enhancement” focuses on the gesture frame detection process. In
“Hand Gesture Recognition Proposed System” section, the utiliza-
tion of SNNs, along with the methods employed for time-domain
data preparation and the time-domain processing approach,
are thoroughly discussed. Section “Data Preparation and Model
Evaluation” discusses dataset splitting and presents an overview
of the training and testing procedures. Section “Experimental
Results” is dedicated to presenting the experimental results. The
“Discussion” section discusses the results. Finally, the “Conclusion”
Section provides several concluding remarks.

Radar system design

System hardware

This work employs the BGT60TR13C radar chipset, a frequency-
modulated continuous-wave (FMCW) radar chipset developed by
Infineon Technologies [23, 24]. FMCW radars offer the advantage
of a compact form factor, facilitating their efficient deployment in
various applications.These radar systems provide valuable insights
into target characteristics such as range and velocity through the
analysis of the signals they produce [25, 26].

Figure 1(a) depicts a simplified block diagram of the
BGT60TR13C chipset, which retains only a single transmit-
ter and receiver. On the transmitter side, a phase-locked loop
(PLL) governs the linear frequency sweeping process. A reference
oscillator at 80MHz clocks the loop, and a finite state machine
(FSM) controlled by the same reference clock generates a linear
voltage ramp. This voltage ramp is applied to a voltage-controlled
oscillator (VCO), which generates continuous signals known as
chirps. These chirps exhibit linear frequency-modulated (LFM)
characteristics, spanning a frequency range from 58.5 to 62.5GHz
for the proposed application. The transmit output power of the
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Figure 1. (a) FMCW radar block diagram. (b) Infineon’s FMCW radar chipset with a
transmitter antenna and three L-shaped receiving antennas.

LFM signal at the transmitter antenna port is approximately
5 dBm. Following transmission, radar-receiving antennas capture
the backscattered signal from the target. Upon reception, the
received signal undergoes a low-noise amplification of about
12 dB. It is then time-domain mixed with the transmitter signal,
followed by a high-pass filter to eliminate frequencies below
100 kHz and an anti-aliasing filter (AAF) to eliminate frequencies
above 600 kHz. As a result, the intermediate frequency (IF) signal
is significantly narrower than the originally transmitted signal
[23, 24]. This narrow bandwidth greatly enhances subsequent
processing efficiency. As part of the successive stages of processing,
the IF signal is directed to an analog-to-digital converter (ADC)
with a sampling rate of 2MHz and a resolution of 12 bits. For
more information on the chipset hardware, the reader can refer to
[23, 24].

Further, as shown in Fig. 1(b), the radar system incorporates
three receiving antennas arranged in an L-shaped configuration.
As a result, the received IF digital signal from all three receiving
antennas encompasses valuable target information, such as range,
Doppler, and angles. These values can be estimated through addi-
tional utilization of digital signal processing algorithms, as will
be elaborated in “Gesture Frame Detection: A Key Step in Data
Preprocessing for Training Enhancement” section.

System parameters

In the experimental setup, the radar chip is configured to generate
32 chirps per frame. Each chirp undergoes frequency modulation
spanning from 58.5 to 62.5GHz, effectively covering a bandwidth
of 4GHz. A single gesture recording comprises 100 frames, with
each frame lasting 30ms. Thereby, the cumulative duration of a
complete gesture recording amounts to approximately 3 seconds.
The output shape of the recording is represented as (frames, chirps,
samples), and given the presence of three receiving antennas, the
final output shape is denoted as (frames, antennas, chirps, sam-
ples), with dimensions of (100, 3, 32, 64), respectively. Table 1
provides an overview of the radar operating parameters adopted
throughout the work.

Based on the aforementioned operating parameters, several
key metrics can be derived. The maximum measurable Doppler
velocity, i.e.,

Vmax = co
4 ⋅ fcenter ⋅ Tc

, (1)

is estimated to be 4.13 m/s, with co representing the speed of light.
In the context of Doppler resolution,

Vres = 2Vmax
Nc

, (2)

Table 1. Radar operating parameters

Parameter Symbol Value

Start frequency fmin 58.5 GHz

Stop frequency fmax 62.5 GHz

Center frequency fcenter 60.5 GHz

Bandwidth B 4 GHz

Number of samples per chirp Ns 64

Number of chirps Nc 32

Chirp repetition time Tc 0.3 ms

Frame repetition time Tf 30 ms

Number of frames Nf 100

Number of transmit antennas NTX 1

Number of receive antennas NRX 3

Sampling frequency Fs 2 MHz

Figure 2. A visual representation showcasing the execution of the recorded gesture.

an approximate value of 0.26m/s is obtained.The range resolution:

Rres = co
2B , (3)

stands at 0.038 m. Finally, the maximum unambiguous range,

Rmax = Rres × Ns
2 , (4)

is identified as 1.2 m [25, 26].

Gesture dataset acquisition

This paper presents a significant expansion to the previous dataset
in [1], with an increase in size and a broader range of specifications.
The new dataset contains 19,400 recordings for five macro gestures
(Push, SwipeRight, SwipeLeft, SwipeDown, and SwipeUp), repre-
senting approximately a tenfold increase over the previous dataset,
which had 2000 recordings for eightmacro and twomicro gestures.
We have chosen to focus on these five gestures due to their direct
relevance to task execution and system control, as well as their
user-friendliness and robustness against variations in user execu-
tion. Additionally, the dataset incorporates a Background class to
indicate the absence of any specific gesture.

Figure 2 presents a visual representation of the execution of
these gestures.To ensure comprehensive scenarios and introduce
variability, the executed gestures incorporated deliberate variations
in angles, distances, and hand dominance (right and left), while
concurrently adjusting the radar holder height. The gestures were
performed in a room with only static objects (walls, chairs, and
tables) and no othermoving objects. A single individual performed
the gestures with both hands while standing at discrete distances
of 0.6, 0.8, and 1.0m, maintaining three distinct angles relative to
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Figure 3. Configuration of the radar recording setup, illustrating the range of
recording positions, angles, and height adjustments of the radar holder.

the radar at each recording distance: directly facing (0∘), slightly
turned to the left (-30∘), and slightly turned to the right (30∘).
Similarly, the radar holder height was adjusted while recording
within a range of 0.95–1.35m to capture data from various vertical
positions. Figure 3 illustrates the different recording scenarios to
clarify the experimental setup.

The adopted recording criterion and environment yielded a
clean, non-noise-limited gesture dataset with minimal intra-class
variability between the different gestures while simultaneously
incorporating diverse, realistic variations in gesture execution.
Given that the dataset comprises a collection of 19,400 recordings,
and based on the information provided in “System Parameters”
section, the final shape of the dataset, including all available record-
ings, is presented as (recordings, frames, antennas, chirps, and
samples), with respective values of (19,400, 100, 3, 32, 64).

Gesture frame detection: a key step in data preprocessing
for training enhancement

As demonstrated in the “System Parameters” section, a gesture
comprises a sequential series of 100 frames. However, real-world
gestures are performed infrequently and within a few hundred
milliseconds. This implies that among the 100 frames recorded for

a gesture, only a few capture the actual gesturemovement, while the
majority capture Background noise. To develop a robust solution
for real-world scenarios, differentiating between gesture frames
and non-gesture frames is crucial for minimizing false alarms.
Therefore, this section introduces a novel approach to precisely
identify the exact frame at which a gesture occurs [27].

It is worth noting that while this approach incorporates con-
ventional radar preprocessing procedures involving two FFT
steps, its main objective revolves around detecting the frame
index where the hand is closest to the radar. Thereupon,
a windowing technique is applied around this frame index
to label the entire frames where the gesture is occurring.
This approach enhances the effectiveness of SNN training
detailed in the “Time-Domain Processing Approach” section
by enabling the spiking neurons to extract essential features
from the temporal information in the time-domain gesture
frames.

It should be noted that these steps are specifically carried out
during the preparation of the time-domain dataset for training,
as clarified in the “Refining Time-Domain Gesture Data” sec-
tion. Therefore, they are only implemented in software and are
not required for live testing, as detailed in the “Live Testing” sec-
tion.This guarantees that live testing is conducted exclusively with
time-domain data without conventional preprocessing steps.

Figure 4 provides a comprehensive overview of the gesture
frame detection process.

Range information

Initially, the ADC time-domain raw data within each frame under-
goes a preprocessing operation to alleviate the potential impact of
transmitter-receiver antenna leakage. This operation entails sub-
tracting the mean along the fast-time (a.k.a. samples) dimension,
thereby effectively removing the DC component. The presence of
static objects in the surrounding environment of the radar sys-
tem can impede the accurate detection of gesture reflections. To
address this issue, a moving target indication (MTI) removal step
is employed. By subtracting the mean across the slow-time (a.k.a.
chirps) dimension, signals arising from static objects are effec-
tively eliminated, thus enhancing the clarity of gesture reflections.

Figure 4. Outline of the gesture frame detection process: (a) Preprocessing on each frame involves a first FFT on the fast-time dimension to generate the range profile
(RProfile). Smoothing and refinement locate the first local maxima as RGesture, representing the range bin of the hand. A Doppler FFT on RGesture produces the Doppler profile
(DProfile). The peak signal amplitude in DProfile is designated as PGesture. (b) Frame refinement: Using RGesture and PGesture values for each frame, a refinement process is
performed across all frames. Frames with a PGesture value below the predetermined threshold are discarded as they are considered not to contain any gesture. From the
remaining frames, the frame closest to the radar, determined by the nearest RGesture index, is identified as FGesture, indicating the frame where the hand performed the gesture
and was closest to the radar.
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To extract range information, an FFT is applied to the preprocessed
and filtered data along the fast-time dimension [13]. This allows
for the identification of specific frequency components associated
with target reflections. Following these steps, the range informa-
tion (R) is subjected to extra analysis. In this regard, the absolute
values of the mean along both antennas and slow-time dimensions
are computed, yielding the range profile (RProfile). This profile pro-
vides valuable insights into the spatial distribution and intensity of
target reflections.

Range profile processing

After obtaining the RProfile for each frame, the next step involves
identifying the bin with the highest value in the RProfile, as the
global maximum range bin. Further refinement procedures are
then conducted to determine the presence of local maxima within
the RProfile. The filtering process applied to the RProfile includes the
following sequential steps:

(1) To eliminate insignificant localmaxima andmitigate noisy tar-
gets in the near field, especially when background responses
are of high-magnitude, the RProfile is smoothed with a 1D
Gaussian filter of standard deviation one and subject to
dynamic thresholding. Dynamic thresholding assigns a value
of zero to any range value below the maximum of 0.1 times
the range profile value at the global maximum range bin in
the frame under processing and a fixed threshold of 1 × 10−4.
The fixed threshold is selected based on extensive analysis of
numerous recordings, which revealed that the noise level asso-
ciated with a user’s approach to the radar system is typically
around this value.

(2) In cases wheremultiple local maxima are detected, precedence
is given to the first local maximum identified. This particular
bin (RGesture) is recognized as the point of interest within the
RProfile, signifying the presence of hand movement.

(3) If no local maxima are detected, the bin containing the global
maximum is designated as RGesture within the RProfile.

The distinction between the bin containing the global maxi-
mum value and the bin associated with the first local maximum
is crucial for effectively discerning the hand from the body, given
that the hand typically exhibits closer proximity to the radar than
the rest of the body.

Doppler profile processing

In order to obtain theDoppler information, a secondFFT is applied
exclusively to the range information (R) at only the final RGesture
derived from the range profile processing step. This procedure
ensures that only one Doppler FFT [13] is performed per frame.
Afterward, the absolute values of the mean along the antenna’s
dimensions are computed to generate the Doppler profile (DProfile).
The peak value of the signal amplitude in theDProfile is returned and
designated as the PGesture in the current frame under processing.

Enhancing gesture onset detection through frame filtering

After processing all frames, the “Range Profile Processing” section
determines the RGesture and the “Doppler Profile Processing” sec-
tion generates the corresponding PGesture as output. To identify the
precise frame in which the gesture occurs, a threshold value of
5×10−5 is established.This threshold was selected after examining
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Figure 5. Illustration of gesture frame detection for a SwipeLeft gesture. (a)
Conventional range spectrogram of a SwipeLeft gesture. (b) Conventional Doppler
spectrogram. (c) and (d) RProfile and DProfile for all 100 frames within the SwipeLeft
gesture, respectively. Frames in the gray areas are discarded due to thresholding
during FGesture estimation. These frames are not clearly visible in panels (a) and (b),
confirming that they represent frames with gesture-accompanying noise rather than
those with actual gesture execution. The green dotted line highlights the estimated
FGesture, indicating the hand’s closest position to the radar during the gesture. The
results from panels (c) and (d) are corroborated by the conventional spectrograms
in panels (a) and (b).

several gesture recordings and determining that a frame with a sig-
nal amplitude below this value is most likely devoid of any gesture.
Consequently, any frame with a PGesture value below this thresh-
old is disregarded. Subsequently, the frame with the lowest range
bin index among the remaining frames is identified, indicating its
closest proximity to the radar. For ease of reference, this frame is
denoted as the “Gesture Frame (FGesture).” In the context of the ges-
tures, the FGesture corresponds to the midpoint of Swipe gestures
or approximately the endpoint of Push gestures. This distinction
arises from the fact that in Swipe gestures, the hand is closest to the
radar when it is in the middle of the gesture, whereas in Push ges-
tures, the hand is nearly at the end of the gesture. As a result of the
gesture frame detection process, the index of the FGesture for each
gesture is returned and stored for later utilization in the upcom-
ing processing of the gesture data, as discussed in the “Refining
Time-Domain Gesture Data” section.

Figure 5 shows the RProfile and DProfile of the full frames of
a SwipeLeft gesture, emphasizing the accurate detection of the
FGesture where the hand was executing the gesture at its closest
proximity to the radar.

Hand gesture recognition proposed system

Spiking neural network

In this work, the utilization of the SCNNproposed in [1] is adopted
with certainmodifications to streamline themodel and enhance its
computational efficiency. The architecture of the modified SCNN
model is illustrated in Fig. 6. Specifically, the three convolutional
layers maintain identical kernel sizes, padding, and stride, preserv-
ing their characteristics from the original SCNN model. Equally,
the fully connected (FC) layer with an input size of 64 is retained.
To maintain consistent model performance during both training
and inference, batch normalization layers are omitted after each
convolutional layer due to their different behaviors in these two
processes. Likewise, in place of the synaptic spiking neurons layer,
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Figure 6. The architecture of the SCNN model is presented, with each convolutional layer annotated with its respective input channels and kernel size. The initial
convolutional layer comprises three input channels, indicating that the network receives a single frame (composed of chirps or samples) from a single gesture at a time,
with the input channels corresponding to the three antennas. Max-pooling layers with a stride of 2 are utilized. The first layer of LIF spiking neurons converts the output of
the initial max-pooled convolutional layer into spike representations, which are then propagated to the subsequent layers of the network. The membrane potential of the
final LIF spiking neurons layer is stacked for each frame, denoted by N, indicating the number of frames in the processed gesture.

a layer comprising LIF neurons [22] is introduced after the convo-
lutional andmax pooling layers.TheLIF neurons exhibit simplified
internal dynamics, thereby reducing the overall computational
complexity of the model. Finally, considering the five gestures and
Background class present in the current dataset, the output of the
fully connected layer is constrained to six neurons, aligning with
the class labels. The selection of a SCNN is motivated by its ability
to process time-domain radar data directly. As illustrated in Fig. 6,
the SCNN receives one frame of the recorded gesture at a time, pre-
serving temporal information. Additionally, the input channels of
the first convolutional layer are set to 3, corresponding to the three
receiving antennas, ensuring the preservation of angular infor-
mation. Convolution operations are performed on the (chirps,
samples) information for each gesture, preserving (Doppler, range)
information.

The LIF neuron, commonly used in computational neuro-
science, resembles a resistor-capacitor (RC) circuit at its core. The
membrane potential of the LIF neuron undergoes charging and
discharging, similar to a capacitor in an RC circuit, as current
flows through a resistor. This behavior is characterized by the
potential increasing in response to incoming inputs and gradually
decreasing in the absence of input due to a leaking mechanism.
The LIF neuron, together with the SCNN, are implemented using
the snnTorch spiking simulator [28]. As defined in [28], the inner
dynamics of the LIF neuron is governed by:

Ut = 𝛽Ut−1 + WIin[t], (5)

where each neuron possesses an intrinsic membrane potential (Ut)
that evolves with incoming synaptic inputs (Iin[t]) modulated by
the synaptic connectionweight (W).Themembrane potential inte-
grates over time with a leakage term 𝛽, commonly represented by
an exponential decay function. Similarly, as defined in [28]:

Ut > Uthr ⇒ St = 1, (6)

when the membrane potential (Ut) surpasses a predetermined
threshold (Uthr), the neuron generates an output spike (St), fol-
lowed by a reset of its membrane potential by subtracting a thresh-
old value. The LIF neuron’s dynamic behavior allows for effective
exploitation of the sequential nature of time-dependent datasets.
Figure 7 provides an illustration depicting the operational principle
of the LIF neuron.

To address the challenges posed by non-differentiable spikes
during model training within the spiking domain and enable end-
to-end optimization, the surrogate gradient descent method is
employed [29]. This approach involves substituting the gradient

Input spikes
Vth

Membrane potential

Output spikes

Time(a)

(b)

(c)

Figure 7. The LIF spiking neuron operating principle. (a) Spikes as inputs to the LIF
neuron over time. (b) The membrane potential integrates over input spikes over
time with a decay rate of beta. (c) An output spike is generated only when the
membrane potential exceeds the spiking threshold (Vth).

of non-differentiable spikes in the backward pass with the gradi-
ent of a differentiable function, accordingly facilitating effective
optimization of the SCNNmodel. In this study, we utilize the state-
of-the-art surrogate gradient shifted arc-tan (ATan) function [30],
representing an advancement over our previous work [1]. During
the forward pass of training, spikes are generated in accordance
with (5) and (6). Nevertheless, during the backward pass, the gra-
dient of the spikes is substituted with the gradient of the ATan
function as defined in [30]:

𝛿S
𝛿U = 1

𝜋 ⋅ 1
(1 + (𝜋U 𝛼

2
)2)

, (7)

where U denotes the membrane potential and 𝛼 denotes the sur-
rogate slope. It is worth noting, that the surrogate slope (𝛼) plays
a pivotal role in determining the steepness of the ATan function.
Larger values result in a narrower surrogate gradient and a more
pronounced transition from the function’s minimum to the maxi-
mumvalue, while a smaller valuemeans a wider surrogate gradient
and a gradual transition from theminimum to themaximum value
of the function.

Refining time-domain gesture data

As discussed in the “Gesture Dataset Acquisition” section, the
dataset comprises a total of 19, 400 recorded gestures. All these
gestures undergo the gesture frame detection process outlined in
the “Gesture Frame Detection: A Key Step in Data Preprocessing
for Training Enhancement” section. As a result of this process, the
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FGesture in which the gesture is clearly presented and in close prox-
imity to the radar is detected. It is important to note that the FGesture
alone does not capture the entirety of the gesture but provides an
indication that the gesture occurred in the vicinity. Windowing
around this FGesture is performed as the next step. To determine
the optimal windowing size, various sizes are proposed and eval-
uated through comprehensive training and testing processes, as
described in the “Training ProcessOverview” and “Testing Process
Overview” sections. A thorough analysis of the results reveals that
a window size of 8 around the FGesture produces the most favorable
outcomes. For the sake of simplicity, only thewindowing size yield-
ing the best performance is mentioned here and is subsequently
used to generate the results in the “Experimental Results” sec-
tion. Although, it is worth mentioning that the interpretation of
the FGesture differs for the Swipe gestures and the Push gesture. For
Swipes, four frames before and after the FGesture are labeled to accu-
rately represent the gesture, while for the Push gesture, six frames
before the FGesture and two frames after are labeled to capture the
correct execution of the gesture. Accordingly, the overall sequence
of processing steps required to transform the ADC time-domain
raw radar data into a suitable final time-domain format for model
training and inference can be outlined as follows:

(1) Conventional Radar Preprocessing: The ADC time-domain
raw radar data undergoes standard radar preprocessing steps,
including the removal of the DC component and the (MTI)
technique. This involves subtracting the mean along the fast-
time and slow-time dimensions, respectively.

(2) Min-Max Normalization: Within each gesture, the 100 frames
undergo a min-max normalization step. This normalization
ensures that the values of the chirps and samples within each
frame are scaled between zero and one.

(3) Gesture Labeling: The index of the FGesture obtained from the
gesture frame detection process for the current gesture is
retrieved. Subsequently, windowing is applied to label eight
frames out of the 100 frames as gesture frames, as described
in the earlier discussion. The remaining 92 frames are labeled
with the Background class label.

(4) Saving ProcessedGestureData:The processed data from step 2
is saved as the gesture data file, preserving the processed time-
domain representation of the gestures.

(5) Saving Gesture Labels: The labeling of the frames from step 3
is saved as the gesture label file.

At the conclusion of this process, the entire dataset compris-
ing 19,400 gestures is transformed into the processed time-domain
format. Moreover, refinement of all gestures is performed to assign
appropriate labels to the frames capturing the occurrences of the
gestures, while simultaneously designating the remaining frames
as Background. As a consequence, the dataset is fully prepared for
utilization in the tasks of training, validation, and testing.

Time-domain processing approach

The frame-by-frame time-domain processing approach, intro-
duced in [1], has undergone modifications to incorporate the
newly introduced labeling structure. Unlike the previous imple-
mentation [1], which assigned a uniform label to all frames within
a gesture, the current approach distinguishes between frames that
exhibit active gesture performance and those that do not, as dis-
cussed in the “Refining Time-Domain Gesture Data” section. The
modified processing approach can be summarized as follows:

(1) The processed time-domain data obtained from the “Refining
Time-Domain Gesture Data” section consists of a sequence of
100 frames, representing a single gesture. These frames serve
as the temporal input steps for the SCNN during its forward
pass.

(2) The membrane potentials of the six LIF neurons in the final
layer following the FC layer in the SCNN model are stacked
for each frame, as illustrated in Fig. 6.

(3) The stackedmembrane potentials of size (100, 6) undergo pro-
cessing through the LogSoftMax function [31], resulting in
predicted log probabilities for each frame within the gesture.
LogSoftMax is a common method for transforming unnor-
malized outputs into log probabilities, a prerequisite for the
negative log-likelihood loss (NLLLoss) function [32].

(4) Utilizing the NLLLoss function, each frame’s predicted log
probability is compared with its corresponding label, derived
from the saved label gesture in the “Refining Time-Domain
Gesture Data” section. NLLLoss proves appropriate for
this task as it operates on log probabilities produced by
LogSoftMax.Moreover, combining LogSoftMaxwithNLLLoss
is a standard practice in multi-class classification tasks, such
as gesture recognition. Despite that, it is essential to empha-
size that the overall loss for the entire gesture, which is vital
for backpropagation and updating the trainable parameters of
the network, is computed by summing the losses of each frame
within the gesture.

Remarkably, unlike the previous work’s approach [1], this pro-
cedure provides classification per frame, negating the need to
aggregate predictions from all frameswithin a gesture to determine
the performed gesture. For this reason, this approach demonstrates
its suitability for real-time gesture detection where prediction is
needed per frame received from the radar.

Data preparation and model evaluation

Dataset splitting

The dataset of 19,400 time-domain recordings, as defined in the
‘Refining Time-Domain Gesture Data” section, was divided into
training, validation, and testing subsets following standard prac-
tices. Specifically, 75% of the recordings (14,550) were allocated
for training to ensure effective model training. The validation set,
which is typically around 25% of the training set, was adjusted to
approximately 22% of the training set, resulting in 3201 record-
ings to maintain a reasonable validation set size. The remaining
4850 recordings were reserved for independent testing, enabling a
robust evaluation of the model’s performance. This division aligns
with established machine learning practices, taking into account
our dataset’s size and ensuring robust model evaluation.

Training process overview

The training process of the SCNN model involves utilizing the
training dataset and utilizing the modified time-domain process-
ing approach detailed in the “Time-Domain Processing Approach”
section. During training, the adaptive moment estimation (Adam)
optimization algorithm is employed to update themodel’s trainable
parameters [33]. Hyperparameter tuning is performed to opti-
mize the training performance of the model before full training.
This is done using the Optuna library [34] to fine-tune various
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Table 2. Optuna hyperparameter search range

Hyperparameter Optimization range

Adam learning rate 1 × 10−4 to 1 × 10−3

Adam weight decay 1 × 10−6 to 1 × 10−3

LIF neuron decay rate (Beta) 0.5–1.0

LIF neuron threshold 0.2–0.7

Surrogate gradient slope 0–10

hyperparameters associated with the model and the spiking LIF
neuron.

An Optuna-based hyperparameter optimization environment
is set up, where a random value is selected for the Adam opti-
mizer learning rate, weight decay, spiking LIF neuron decay rate,
threshold, and surrogate gradient slope for each optimization trial.
Table 2 shows the hyperparameter search range, selected based
on best-known common practices. The SCNN is then trained for
only 20 epochs using the suggested values, and the validation
accuracy is calculated for each trial. Through a rigorous hyper-
parameter tuning process involving more than 200 optimization
trials, the optimal values for the learning rate and weight decay
of the Adam optimizer are determined to be 4.9 × 10−4 and
1.27 × 10−5, respectively. Similarly, the beta decay rates for the
membrane potential, threshold, and surrogate gradient slope of the
LIF neuron are designated as 0.5, 0.25, and 4.0, respectively. It is
worth noting that these values resulted in the highest validation
accuracy, thus ensuring that the selected values maximize model
performance.

Table 3 provides a comprehensive overview of the optimized
and non-optimized hyperparameter values utilized in the training
process.

Following hyperparameter optimization, the SCNN model
undergoes a 120-epoch training phase. To address the common
challenge of overfitting and enhance the model’s ability to gener-
alize to unseen data, the early-stopping approach [35] is employed.
This method is a widely used regularization technique in machine
learning, primarily employed to prevent overfitting. It operates by
continuously monitoring the model’s performance on the separate
validation dataset during training. If no noticeable improvement
in the model’s performance on the validation data is observed over
a consecutive span of 10 epochs, the training process is halted. In
essence, early stopping prevents the model from becoming overly
specialized to the training data.This, in turn, improves the model’s
capability to generalize to new, unseen data, ultimately enhancing
its overall performance.

Testing process overview

Throughout the training process, attention is given to identifying
and preserving the model with the lowest validation loss, referred
to as the “best model.” In the following testing phase, this best
model is retrieved and subjected to testing using the independent
and previously unseen test dataset. The testing phase is critical in
detecting potential biases and reliably assessing the model’s gen-
eralization capabilities since it leverages the best model, which
demonstrates reduced sensitivity to overfitting. The model selec-
tion process serves as an additional safeguard against overfitting,
ensuring that the model’s performance is carefully evaluated based
on its true potential.

Table 3. Hyperparameters overview

General hyperparameters

Batch size 32

Epochs 120

Adam learning rate 4.9 × 10−4

Adam weight decay 1.27 × 10−5

SCNN specific hyperparameters

Surrogate gradient slope 4.0

Beta 0.5

LIF neuron threshold 0.25

Experimental results

In this section, we describe the experimental results of the study. To
account for the inherent randomness in the optimization process
of neural networks, multiple training iterations were conducted for
the SCNNmodel, as described in the “Training Process Overview”
section. In particular, the training procedure was executed five
times, each time employing a new random seed for initialization.
This approach enabled the acquisition and retention of the five
top-bestmodels, as outlined in the “Testing ProcessOverview” sec-
tion. By averaging the performance of these fivemodels, the results
presented in this section provide a more reliable and representa-
tive assessment of the model’s performance compared to a single
model.

Effectiveness of the time-domain frame-based prediction
approach

This section compares the proposed frame-based prediction
approach with the previously introduced record-based prediction
approach in [1]. Unlike the frame-based approach, the record-
based approach cannot distinguish between frames that contain
the gesture and non-gesture frames, resulting in assigning the same
label to all gesture frames. Consequently, the network performs a
single prediction for the entire 100-frame gesture, aiming to detect
the presence of the gesturewithin this duration, rather thanmaking
predictions on individual frames. To obtain experimental results,
themodified SCNN architecture introduced in this study is trained
on the newly introduced dataset using the record-based prediction
approach for five separate training runs with different seeds. The
mean test accuracy, derived from the best (lowest validation loss)
among the five SCNNmodels, is observed to be 95.40%.

In the newly proposed frame-based prediction solution, during
the training process, the SCNN model leverages the time-domain
processing approach described in the “Time-Domain Processing
Approach” section, enabling it to generate predictions for each
frame individually. Likewise, in the testing phase, the accuracy
function assesses the model’s performance by evaluating the accu-
racy of its frame-level predictions for each gesture. The SCNN
model is trained on five different random seeds using the frame-
based prediction approach. Thereupon, the mean test accuracy is
determined by evaluating the performance of the five best models,
resulting in an accuracy of 98.45%.

Table 4 confirms that the frame-based prediction approach out-
performs the record-based prediction approach in terms of mean
test accuracy. Also noteworthy is that themodels employed in both
approaches were trained on the same dataset and evaluated using
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Table 4. Comparison of time-domain frame-based and record-based
approaches

Frame-based
prediction

Record-based
prediction

Mean test accuracy 98.45% 95.40%

the same criteria, highlighting the usefulness of the frame-based
approach for reliably predicting gestures.

Further analysis

The precision and recall scores obtained from testing the five
SCNNmodels are examined to gain deeper insights into the frame-
based prediction approach. The average precision, calculated as
0.90, highlights the model’s ability to accurately identify positive
instances. Likewise, the average recall, calculated as 0.89, indi-
cates the model’s effectiveness in capturing relevant information
and minimizing false negatives. These metrics serve as valuable
indicators of the model’s overall performance and their ability
to strike a balance between precision and recall in classification
tasks [36].

Table 5 presents the consolidated confusion matrix, providing
a comprehensive overview of the model’s classification outcomes
across the different gestures.Thismatrix aids in identifying specific
areas of improvement and understanding the patterns of misclas-
sifications exhibited by the models. It is noteworthy that the values
observed in Table 5 provide insights into the frame distribution
within the test data, considering the current frame-based predic-
tion approach. Furthermore, there is a noticeable difference in the
number of frames predicted as Background compared to the other
classes. This distinction arises from the labeling scheme, where
each gesture comprises eight frames explicitly designated as gesture
frames, while the remaining 92 frames are assigned the background
label, as already noted in the “Gesture FrameDetection: AKey Step
in Data Preprocessing for Training Enhancement” and “Refining
Time-Domain Gesture Data” sections.

Modified evaluation protocol

Upon closer examination of the model’s outcomes and the eval-
uation of their respective confusion matrix, it becomes apparent
that the models consistently demonstrate proficiency in identify-
ing frames in which gestures are performed correctly. Even so,
occasional temporal deviations exist, where the models predict the
occurrence of a gesture slightly before or after the labeled frames.
Considering that each frame spans 30ms, such marginal devia-
tions in temporal detection do not have a significant impact on

real-world practical applications. Figure 8 provides a clear depic-
tion of this behavior. In the investigation, a sequence of three ges-
tures is provided as input to one of the SCNN networks, revealing
the infrequent occurrence of incorrect predictions. Nonetheless, it
is possible to observe a subtle temporal shift in the predictions. In
light of this observation, a decision is made to refine the accuracy
measurement approach to account for this characteristic behavior.
The refined accuracy comprises the following steps:

(1) Initially, the predicted classification labels for each set of 100
frames within a gesture are examined. It is essential to ensure
that among these 100 frames, only one non-zero label is
present. This criterion guarantees accurate prediction of the
Background frames and ensures that each gesture is uniquely
identified without any overlapping predictions with other ges-
tures in the same frame sequence.

(2) Subsequently, the correspondence between the ground truth
non-zero labels and the non-zero predicted valueswithin these
100 frames is validated. This process confirms that the pre-
dicted frames accurately capture the presence of the same
gesture as indicated by the ground truth labels.

(3) To still refine the accuracy, a windowing technique is
employed. A window of size 10, centered around the frames
containing the 8 non-zero ground truth labels, is utilized.
This window encompasses 5 frames preceding and 5 frames
succeeding the non-zero labels.

(4) Afterward, analysis is conducted to determine if the non-zero
predicted frames, signifying the predicted gesture, fall within
the designated window. On top of that, a condition is set that
the predicted non-zero frames must exhibit a repetition of
at least 5 frames compared to the 8 non-zero ground truth
frames.Meeting these requirements indicates that the network
correctly predicted the gesture, although with a minor tempo-
ral variation.Therefore, these predictions are deemed accurate
in their entirety.

By incorporating these refined accuracy measurement proce-
dures, the precision and recall values derived from the five SCNN
models reach more reasonable levels, with precision achieving
0.980 and recall attaining 0.975. The SCNN models demonstrate
an average testing accuracy of 99.75%. Table 6 presents a con-
cise summary of the average confusion matrix obtained from the
five SCNN models, offering a comprehensive evaluation of their
collective performance. To further validate the effectiveness of
the proposed time-domain frame-based solution, a comparison
is made to a recent work [27] utilizing an augmented version of
the gesture dataset employed in this work. The authors applied a
slim radar conventional preprocessing pipeline to the time-domain
data, extracting five features: radial distance, radial velocity,

Table 5. Average confusion matrix

Background Push SwipeRight SwipeLeft SwipeDown SwipeUp

Background 447,949 868 595 670 654 606

Push 928 5356 26 16 7 2

SwipeRight 666 44 5492 69 32 31

SwipeLeft 838 19 76 5383 12 30

SwipeDown 546 9 19 16 5780 0

SwipeUp 634 2 24 23 0 5732
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Figure 8. Prediction results out of a SCNN model for three gestures (300 frames).
The results exhibit a high level of agreement between the predicted labels and
ground truth. Minute shifts between predictions and labels are noticed in certain
cases, thus explaining the model’s behavior.

azimuth angles, elevation angles, and signal amplitude per frame.
These five features are then fed into an RNN to generate a predic-
tion per frame. An average F1 score of 98.4% is reported. Given the
average precision of 0.980 and an average recall of 0.975 achieved
by the proposed SCNN model, the average F1 score is 97.7%. This
demonstrates that the proposed solution is comparable to solu-
tions based on conventional radar preprocessing pipelines and
conventional ANN-based networks with strong temporal learning
capabilities.

Live testing

Live testing plays a critical role in evaluating trainedmodels in real-
time scenarios, ensuring their consistencywith the results obtained
during the testing phase. Real-time retrieval of frames from the
radar is achieved using a dedicated Python script. The acquired
ADC time-domain frames undergo the time-domain refinement
process described in the “Refining Time-Domain Gesture Data”
section. The processed time-domain frame is then fed into the
SCNN, where predictions for each gesture class are generated
based on the membrane potential values of the last layer of LIF
spiking neurons, as explained in the “Time-Domain Processing
Approach” section. The gesture class with the highest predicted
probability is displayed in real-time through the Python script,
providing immediate feedback on the detected gesture. During
live testing, the radar’s interactive control capabilities are demon-
strated by incorporating corresponding movement actions based
on the predicted gestures. If no gesture or a Background class is
detected, the system remains responsive without triggering any
action. Gestures, including SwipeDown, SwipeUp, SwipeLeft, and
SwipeRight, aremapped to keyboard actions that simulate pressing

the “Down,” “Up,” “Left,” and “Right” keys, respectively. Likewise,
the Push gesture corresponds to pressing the “PageUp” key. These
interactive controls exemplify the practicality of the radar sys-
tem, enabling remote control in various scenarios. For instance,
it allows seamless control over presentation slides and facili-
tates engagement in online gaming solely through radar-predicted
gestures.

The effectiveness of the proposed real-time solution is validated
by live testing from five individuals (three males and two females,
aged 25–30 years) uninvolved in the dataset collection process.
These individuals performed a set of 20 gestures in a randomized
sequence, using both the right and left hands at the same distances
and angles used in the gesture recording, as detailed in the “Gesture
Dataset Acquisition” section. The solution accurately predicted 96
of the 100 performed gestures, confirming the accuracy, reliability,
and suitability of the trained SCNN models for real-time gesture
recognition.

Computational complexity

The SCNN model, with a top-level metric of 1.4 million multiply-
accumulate (MMAC) operations per frame inference, assumes that
LIF spiking neurons display full spiking activity, with all spikes
equal to one. The central processing unit (CPU), by default, does
not account for single-bit event spikes, treating their multiplica-
tion with the single-bit event as a standard multiplication, similar
to the ANN. However, this operation should be less costly as it
is a multiplication between the synaptic weight and a single-bit
event (spike). Therefore the SNN in the worst-case scenario still
demonstrates computational efficiency compared to an equivalent
ANN. Additionally, since SNNs generate spikes only when they
exceed the internal threshold (as discussed in the “Spiking Neural
Network” section), the resulting spikes are primarily zeroes with a
few occurrences of 1-bit spikes.This eliminates the need for multi-
plication between synaptic weights and zero spikes, simplifying the
MAC operation to just an addition. And, when the spike is a 1-bit,
it results in a simpler multiplication than the conventional case,
underscoring the computational efficiency and potential of the
SCNN model. In the context of hardware implementation, SNNs
offer a distinct advantage over conventional ANNs. By leveraging
1-bit spikes, SNNs streamline the computational process, replacing
the conventional multiplier with a simpler logical AND opera-
tion.This efficient approach reduces the computational complexity
associated with synaptic weight multiplication, making SNNs a
promising solution for hardware implementations, particularly on
neuromorphic hardware where the inherent sparsity of SNNs can
be fully leveraged [37].

The sparsity of SCNN models is evaluated via live testing, as
detailed in the “Live Testing” section. In this approach, one of the

Table 6. Average refined confusion matrix

Background Push SwipeRight SwipeLeft SwipeDown SwipeUp

Background 451,062 81 62 79 23 32

Push 107 6208 26 16 6 3

SwipeRight 142 43 6056 70 32 31

SwipeLeft 123 19 64 6090 12 18

SwipeDown 34 9 21 18 6290 0

SwipeUp 76 2 25 24 0 6241
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SCNN models is executed in real-time, enabling the monitoring
of the number of non-zero spikes and zero spikes produced dur-
ing each frame prediction. Through the calculation of the ratio
between zero spikes and the total number of spikes, the sparsity
level for each frame prediction is determined. The investigations
continually demonstrate a pattern: the sparsity level is consis-
tently high during non-gesture times, ranging from 90% to 97%.
Conversely, when a gesture is detected, the sparsity level slightly
decreases to around 75%. The consistent generation of sparse pre-
dictions by the SCNN model reaffirms the inherent advantage of
SNNs over ANNs.

Discussion

In contrast to the SNN works in [13, 16, 19], our approach focuses
solely on utilizing time-domain data, bypassing the computation-
ally expensive FFT preprocessing steps. Our approach also does
not require an encoding step to convert input data into the spiking
format. Unlike previous SNN-based gesture recognition solutions
[1, 13, 16, 19–21], our solution introduces a gesture frame detec-
tion process outlined in the “Gesture Frame Detection: A Key
Step in Data Preprocessing for Training Enhancement” section.
This process enables us to accurately differentiate between frames
that capture genuine gesture execution and those characterized
by the absence of gestures. This distinction allows for a modi-
fied form of gesture labeling, assigning labels to individual frames
and enabling frame-based predictions by the model. By incor-
porating these modifications during model training, the model
becomes adept at extracting crucial features from accurately exe-
cuted gestures, resulting in improved accuracy in recognizing and
classifying gestures.

Despite the challenges posed by the dataset’s recording charac-
teristics, the combination of the modified time-domain processing
approach and the proposed SCNNarchitecture results in successful
classification among the five different gestures.

The comparative analysis between the proposed frame-based
prediction approach and our previous approach [1] discussed in
the “Effectiveness of the Time-Domain Frame-Based Prediction
Approach” section demonstrates a higher mean test accu-
racy, as presented in Table 4. Additionally, the frame-based
approach exhibits enhanced suitability for real-time testing and
implementation.

The evaluation of the proposed solution in this work demon-
strates its effectiveness through the average precision-recall mea-
surements and average testing accuracies, as discussed in the
“Further Analysis” and “Modified Evaluation Protocol” sections.

The average confusion matrix in Table 5 reveals noteworthy
findings. It indicates that the majority of misclassifications occur
between ground-truth gesture frames and the Background class,
without any specific pattern of misclassification among pairs of
gestures. To further investigate why this is the case, we demon-
strate the temporal aspect of the model’s predictions in Fig. 8,
revealing slight variations in timing when compared to the ground
truth labels. However, given that each frame corresponds to 30
ms, these temporal differences have minimal practical signifi-
cance. Based on this observation, a refined accuracy evaluation
approach is proposed, focusing on classifying gestures within a
temporal window. The refined confusion matrix in Table 6, along
with the precision and recall values in the “Modified Evaluation
Protocol” section, confirm the correct classification of gestures
and a significant reduction in misclassifications associated with
the Background class. These findings validate the effectiveness of

the enhanced evaluation methodology in accurately assessing the
model’s performance in gesture recognition tasks.

Our proposed solution distinguishes itself from previous works
on SNNs [1, 13, 16, 19–21] by showcasing robust classification
capabilities on a frame-by-frame basis, making it highly suitable
for real-time implementation. In contrast to the approach pre-
sented in [20], where it is mentioned that their SNN network
requires multiple time steps to accurately predict a gesture dur-
ing testing, which hinders real-time implementation, our solution
generates predictions for each frame, ensuring real-time perfor-
mance. Unlike [27], which employs an augmented version of the
dataset used in this study and provides real-time classification
from an RNN per frame, the proposed solution directly utilizes
just time-domain data, bypassing any radar preprocessing pipeline
and achieving on-par accuracy while taking advantage of the spar-
sity of the SCNN. The effectiveness of our solution is reinforced
by comprehensive live testing of the radar system involving five
individuals who were not involved in the dataset acquisition, as
described in the “Live Testing” section. Results obtained from this
testing further support the effectiveness of our proposed approach
and confirm the evaluation results. Additionally, the radar system
empowers users with versatile functionalities, such as slide switch-
ing in presentations and enjoyable participation in online games
like “Play Snake” [38]. These practical applications serve as tangi-
ble demonstrations of the solution’s versatility and practicality in
real-world scenarios.

The “Computational Complexity” section discusses the com-
putational complexity per frame inference demonstrated by the
SCNN model. Leveraging SNNs provides inherent sparsity and
improved computational efficiency compared to ANNs. To assess
this behavior, the SCNN model undergoes live testing to measure
sparsity per inference. Notably, during periods of no gesture exe-
cution, the SCNN exhibits an average sparsity rate ranging from
90% to 97%, which decreases to approximately 75% during gesture
execution. As a result, the sparsity characteristic of the SCNN sig-
nificantly reduces the top-level computations per frame inference,
resulting in a notable decrease in the 1.4 MMAC.

Conclusion

This article presented a modified approach for gesture recogni-
tion in time-domain radar data processing. This approach elimi-
nates the computationally expensive preprocessing FFT steps and
introduces a novel gesture frame detection process formodel train-
ing. This process accurately identifies frames containing gestures
and distinguishes them from frames with Background noise. By
focusing on frames where gestures occur, the model can effec-
tively learn and extract relevant features. The proposed solu-
tion, in conjunction with a lightweight SCNN, achieves signifi-
cant results in gesture recognition for five different gestures. The
frame-based prediction capability of our solution enables real-time
testing, allowing users to interact, for example, with PowerPoint
presentation slides using radar gestures. Moreover, an evalua-
tion of the sparsity of the SCNN in real-time demonstrates the
advantages of our SNN-based approach over conventional ANNs.
Overall, the modified time-domain processing approach, com-
bined with the lightweight SCNN, yields notable gesture recog-
nition outcomes. This combination provides practical benefits in
real-time applications andmotivates further promising implemen-
tation on neuromorphic hardware to fully harness the SCNN’s
sparsity.
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Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S1759078723001575.
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