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1. Introduction. The purpose of this paper is to point out a number of 
curious phenomena in the category of (real) vector lattices and linear lattice 
homomorphisms. Birkhoff (3, p. 221, Ex. 2 and Problem 96) called attention 
to the question of constructing models of the free objects with more than one 
generator in this category, a problem recently solved by E. C. Weinberg (9). 
In §6 we construct a more manageable class of (non-free) projective vector 
lattices. Here, however, there is a countability restriction which suggests 
strong connections with free and projective Boolean algebras (in the category 
of Boolean algebras and their homomorphisms, such algebras must satisfy 
the countable chain condition (6)). That there are no non-trivial injective 
vector lattices intimates other relations in this direction (injectives are also 
absent from the category of complete Boolean algebras and complete homo­
morphisms (6)). This latter situation is quite similar to the one encountered, 
for example, in the category of rings and ring homomorphisms. Of course our 
category is badly non-abelian and trouble is to be expected. 

In §2 we consider an analogue of the Jacobson radical. The radical may be, 
and often is, arbitrarily bad. The structure of radical vector lattices can be 
described rather adequately, and this we do in §3. We offer an analogue of the 
First Principal Wedderburn Structure Theorem. The other two Wedderburn 
theorems become rather trivial in this context; a simple vector lattice is iso­
morphic to the real numbers and semi-simple lattices with minimum condition 
are isomorphic to Rn (real w-space with the usual co-ordinate-wise ordering). 
In §7 we consider the Frattini sublattice, perforce briefly, since it vanishes, 
and conclude that the only ''covers" in our category are the isomorphisms. On 
passing to the dual situation, we find that there are too many large "envelopes" 
(because injectives are missing). 

Our terminology is of no permanent significance and merely reflects a 
homological viewpoint. For general background on vector lattices, we refer to 
(3), except that we write a+ = a V 0, a~ = ( — a) V 0, so that a = a+ — a~ 
and \a\ = a+ + a~. An adequate supply of homological machinery is contained 
in the article of Halmos (6). The letter R will denote the real numbers 
throughout. 
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2. The radical and semi-simplicity. An ideal I in a vector lattice A is a 
linear subspace of A with the property: \x\ < \y\ and y G I imply x G / . The 
radical, denoted Rad(^4), of 4̂ is the intersection of all maximal ideals, with 
the usual convention that Rad(^4) = A if A has no maximal ideals. We recall 
some of the basic facts. 

PROPOSITION 1. A vector lattice has no non-trivial ideals if and only if it is 
isomorphic to the real numbers (3, p. 239). 

A vector lattice A is termed semi-simple if Rad(^4) = 0; it is called radical 
if RadG4) =A. 

PROPOSITION 2. The maximal ideals of A are in a natural 1-1 correspondence 
(up to positive scalar multiples) with the epimorphisms from A to the reals. 

We pause to note that the homomorphisms in our category preserve the 
absolute value (and hence the other lattice operations) as well as linear struc­
ture. Thus A is semi-simple if and only if A has a total (separating) family of 
real epimorphisms; and A is radical if and only if A admits no non-zero real 
homomorphisms. 

THEOREM 1 (Nakayama 8). A vector lattice A is semi-simple if and only if A 
is isomorphic to a vector lattice of real (finite) valued functions on some set, the 
operations being the usual pointwise ones. 

Proof. If Rad04) = 0, there is a family (fi)UI of epimorphisms ft:,4 —* R 
with H ù / K e r / j = 0. Hence the mapping a —> (fi(a))ieI is a monomorphic 
embedding of A into R1. Conversely, if A C R1 and pt denotes the ith. pro­
jection, then for a ^ 0, there is an index i G / with pi(a) ^ 0. The restriction 
/ = pi\A is then an epimorphism with f(a) ^ 0. 

PROPOSITION 3. If A and B are vector lattices andf-.A —> B is a homomorphism, 
then /(RadG4)) C Rad(i?). If A is a linear sublattice of B, then 
Rad(.4) C Rad(J3). If I is an ideal in A and if I C RadG4), then 
Rad04/7) = RadG4)/7. 

Proof. The second assertion follows trivially from the first, taking / to be 
the inclusion map. The last statement is a consequence of the fact that the 
ideals of A containing I are in a natural 1-1 correspondence with the ideals of 
A11. Now if a G Rad(^4) and g:B —» R is a homomorphism, then gf is a real 
homomorphism on A. Thus g(f(a)) = 0 and/(Rad(^4)) is annihilated by each 
real homomorphism on B. 

COROLLARY 1. Every linear sublattice of a semi-simple vector lattice is semi-
simple. 

COROLLARY 2. A/Rad(A) is semi-simple. 
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COROLLARY 3. The only homomorphism of a radical vector lattice into a semi-
simple vector lattice is the zero mapping. Thus an exact sequence 

$->A -*B->C->0 

with B semi-simple and C radical never splits. 

Examples 1 and 2 below were called to our a t tent ion by F . B. Wright . 

Example 1. I t is generally false t h a t a quot ient of a semi-simple latt ice is 
semi-simple. In fact, let A = 8X[0, 1] be the vector latt ice (clearly semi-
simple) of Lebesgue summable functions on the unit interval and let N be the 
ideal of "null functions," i.e. all / £ A with 

f \f(x)\dx = 0. 
•' 0 

Then A/N = Ll[0, 1]. Bu t L^O, 1] is a radical vector latt ice. This can be 
seen as follows. A linear functional / o n a vector lattice is a latt ice homo­
morphism if and only if / is positive and f{a)f{b) = 0, whenever a A b = 0. 
Since / is a positive linear functional, it is continuous in the L ^ n o r m on 
L^O, 1]. C o m p o s i n g / w i t h the quot ient map 0 : ? 1 —> L1 we see that/<£ restricted 
to the characteristic functions of measurable sets is a two-valued measure r, 
absolutely continuous with respect to Lebesgue measure (since fis continuous) . 
But then r is concentrated on some point in [0, 1] by a simple interval split t ing 
argument . Since points have Lebesgue measure zero, r = 0 and hence f = 0. 

Example 2. Let A be an abs t rac t (L)-space in the sense of (3). Then A is 
semi-simple if and only if A = I1 (5), for some index set S (generalized sequence 
space) (7). 

PROPOSITION 4. The (vector space) direct sum or direct product (ordered 
co-ordinate-wise) of any family of semi-simple vector lattices is semi-simple. 

The proof is direct and will be omit ted. 

In ring theory, a ring can be the (Jacobson) radical of another ring if and 
only if it is a radical ring. The situation with vector lattices is quite different; 
the radical may be anything. 

PROPOSITION 5. Let A be any vector lattice. Then there is a vector lattice E 
containing A as its unique maximal ideal so that R a d ( E ) = A. 

Proof. Let E == R © A be the direct sum of the real line with A, ordered 
lexicographically: (a, a) > 0 means t h a t either a > 0 or a = 0 and a > 0. I t 
is easily checked t h a t £ is a vector lattice with these elements as positive 
cone; moreover, 

| (ce, a ) | = (a, a) if a > 0, | (a, a)\ = ( — a, —a) if a < 0, 

and | (a, a ) | = (0, \a\) if a = 0. 
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If we set e = (1 ,0) and take X > |a|, then \e > | (a, a ) | , so e is an order unit 
for E. Clearly the m a p a —> (0, a) embeds A monomorphically into E. Equal ly 
obvious is the fact t h a t the m a p (a, a) —» a is a real epimorphism, so tha t A 
appears as a maximal ideal in E. In fact A is the unique maximal ideal in E, 
for if 7 is any ideal in E which is not contained in A, then we can find (a, a) £ I 
with a y£ 0. We may as well assume t h a t a > 1 so t h a t 0 < e < (a, a). But 
then e Ç 7 so t h a t I = E> since a proper ideal cannot contain the order unit . 
Hence the only ideals in E are the ideals in A and A itself. Clearly A = Rad ( £ ) . 

A vector lattice with a unique maximal ideal will be called a local vector 

latt ice. 

PROPOSITION 6. Every finite-dimensional totally ordered vector lattice is local. 

Proof. In such a latt ice A, there are only a finite number of ideals and they 
form a chain 

{0j C / i C / 2 C . CInCA, 

where the gaps are one-dimensional. Clearly In = Rad (A). 

PROPOSITION 7. A totally ordered vector lattice is either radical or local. 

Proof. T h e chain of ideals either has no maximum (radical case) or else 
does have one (local case). 

3. S t r u c t u r e of radical l a t t i c e s . In this section we examine radical vector 
lattices in more detail . We first give some simple observations. 

PROPOSITION 8. A totally ordered radical vector lattice has no non-zero positive 
linear functionals. 

Proof. As remarked in Example 1, a linear functional is a lattice honio-
morphism if and only if / > 0 and f(a)f(b) = 0 if a A b = 0. Finally we 
observe t h a t on a total ly ordered vector latt ice, a positive linear functional 
preserves the latt ice operations. For if a A b = 0, then 0 < a < b or 
0 < b < a, so a = 0 or b = 0. 

PROPOSITION 9. Every quotient of a radical lattice is radical (or zero). 

Proof. Le t / :^4 —> B be an epimorphism with A radical and B 9e 0. If g is a 
real homomorphism on B, then gf = 0. S i n c e / is onto, g — 0. 

Remark. Every total ly ordered radical vector lattice is infinite dimensional 
(Prop. 7). As we shall presently see, every radical latt ice is built up from 
total ly ordered radical latt ices. Since every vector latt ice has tota l ly ordered 
quot ients (see Prop. 11), any radical latt ice is necessarily infinite dimensional. 

Following Bonsall (4), we call a vector latt ice A everywhere non-Archimedean 
if for any a G A, there is an element b £ A+ with \a\ < ab for all real scalars 
a > 0. I t we write P\a\ < b, where /3 = 1/a, then the relation (usually wri t ten 
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a <C b\ cf. (3, p . 225 and 1, §8) says t ha t the principal ideal {x G A\\x\ < Xa, 
for some real X > 0} generated by a is bounded above in A by b. 

PROPOSITION 10. An everywhere non-Archimedean vector lattice has no non-zero 
positive linear Junctionals and is therefore radical. 

Proof. Suppose t h a t A is everywhere non-Archimedean and t ha t / is a 
non-zero positive linear functional. Then f(a) 9e 0, for some a G A. Since 
\f(a)\ < /( l a l )» w e m a Y assume tha t a > 0, so t h a t / ( a ) > 0. Then aa < b for 
some b G A+ and all a > 0, so tha t af(a) < f(b) for all a > 0, which is absurd. 
Hence / = 0. 

Example 3. Let T be an infinite total ly ordered set having no largest element. 
Le t H be the space of all real (finite) valued functions f on T with anti-well-
ordered support (e.g. finite); thus {x G T:f(x) ^ 0} is anti-well-ordered. Call 
/ > 0 if / is > 0 on the largest element of its support . The set 

m = {/:/ > 0 } U { 0 } 

is a cone with H+ H (-H+) = 0 and H = H+VJ ( - # + ) ; so H+ total ly 
orders H. This is the full Hahn group with value set T (1 ). Clearly H is every­
where non-Archimedean. 

Conversely, we have 

T H E O R E M 2. Every totally ordered everywhere non-Archimedean vector lattice 
is isomorphic to a linear sublattice of a full Hahn group whose totally ordered 
value set T has no largest element. 

This is essentially the classical Hahn embedding theorem for total ly ordered 
abelian groups. T h e set T is taken to be the collection of all local ideals (i.e. 
ideals, which, when regarded as linear sublattices of the entire lattice, are 
local vector latt ices). T is also isomorphic to the "orders of magn i tude" of 
elements in the lat t ice; see (1) for details and a proof of the H a h n theorem. 
Note t h a t the restriction t ha t T has no largest element is essential, for other­
wise the lattice would be local. 

PROPOSITION 11. Let A be a radical vector lattice. Then for 0 ^ a G A, there 
is an ideal P d a such that A/P is totally ordered (P is prime) and everywhere 
non-Archimedean; cf. (4, §4, Lemma 5 and Theorem 10), bu t note the difference 
in the definition of ideals. 

Proof. From the inductive collection of all ideals not containing a, choose a 
maximal one P. We may assume a > 0, for if not, we replace a by 0 < \a\ G P. 
Let â denote the residue class of a modulo P. Then â > 0 lies in every ideal 
of A/P. Now for x G A/P, 0 < â < ax+, fix~, for suitable scalars a and /3, 
since the ideals 

(*) = \y 6 A/P:\y\ < \z\ 
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generated by z = x+, x~ contain a. Since (ax+) A (&x~) = 0 we must have 
x+ = 0 or x~ = 0 and hence A/P is totally ordered. If B = A/Pis everywhere 
non-Archimedean, we are finished. If not, set 

M = {y e B:\y\ < ab, some real a > 0, b G B+}. 

Clearly M is an ideal properly contained in B and B/M is totally ordered. 
But it is also Archimedean, for if \x\ < ait for all a > 0 with x, u £ B, then 
\x\ < au, for all a > 0, since 5 is totally ordered. Thus x £ M" and £ = 0. 
Hence B/M ~ R and ikf induces a maximal ideal in A, contradicting the fact 
that A = RadG4). Finally, then, B is everywhere non-Archimedean. 

As an immediate consequence, we have 

THEOREM 3. Every radical vector lattice is a subdirect sum of totally ordered 
everywhere non-Archimedean vector lattices. 

We note that, in Example 1, A/N is an Archimedean radical lattice, since it 
possesses a norm with the property: \\x\\ < ||;y||, if \x\ < \y\. 

Example 4. Let X be any infinite set and let F = Rx be the (semi-simple) 
vector lattice of all real finite-valued functions on X, ordered pointwise. Let 
B be the ideal of all bounded functions and set A = F/B. Then A is every­
where non-Archimedean, for if a > 0 in A, there is an unbounded function 
/ > 0 with a —]. Define a sequence bn of constant functions (£B) by the 
formula: bn(x) = n2/4. Then for each positive integer n, nf < f2 + bn, so 
nf < p (mod B), i.e. na < by where b = f2. Moreover, A is not totally ordered; 
for if we identify the integers with a subset of X, the function f(n) = n 
(n = 0, ± 1 , ± 2 , . . .) and f(x) = 0 if x =é n has unbounded positive and 
negative parts / + and / _ which pass to non-zero disjoint elements in the 
quotient. 

This example also shows that a prime ideal need not be contained in any 
maximal ideal. For let P be a prime ideal in A (as in Prop. 11, there are always 
"enough" of these). Then P induces a prime ideal Q in F which is contained 
in no maximal ideal. Being semi-simple, however, F has an abundance of 
maximal ideals. 

Finally, we have 

THEOREM 4. Let A be a totally ordered vector lattice. Then A = Rad(v4) if 
and only if A is everywhere non-Archimedean. 

Proof. A is radical if A is everywhere non-Archimedean by Prop. 10. If A 
is radical, then its "value set" T (cf. Theorem 2) has no largest element or 
what amounts to the same thing, the "orders of magnitude" are unbounded. 
But this is precisely the statement that A is everywhere non-Archimedean. 

Example 5. Some Archimedean vector lattices which have no non-zero 
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positive linear functionals (and are therefore radical) are: (1) Lp[0, 1] for 
0 < p < 1 and Lebesgue measure on the unit interval; (2) the space (S) of 
Banach, of all measurable functions on [0, 1] modulo null functions; (3) the 
space of all Baire functions on [0, 1] modulo null functions. Since all of these 
vector lattices are boundedly complete (see the remarks preceding Theorem 7), 
they are Archimedean. None of them can be * 'compatibly" normed (note 
after Theorem 3) or even supplied with a compatible locally convex topology 
(see Goffman (5 ) for a discussion of these matters). 

4. Injectives. The sole purpose of this section is to prove 

THEOREM 5. In the category of vector lattices and linear lattice homomorphisms, 
there are no non-trivial infective objects. 

Proof. Suppose A ^ 0 is injective. Let E = R 0 A be the extension of A 
constructed in Proposition 5 and let i\A —> E be the natural embedding 
i{a) = (0, a) of A as a maximal ideal in E. As before, let e = (1,0) denote 
the order unit of E. Let u:A —> A be the identity map. Then by injectivity u 
can be extended over E to a homomorphism f:E —» A satisfying fi = u. Now 
the kernel K of / is an ideal. But we know the ideal structure of E from 
Proposition 5. We list the possible cases: 

(1) K = i(A). Then fi = 0 = u, a contradiction. 
(2) K = E. Then / = 0, contradicting u ^ 0. 
(3) K is a proper ideal (non-zero) in i(A). If 0 ^ x £ K, then i(y) = x 

for some y £ A, y ^ 0. But fi (y) = f(x) = 0 and u(y) = y 7e 0, contradicting 
fi = u. 

(4) K = 0. T h e n / is a monomorphism. Since fi = n, f is an epimorphism; 
hence / is an isomorphism. But consider the order unit e = (1, 0) in E. If 
a = f(e) we have fi(a) = u(a) = uf(e) = / ( e ) , so i(a) = e, which is clearly 
absurd. Thus our original assumption A ^ 0 is untenable. 

Certain categories of algebras are also lacking non-trivial injectives. For 
example, let K be any integral domain and consider (1) the category of all 
K-algebras and i^-algebra homomorphisms; (2) the category of all i^-algebras 
with unit element and unit-preserving i^-algebra homomorphisms. The first 
of these categories has no non-zero injectives and the second has none (but 
both have enough free and projective objects). For suppose A ^ 0 is injective 
in the first category. Since A can be embedded in a X-algebra B with unit, the 
identity map on A can be extended (by injectivity) to a i£-algebra homo­
morphism of B onto A. Thus A must have a unit element. It follows that A 
must be injective in the second category as well. Now take any field F (a 
i^-algebra) containing the field of quotients of K and consider the canonical 
homomorphism k —> k.l of K into the centre of A. Injectivity of A then 
requires that A contain an isomorphic copy of F, which is clearly absurd. 
Thus . 4 = 0 . 
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5. Free vector lattices. E. C. Weinberg has recently given a general 
construction which in the present context explicitly describes the free objects. 
We shall merely outline his construction, the details of which can be found 
in (9). 

Let 9M be any cardinal number and let S be a set of cardinality )})t We 
construct the real vector space A of dimension Wl having S as basis and consider 
the family [Pi) iei of all cones which totally order A. Thus each cone P in 
this family has the properties: 

(1) a + b G P if a, b G P , 
(2) aa G P if a G P and ce > 0 is real, 
(3) P H ( - P ) = 0, 
( 4 ) i = P U ( - P ) . 

Using Zorn's lemma, one can easily show that for any 0 9e a G A, there is 
such a cone P not containing a. 

Now let A t denote the real vector space A totally ordered by the cone Pt. 
We form the direct product 

V = Il{Ai:i G 1} 

and identify A with the diagonal in V. Under the co-ordinate-wise ordering, V 
is a vector lattice, and, in particular, a distributive lattice. We let FYL(2)£) 
denote the distributive sublattice of V generated by the diagonal A. Thus a 
typical element x G FVL(9D?) has the form 

x = sup inf aik, 
i k 

where {aik\ is a finite subset of A. 
Because of the translation invariance of V and A, we see immediately 

that FVL(9J?) is a linear subspace of V and is therefore a vector lattice. If B 
is any vector lattice and f:S^B is any function, then / can be (uniquely) 
extended to a linear m a p / : A —> B. One then extends/ to FVL(5Dî) by defining 

f(x) = sup inf f(aik). 
i k 

After checking that this is well-defined (the only non-trivial point), we have 

THEOREM 6. FVL(93?) is the free vector lattice on $)ï generators. The real linear 
dimension d of FVL(99î) is determined by $Jl as follows: 

(i) d = 2 if m = i, 
(2) d = Ki if m > 1 is finite or M = Ko, 
(3) d = Tl if m > Ki. 

(Here we assume the Generalized Continuum Hypothesis.) 

Next we show that FVL(9)Î) is semi-simple. This will provide an affirmative 
answer to BirkhofFs Problem 107. The arguments in the remainder of this 
section were supplied by W. C. Holland. 
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LEMMA 1. Let A be a real vector space of dimension at least two and let X be 
any countable subset of A not containing the origin. Then there is a hyper plane 
(through the origin) which misses X. 

Proof. From the dimensionality assumption and a simple counting argu­
ment , there is evidently a line in A through the origin which misses X. 

By Zorn's lemma, we may choose a maximal linear subspace H of A missing 
X. If H is not a hyperplane, consider B = A/H and the image Y of X in B. 
Again one can find a line through the origin in B missing F, since B is a t least 
twro-dimensional by assumption and F is a t most countable. Moreover, this 
line induces a proper linear subspace in A containing H properly and missing 
X, contrary to the maximali ty of H. Thus H is a hyperplane. 

T H E O R E M 7. FVL(9W) is semi-simple. In particular, every vector lattice is a 
quotient of a semi-simple one; cf. (3, p . 242, Problem 107). 

Proof. Given 0 ^ x £ FVL(3K), it is enough to exhibit a maximal ideal in 
FVL(SD?) which does not contain x. 

Now x = sup inf aik (assume each aik ^ 0). Let X = \aik}. Since X is 
finite, Lemma 1 tells us t h a t there is a hyperplane H missing X. By an easy 
application of Zorn's lemma, we can find a maximal cone P 0 which total ly 
orders A and lies on one side of H. Let A0 denote the component of the direct 
product V = IL4 t which is ordered by the cone P0. Clearly the hyperplane H 
is a maximal ideal in A0. We define M to be the set of all elements in FVL(9K) 
whose co-ordinates are arbi t rary except in the A0 position—and there we 
require the co-ordinate to lie in H. I t is manifest t ha t M is a maximal ideal 
and t ha t x & M. 

E. C. Weinberg has also obtained this result, bu t the above proof is somewhat 
shorter and more direct. Theorem 7 was observed independently by the au thor 
in conversation with N . Ailing, bu t the means employed (ultrapowers and 
77a-fields) did not seem to justify the end. 

6. Project ives . We first recall some s tandard homological devices and pause 
to check t h a t they apply to the concrete situation a t hand. If/:^4 —> B is an 
epimorphism, then by a cross-section to f we mean a homomorphism g:B —> A 
such t ha t fg is the identi ty on B. Clearly g mus t be a monomorphism in this 
case. 

PROPOSITION 12. A vector lattice B is projective if and only if every epimorphism 
f:A —;> B admits a cross-section. 

Proof. First suppose t ha t B is projective and l e t / : A —> B be an epimorphism. 
By projectivity, the identi ty map i on B lifts t h r o u g h / into A to give a cross-
section g-.B —» A with fg = i. 

For the converse, suppose tha t every epimorphism onto B admi ts a cross-
section. Let f'.A' —> B' be an epimorphism and let h:B —* B' be a homo-
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morphism. Our task is to show that h can be lifted through / ' into A'. We 
accomplish this by constructing the "inverse image" of the ûber'mgf:A' —* B' 
as follows. Let 

A = {(b,af) eBXA': h(b) =f'(a')}. 

Then it is a trivial matter to check that A is a vector lattice with the definition 
\(b, a')\ = (\b\, |a' |). Moreover, the m a p s / and k defined by f(b, af) — b and 
k(b, ar) = a' are homomorphisms and / is an epimorphism. By assumption, / 
has a cross-section g\B —> A. Defining 0 = kg, we have 

/ ' * =fkg =hfg = h, 

as required, so B is indeed projective. 

If an epimorphism f:A —» B admits a cross-section, we say that / is a 
retraction ("B is a retract of A11). 

COROLLARY 4. Every retract of a projective vector lattice is projective. 

COROLLARY 5. Every projective quotient of a vector lattice is a retract. Hence a 
vector lattice is projective if and only if it is a retract of a free vector lattice. Every 
projective vector lattice is semi-simple. 

The proofs are simple exercises in "diagram chasing" and are left to the 
reader. 

One of our objects, of course, is to describe as many projective vector lattices 
in as reasonable a fashion as possible. It is to be expected that some of the 
non-free projectives will be relatively easy to characterize in familiar terms. 
We shall produce one such class; in the process, a number of negative results 
arise. A few preliminaries are in order. 

LEMMA 2. If a,\, • . . ,anis a finite set of elements in a vector lattice with at• > 0 
and ai A ak = 0 for i ^ k, and if ai, . . . , an, (3n+i, • • • , Pm &re non-negative 
reals, then 

( Z) OLidi) A\ Z) 0*0*) 
\ i=l / \k=n+l / 

_ = 0 . 
k=n+l 

The proof uses the fact that if a, b, c > 0, then 

(a + b)AcKaAc + bAc. 

The details are left to the reader. 

LEMMA 3. Let {ai}ieI be an indexed family (not necessarily finite) of elements 
of a vector lattice satisfying at > 0 and at A ak = 0 for i j* k. Then [a^] is 
linearly independent and for on, . . . , an real, we have 

n n 

Z aiai\ = Z \ai\ai' 
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Proof. Suppose that 
n 

a = 23 aiai = 0 
i= l 

with each at 7e 0. Then a+ = a~ = 0. Now 

w = 23 a i ^ i a nd ^ = X) (—«*)#* 
ai>0 ak<0 

satisfy u A v = 0 by Lemma 2, and by the uniqueness of the Jordan decom­
position, u = a+ and v — a~. Thus it is enough to show that 

n 

23 atat = 0 
2 = 1 

with at > 0 implies at = 0, for each i. But «i ai > 0 and 

n 

«lui = — 23 Oùidi K 0, 
z=2 

so a i a i = 0 and finally a\ = 0 since #i > 0. Similarly af = 0 for each i, 
contradicting the original assumption and proving linear independence. 

Now 
a+ = 23 aiat a nd a~ = 23 (—«*)«* 

ai>0 «A;<0 

for a 9e 0. Thus 

|a| = a+ + a~ = 23 «*<**+ 23 (—«*)aA = 23 |a*kf. 

COROLLARY 6. TTze linear sub s pace generated by the set {a^ i€l of Lemma 3 is a 
linear sublattice. 

A family {a*}*e7 such as the one described in Lemma 3 will be called a 
positive orthogonal family. 

The next theorem is reminiscent of the process of lifting countable ortho­
gonal families of idempotents in an SBI ring. Curiously enough, as in ring 
theory (10, p. 316), it is not generally possible to lift uncountable positive 
orthogonal families (see Example 6 below). 

THEOREM 8. Let A and B be vector lattices and suppose that f:A—>B is an 
epimorphism. Let {bi}%=\ be a countable positive orthogonal family in B. Then 
there is a countable positive orthogonal family {a^^i in A with f(at) = bu for 
i = 1,2, 

Proof. We proceed by induction. For n = 1, the statement is almost trivial, 
for if b > 0 is in B, letf(x) = b and take a = \x\, so that a > 0 and 

f(fl) = / (W) = |/(*)| =b. 
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Suppose then that aiy . . . , an are already disjoint in A+ with f(at) = bt, 
i = 1, . . . , n, and choose an+i with f(an+i) = h+i- Assume that an+i > 0; 
otherwise replace an+i by |an+i| (which also maps onto bn+i). Set 

u = sup{&j A an+i:l < i < n\. 

Then f(u) = 0 and 0 < u < an+i. Take dt = at — (at A an+i) and 
ân+x = an+i — u. Then 

0 < dt A dn+i < («j - (at A ara+i)) A (aw+i - {at A aw+i)) = 0, 

so âj A ân+i = 0 for each i = 1, . . . , n and f(dn+i) = bn+i. This completes 
the induction step and the proof. 

We recall that a vector lattice is boundedly complete if every set bounded from 
above has a supremum. Call a homomorphism/:^! —>B between two boundedly 
complete vector lattices A and B normal if / preserves suprema whenever 
they exist. 

Replacing the cardinality restrictions of Theorem 8 by others, we obtain 

THEOREM 9. Let A and B be boundedly complete vector lattices and suppose 
f:A —> B is a normal epimorphism. Let {bt} UI be any positive orthogonal family 
in B. Then there is a positive orthogonal family {a^ i€l in A, indexed by the same 
set I, with f(ax) = bi} for each i £ I. 

We shall simply remark that Theorem 9 can be proved in much the same 
way as Theorem 8, replacing the finite induction argument by a transfinite one. 

The next proposition will be useful in constructing counterexamples to 
unrestricted lifting. By a ring of sets we shall mean a collection of subsets of 
some set which is closed under the formation of finite unions and differences. 
If 31 is a ring of sets, then [31] will denote the vector lattice consisting of finite 
linear combinations of characteristic functions of sets from 31. 

PROPOSITION 13. Let A be a vector lattice, 31 a ring of sets, and 0:31 —> A+ a 
mapping which satisfies the conditions: 

(1) d(E - F) = 6(E) - d(F) if F CE with E, F G SI. 
(2) 6(E r\F) = 6(E) A 6(F) for E, F G 31. 

Then 6 has a unique extension to a homomorphism 6: [31] —> A. If 6 is 1-1 on 31, 
the extension is a monomorphism. If Q{%) generates A linearly, then the extension 
is an epimorphism. 

Remark. The above statements remain valid if 31 is a collection of sets which 
is closed under the formation of differences (and hence under intersections). 
It is easily checked that the linear space generated by the characteristic 
functions of sets from 31 coincides with [33], where 33 is the ring generated by 31. 

Proof. For simplicity, we confuse sets with their characteristic functions 
wherever convenient. First observe that if E, F, and E VJ F are in 31 with 
E O F = 0, we have 0(E U F) = 0(E) + 6(F), by (1). Let XE denote the 
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characteristic function of £ G 31. In order that 9 have a unique linear extension 
to [21] it is necessary and sufficient that 

n n 

J2 ai XEi = 0 implies ] £ «*#(£<) = 0. 
i=\ i=l 

The finite additivity of 9 clearly guarantees this (write each Et as a disjoint 
union—the fact that 21 is closed under differences permits this—and apply 
the standard argument for finitely additive measures). Next l e t / Ç [SI], so 
that 

n 

f = X ) <*i XEi-

We may assume that the E / s are disjoint in pairs. Then 

n 

0(1/1) = H \<*i\0(Et) and 9(Et) A 9(Ek) = 0 fori ^ k. 
i=l 

By Lemma 3, we then have 0(|/|) = \9(f)\. Now assume that 9 is 1-1 on 21. 
For / > 0 write 

n 

f = HH <*i XEi 
z = l 

with the Ei's disjoint, so that each at > 0. Thus if 9(f) = 0, we must have 

en 6 (EÙ V . . . V an6(En) = 0, 

since the d(Etfs are orthogonal. Hence aiOiE^) = 0, for each i. But 6{E^) ^ 0 
if Ei 9^ 0 since 9 is 1-1 on 21. Thus each at = 0, so / = 0. Finally, suppose 
0(f) = 0 for/arbitrary. Then 0(|/ |) = \9(f)\ = 0, so | / | = 0 and hence/ = 0. 
Thus 9 is a monomorphism. The last statement is obvious. 

A vector lattice is called countably decomposable if every positive orthogonal 
family is at most countable. 

LEMMA 4. A ring of sets 21 is countably decomposable if and only if the vector 
lattice [21] is countably decomposable. 

Proof. Every non-zero positive step-function dominates some non-zero 
positive multiple of a characteristic function of a non-void set. 

Example 6. Let 7 be a set having uncountable cardinality 9JÎ and let T' be 
the Boolean algebra of all finite and cofinite subsets of I. Express Tf as a 
quotient 9'': S' —> T! of the free Boolean algebra S' on 5DÎ generators. It is 
known (6, p. 116) that every free Boolean algebra is countably decomposable. 
If we let T be the ring of all finite subsets of I and take 5 = 9'~l(T), then 5 
is evidently a countably decomposable ring of sets which is mapped homo-
morphically onto T by 9 = 9'\S. Now let A = [S] and B = [T]. By Proposition 
13, 9 has a unique extension to an epimorphism 9:A —> B of the vector lattices 
and by Lemma 4, A is countably decomposable since S is. But B contains a 
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positive orthogonal family of cardinality 9ft, so it is obviously impossible to 
lift this family or to find a cross-section to 6. A less sophisticated, but somewhat 
more intuitive counterexample for the case 9ft = Xi can be had by taking 5 
to be the ring of sets generated by all sets of the form {t) \J [7/4 + t, 9/4 + t), 
where 0 < t < 1. Setting T = S/N, where N is the ideal of sets in 5 which 
are contained in [7/4, 13/4), we see that T is isomorphic to the ring of all 
finite subsets of [0, 1] whereas S is countably decomposable. 

THEOREM 10. Let I be any set. Then the following data describe isomorphic 
vector lattices of which the cardinality of I is a complete algebraic and order 
invariant: 

(1) A is a vector lattice containing a positive orthogonal family {at} UI which 
generates A linearly. 

(2) A is the vector lattice of all real-valued functions on I (ordered pointwise) 
which vanish outside of finite sets. 

(3) A is a vector lattice with the property: There exist epimorphisms f\\A —> R 
and linearly independent elements {at} ieI of A such that for all a G A, 

a = JLfi(a)ait 

where ft (a) = 0 for all but a finite number of indices i £ I (by dropping the 
words "linearly independent" and replacing R by the ground ring for the 
module A, we obtain the well-known characterization of projective modules). 

Finally, a vector lattice A conforming to one of the above descriptions is projective 
if and only if the index set I is at most countable. 

Proof. (1) implies (2) is immediate from Lemma 3. 
(2) implies (3) : We define ft to be the epimorphism which evaluates a 

function at the point i. 
(3) implies (1): Observe first that at > 0, for at = YLfk{di)cik and by the 

uniqueness of this expansion we have/*(#*) = 5ki (Kronecker). Moreover, 

û f = Hfk(a,c)ak = Y<(fk{ai))~ak = 0 

since 1" = (— 1) V 0 = 0. Thus at > 0 (no basis element can be zero). 
Secondly, for i ^ k, we have 

&t A ak = Y<fn(cLi A ak)an = ELf»(«0 A/«(«*)]«„ = 0. 

This proves the first assertion. 

From example 6 we see that A cannot be projective if I is uncountable. 
Finally suppose that I is at most countable, let B be any vector lattice and 
f:B —* A an epimorphism. By Theorem 8 we can find a positive orthogonal 
family {bi}UI in B with f(bt) = at for each i £ I. We define a linear map 
g:A -* B by setting g{a^) = bt and extending by linearity. Lemma 3 ensures 
that g is homomorphic, so that g is a cross-section to / . From Proposition 12 
we see that A is projective. 
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Now that we have described some of the projectives, it is perhaps worth 
while stating a few consequences of projectivity. 

COROLLARY 7. Let f:A —> B be an epimorphism of vector lattices and suppose 
B is projective. Let N be the null space of f. Then A admits a direct-sum decom­
position (as a vector space): 

A =S 0 N 

where S is a projective linear sublattice isomorphic to B. Moreover, B is semi-
simple, as is S and Rad 04) C N. 

Proof. Choose a cross-section g to f and let S = g(B). Clearly the sum is 
direct and Rad 04) C N by Proposition 3 since B is semi-simple by Corollary 5. 

The foregoing gives us an analogue to the First Principal Wedderburn 
Structure Theorem. 

THEOREM 11. Let A be a vector lattice which, modulo its radical, is projective. 
If N = Rad (A ) , then A splits into the vector space direct sum 

A = S 0 N, where S ^ A/N, 

and S is semi-simple. In particular, if A/N is finite dimensional, then such a 
decomposition obtains. 

Proof. The first statement is clear from the preceding corollary and Corollary 
2. But it is well knowm that a finite-dimensional semi-simple vector lattice 
(necessarily Archimedean) is isomorphic to Rn, where n is the dimension 
(3, p. 240, Corollary to Theorem 1). 

It appears highly likely that free (and therefore projective) vector lattices 
are countably decomposable. That this is the case for Boolean algebras follows 
from the duality theory between Boolean algebras and Boolean spaces; see (6) 
for an excellent account. E. C. Weinberg has recently informed us that his 
results in (9) imply that the free vector lattice on a countable number of 
generators is countably decomposable. 

7. The Frattini sublattice. Let A be a vector lattice. A linear subspace 
B C A is a linear sublattice if a G B implies \a\ G B. For a subset S C A, 
let [S] denote the linear sublattice of A generated by S. An element a G A is 
called an inessential generator of A if for every subset S C A, [S, a] = A 
implies [S] = A. 

In analogy with the theory of groups and modules, we define the Frattini 
sublattice to be the intersection of all maximal (proper) linear sublattices.We 
do not attach a special symbol to this object for the following reason. 

THEOREM 12. The Frattini sublattice is the set of all inessential generators and 
both are zero. 
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Proof. Let A be a vector lattice and let N be the intersection of all maximal 
linear sublattices of A. If a is inessential and M is a maximal linear sublattice, 
we must have fl^ï, for otherwise M = [M, a] = A, a contradiction. Hence 
it is enough to show that N = 0. We do this by showing that for any a ^ 0 
in A j one can find a maximal linear sublattice M avoiding a. First we notice 
that this is indeed possible if A is totally ordered, for then every linear subspace 
is a linear sublattice (A is totally ordered if and only if no one-dimensional 
subspace has zero intersection with A+). By the first part of the proof of 
Proposition 11, we can always find a "prime" ideal P d a so that A/P is 
totally ordered. If P (a linear sublattice) is a hyperplane, the proof is complete. 
If not, we proceed as follows. The linear sublattices of A/P are in a natural 
1-1 correspondence with the linear sublattices of A which contain P. If a 
denotes the non-zero image of a in A/P, then any hyperplane in A/P which 
misses à lifts back into A giving a linear sublattice wThich misses a and is a 
hyperplane. 

COROLLARY 8. Every non-zero element of a vector lattice is an essential generator. 

COROLLARY 9. Every vector lattice has a family of hyperplane sublattices with 
zero intersection. Every (proper) ideal is the intersection of all hyperplane sub-
lattices which contain it. Moreover, any linear subspace containing a prime ideal 
is automatically a linear sublattice. 

Proof. If 7 is any (proper) ideal and a (? I we can find (as in Proposition 11) 
a prime ideal P containing I but not a. Thus I is the intersection of all prime 
ideals containing it. All statements now follow easily from the proof of Theorem 
12. 

Further perusal of the proof of Theorem 12 reveals that the Frattini sub-
lattice of a lattice-ordered abelian group coincides with its Frattini subgroup. 

In any category, we can quasi-order the epimorphisms onto an object B as 
follows. Given epimorphisms/:^! —> B and g:C —> B we ca l l / < g if there is an 
epimorphism h:C —> A with fh = g. A cover of B is an epimorphism f:A —> B 
such that for every homomorphism g:C—>A,fg is an epimorphism implies g 
is an epimorphism. Thus every cover is < every quotient Y —> B with Y 
projective (2). 

THEOREM 13. In the category of vector lattices and linear lattice homomorphisms, 
the only covers are the isomorphisms. 

Proof. Suppose f:A —> 13 is a cover and let 5 be any linear sublattice of ,4. 
Let TV be the null space of/. Let us assume that [S, N] = A. If we can show 
that 5 = A, the theorem follows, for then N is inessential and therefore zero. 

Let i:S C A denote the inclusion map. If fi is not epimorphic, then we can 
find an element b G B with b ? fi(S). Let/(a) = b. Then 0 ^ a G [S,N](= A), 
but a d N and a Q S. Thus [S, N] would be properly contained in [5, N, a] 
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(Corollary 8), which is clearly absurd. Hence fi is an epimorphism as is i. 
In other words, S = A. 

Past experience in this category prompts us to consider the dual situation. 
In any category, we can quasi-order the monomorphisms out of an object A 
as follows. Given monomorphisms/:^! —» B and g:A —» C we cal l / < g if there 
is a monomorphism h:B —» C with A/ = g. An envelope o{ A is a monomorphism 
f :.4 —» B such that for every homomorphism g:B —» C, g/" is a monomorphism 
implies g is a monomorphism. Thus every envelope is < every embedding 
A —> X with X injective (2). 

The great abundance of envelopes is evidenced by 

PROPOSITION 14. Let A be a linear sublattice of B. Then B is an envelope of A 
if and only if for each ideal I C B, I C\ A = 0 implies 1 = 0. 

Proof. Suppose B is an envelope and let f:A —> B be the inclusion map. 
Given an ideal I C. B with I C\ A = 0, let g:B —» B/I be the canonical epimor­
phism. Since I C\ A = 0, gf is a monomorphism as is g, so that / = Ker g = 0. 

Conversely, if the second property holds and if g:B —» C is a homomorphism 
such that gf is a monomorphism, then (Ker g) Pi A = 0. Thus Ker g = 0 so 
that g is a monomorphism. 

Example 7. Let A be any vector lattice and T any totally ordered vector 
lattice. As in Proposition 5, we construct the lexicographic sum E = T © A as 
follows. £ is the vector space direct sum of T and A ordered by defining 
(t, a) > 0 if either t > 0 or else £ = 0 and a > 0. Now for every ideal / C E, 
we have I d A or A Q_I. For if / C A we can find an x £ / with x ^ i , so 
that x = (£, a) with £ ^ 0. We assume t > 0 (otherwise we work with —x). 
Then for every 3/ Ç ^4, |;y| < x , so^l C ^ - Evidently then, E is an envelope 
of A, since 4̂ meets every non-zero ideal of E in a non-zero element. 

Example 8. Let X be any locally compact, non-compact (Hausdorff) space. 
Take for E either (1) all bounded continuous real-valued functions on X or (2) 
all continuous real-valued functions on X which vanish at infinity. Let M be 
the unique minimal free algebra ideal in E of all continuous functions vanishing 
outside of compact sets. Note that any (lattice) ideal in E is also an algebra 
ideal, since E is normed and contains constants. Now any linear sublattice A of 
E containing M is enveloped by E. 

There are many variations on these themes. A rather extreme case is 
obtained by taking any (large) totally ordered vector lattice T and forming 
the lexicographic sum E = T © R so that the reals R appear as the unique 
minimal ideal of E. Since E itself is totally ordered, any linear subspace A is a 
linear sublattice. Any such A containing R is therefore enveloped by E. 

These examples show that there may be no way of controlling the size of 
envelopes if injectives are absent. Comparison with other categories sheds 
further light on this situation. Every abelian group has a * "largest" envelope 

https://doi.org/10.4153/CJM-1965-042-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-042-2


428 DAVID M. TOPPING 

(in the quasi-order for monomorphisms)—its divisible hull—which is also 
injective. In fact, for a fixed object in any category, an injective envelope is > 
every other envelope. Thus the existence of an injective envelope (any two are 
isomorphic) for each object keeps matters in hand. 

We remarked earlier on the absence of injectives in the category of rings 
and ring homomorphisms; here, as in the case of vector lattices, envelopes 
abound. It is easy to see that the analogue of Proposition 14 for rings is valid 
(ideal = 2-sided ideal). Any integral domain is enveloped by its field of 
quotients or any extension thereof. Other examples of envelopes are: (1) B any 
simple ring, A any non-zero subring of B, then B is an envelope of A ; (2) the 
ring C of all completely continuous operators on a Hilbert space of infinite 
dimension; C envelops any of its subalgebras which contains the unique 
minimal ideal of operators having finite-dimensional range. 

The author is pleased to record his thanks to N. Ailing, P. Conrad, and 
W. C. Holland for stimulating conversations on parts of the material, and to 
E. C. Weinberg for supplying a copy of his manuscript (9). 
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