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Abstract

This study examined whether supplementation with collagen peptides (CP) affects appetite and
post-exercise energy intake in healthy active females. In this randomised, double-blind cross-
over study, fifteen healthy females (23 (SD 3) years) consumed 15 g/d of CP or a taste matched
non-energy control (CON) for 7 d. On day 7, participants cycled for 45 min at ~55 % Wmax,
before consuming the final supplement. Sixty-min post supplementation an ad libitum meal
was provided, and energy intake recorded. Subjective appetite sensations were measured daily
for 6 d (pre- and 30 min post-supplement) and pre (0 min) to 280 min post-exercise on day 7.
Blood glucose and hormone concentrations (total ghrelin, glucagon-like peptide-1 (GLP-1),
and peptide YY (PYY), cholecystokinin (CCK), dipeptidyl peptidase-4 (sDPP-4), leptin, and
insulin) were measured fasted at baseline (day 0), then pre-breakfast (0 min), post-exercise (100
min), post-supplement (115, 130, 145, 160 min) and post-meal (220, 280 min) on day 7. Ad
libitum energy intake was ~10 % (~41 kcal) lower in the CP trial (P= 0·037). There was no
difference in gastrointestinal symptoms or subjective appetite sensations throughout the trial
(P≥ 0·412). Total plasma GLP-1 (AUC, CON: 6369 (SD 2330); CP: 9064 (SD 3021) pmol/l;
P< 0·001) and insulin (þ80 % at peak) were higher after CP (P< 0·001). Plasma ghrelin and
leptin were lower in CP (condition effect; P≤ 0·032). PYY, CCK and glucose were not different
between CP and placebo (P≥ 0·100). CP supplementation following exercise increased GLP-1
and insulin concentrations and reduced ad libitum energy intake at a subsequent meal in
physically active females.

Increasing dietary protein intake, either acutely as a single bolus (e.g. 15–70 g) or over several
days, may reduce appetite, as measured by decreased energy intake(1–4), increased subjective
feelings of fullness and reduced hunger(4–6) and/or increased levels of satiety hormones such as
glucagon peptide-1 (GLP-1)(7,8). This has sparked an interest in the effects of different protein
sources and supplements (e.g. whey, soy) on appetite suppression and weight management,
particularly in combination with exercise to manage obesity-related disease(4,9,10). Several
mechanisms have been proposed to explain how dietary protein supplements affect appetite,
including delayed gastric emptying(11), increased thermogenesis(12), interactions with satiety
hormones such as GLP-1, peptide tyrosine tyrosine (PYY) and insulin(13) and sensory
characteristics of drinks (e.g. thickness or creaminess)(14–16).

To date, research on protein supplements and appetite regulation has largely focused on
complete proteins such as milk(17,18), whey(19), soya(1) and casein(20), with limited research on
protein supplements with different amino acid profiles. Collagen peptides (CP) are low in
branched chain amino acids, but rich in hydroxyproline, glycine and proline(21). In animals,
gelatin hydrolysates were shown to stimulate secretion of insulin and GLP-1(22), and in humans,
circulating glycine is strongly associated with reduced hunger and energy intake(23), suggesting
CP supplements also have the potential to affect appetite. Recently, Duarte et al.(24) compared
the effects of hydrolysed collagen (40 g) and whey protein (40 g) on biomarkers of appetite in
young females and reported greater circulating leptin after collagen supplementation, but no
difference in subjective appetite or energy intake 130 min following supplementation. However,
this study did not measure the effects of collagen supplementation v. placebo control or the
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effects on several key regulatory hormones such as GLP-1 and
ghrelin. Earlier studies showed that meals rich in gelatin, a form of
hydrolysed collagen (10–25 % of total energy), may be more
satiating than other proteins such as whey, casein and soy(6,25);
however, Akhavan et al.(26) reported no effect of gelatin (6 g) intake
on subsequent energy intake in healthy males. Thus, it remains
unclear how short term or acute supplementation with CP can
affect appetite regulation in humans.

Several recent studies have shown that CP supplementsmay hold
benefits for athletic performance and recovery. Indeed, studies have
shown that ingesting collagen supplements (5–30 g) in the days
before and/or daily after exercise bouts can enhance recovery(27),
increase muscle mass(28) improve body composition(29–32) reduce
muscle and joint pain(33,34) and enhance sleep quality(35). Collagen
supplementation may also improve tendon structure and/or
function(36–39) and therefore reduce the risk of musculoskeletal
injury and/or accelerate rehabilitation(40,41). Consequently, collagen
supplements are increasingly recommended to athletes for health
and performance benefits. There are currently no studies examining
their effects on appetite regulation after exercise. It is feasible that CP
could modify the appetite response to exercise, which could have
implications for recovery and weight management in athletes and
recreational exercisers.

The primary aim of this ‘proof of concept’ study was to
determine if, compared to a non-energy placebo, consuming CP
(15 g/d) influences subjective appetite, hormone response and ad
libitum energy intake after a bout of exercise in healthy active
females. A secondary aim was to examine subjective appetite and
fasted hormone response in the 6 d leading up to the main exercise
trials. We hypothesised that CP supplementation would attenuate
appetite and reduce energy intake at a subsequent meal following
exercise.

Methods

Participants

Seventeen volunteers were initially recruited and screened to take
part in this study; however, two were excluded, one due to food
allergies and one due to an inability to obtain blood samples at
familiarisation. Therefore, fifteen healthy, physically active females
completed the study (descriptive data are displayed in Table 1).
Eleven participants were contraceptive users (n 6 combined
monophasic pills; n 1 progesterone only pills and n 2 implant and n
2 Mirena coil), and their experimental trials were completed in the
same contraceptive phase. Four females were regularly menstruat-
ing, and their experimental trials were completed in the early
follicular phase. For study inclusion, participants had to be female,
aged 18–30 years, and considered either Tier 1 or Tier 2 according
to the guidelines set forth in the participant classification
framework(42). Briefly, Tier 1 classifies participants as recreation-
ally active; they meet the WHO minimum activity guidelines and
may perform multiple sports or activities. Tier 2 participants are
classified as trained/developmental; they train/exercise regularly
and identify with a specific sport. Participants were also required to
not be taking any supplements or medications that may interfere
with appetite and free from health conditions or food allergies that
could affect study outcomes. Eligibility was checked with a health
and exercise screening questionnaire at study entry. This study was
conducted at LoughboroughUniversity according to the guidelines
laid down in the Declaration of Helsinki. Institutional ethical
approval was granted by Loughborough University Ethics

Sub-Committee (Ethics Code: 12 570), and participants gave
verbal and written informed consent. The study protocol was
pre-registered on the Open Science Framework (Title: Amino
Acids and Post-Exercise Appetite; registration DOI: https://
osf.io/5v6np).

Preliminary visit and V̇O2peak test
Participants reported to the laboratory after an overnight fast
(water intake was allowed) and completed the International
Physical Activity Questionnaire(43,44) before a venous blood sample
was collected by venepuncture. Participants were then allowed the
opportunity to consume food before completing a V̇O2peak test on a
cycle ergometer (Lode Corival), starting at 50W and increasing by
25 W step increments every 3 min until volitional exhaustion.
Participants self-selected their food intake prior to the test. An
expired breath sample was collected into a Douglas bag in the final
60 s to determine V̇O2peak. O2 and CO2 content (Servomex 1400
Gas Analyzer; Servomex), volume (Harvard Dry Gas Meter,
Harvard Apparatus), temperature and ambient air were collected
simultaneously with expired gas samples to correct V̇O2 and V̇CO2

values.

Pre-trial standardisation
In the 6 d leading up to the main exercise trial, participants were
free to consume their habitual diet and perform their usual exercise
regimen, the latter of which was self-recorded and tracked with
physical activity monitors, as described below. They were
encouraged to replicate their diet and physical activity as closely
as possible at the same time points prior to their repeat trial. For the
24 h prior to the first exercise trial (day 7), participants were
required to complete a physical activity and diet diary (food and
fluid intake), which was replicated before the subsequent trial. A
standardised evening meal was provided (lasagne (beef or
vegetable depending on individual preference); Tesco; UK) and
cereal bar (Go Ahead Yoghurt Break; United Biscuits; UK). In the
24 h before trials, participants also abstained from alcohol and
exercise.

Protocol
The study was a randomised, placebo-controlled, double blind,
repeated-measures design. As used previously(35), a minimum
7-day wash out was scheduled between trials; all trials were
completed between October 2023 and March 2024. Each
experimental trial was 7 d in total (see schematic Figure 1). On
the 6 d prior to the exercise bout on day 7, participants consumed
either 15 g/d of bovine CP (Rousselot BV) or a placebo (water),

Table 1. Baseline characteristics of study participants (n 15) (Mean values and
standard deviations)

Variable Mean ± SD

Age (years) 23 ± 3

Height (m) 1·62 ± 0·08

Body mass (kg) 60·5 ± 10·1

Body mass index (kg/m2) 22·9 ± 3·1

V̇O2peak (ml/kg/min) 40·8 ± 7·7

IPAQ Score (Total MET-min pw) 3580 ± 1591

International Physical Activity Questionnaire (IPAQ; shortened version).
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which was tastematched with flavourings (Cherry Flavour Natural),
upon waking. This dose was chosen as similar amounts have been
shown to beneficially affect markers of exercise recovery(40,45,46)

and elevate hydroxyproline concentrations(47) without causing
gastrointestinal (GI) distress; thus, these amounts are typically
recommended to physically active populations for health and
performance benefits. Drinks were 150 ml in volume and provided
in identical opaque bottles that were randomly allocated using
simple randomisation generated by online software. Randomisation
was performed by a researcher not responsible for data collection.

On the mornings of the exercise trials (day 7), participants
arrived at the laboratory after an overnight fast (10 h) but
consumed 300 ml of water 90 min before arrival. Participants were
asked to verbally and in writing confirm if they had missed any
dose of their supplements in the days leading up to the main trial
and whether they followed the diet and exercise restrictions. After
10 min of seated rest, a flexible 20-gauge cannula was inserted into
an antecubital vein, and a baseline blood sample was drawn. The
same breakfast was provided to participants for both trials (Nature
Valley Honey and Oat bar; Middlesex, UK; 196 kcal), which they
had 10 min to consume, alongside water. This was followed by 45-
min rest. Participants then cycled for 45 min at ~55 %Wmax before
resting for the remainder of the trial. 100 ml of water was provided
after 15 min of cycling, and participants had 15 min to drink all the
water. 10 min after the exercise, participants consumed their final
supplement, and an ad libitum pasta meal was provided 60 min
later. The meal consisted of pasta, tomato sauce and olive oil (all
Tesco, UK) and provided 10·0 % protein; 57·2 % carbohydrate;
30·1 % fat; 2·7 % fibre. The energy density of the meal was 1·40
kcal/g. Participants ate their meal in a separate room where mobile
phones and other distractions were not permitted; they had 30min
in which to eat and were asked to eat ‘until they were comfortably
full’. Energy intake was quantified by weighing the food pre and

post consumption, and water intake was matched between trials.
Eating rate was quantified by dividing energy intake (kcal) by time
eating (seconds).

Measures
A GI-focused visual analogue scale (VAS) was used to assess
nausea, headache, GI discomfort and urge to defecate, which were
anchored at 0 mm by ‘no nausea’, ‘no headache’, ‘not at all’ and ‘no
urge to defecate’, respectively; at 100 mm was ‘worst possible
nausea’, ‘worst possible headache’, ‘a lot’, and ‘extreme urge to
defecate’, respectively. An appetite focused VAS was used to assess
hunger, fullness, desire to eat, thirst and prospective food
consumption, which were anchored at 0 mm by ‘not hungry at
all’, ‘not full at all’, ‘no desire at all’, ‘not thirsty at all’ and ‘nothing
at all’, respectively; at 100 mm was ‘extremely hungry’, ‘extremely
full ’, ‘extreme desire’, ‘extremely thirsty’ and ‘a large amount’,
respectively(48). The GI and appetite VAS scales were measured
with pen and paper upon waking and then 30min post supplement
ingestion on the 6 d pre-experimental trial and then upon waking
on the morning of the experimental trial and at 0, 90 min, 130 min,
160 min (pre ad libitum meal), 190 min (immediately after the ad
libitum meal), 220 and 280 min. Composite appetite scores were
calculated (hunger þ (100-fullness)þdesire to eat þprospective
food consumption)/4)(49,50). Heart rate (Polar H10; Polar Electro
Oy; Kempele, Finland) and rating of perceived exertion (RPE; 6–20
scale(51)) were measured every 15 min during exercise. Venous
blood (20 ml) was obtained at –15 min (before breakfast), 100 min,
115min, 130min, 145min, 160min, 220min and 280min, and the
cannula was kept patent by flushing with sterile saline after
sampling. Body mass (minimal clothing; Adam CFW-150, Milton
Keynes, UK) was measured before baseline measurements.
Laboratory humidity and temperature were measured at –30
min, 45min, 100min, 145min and 280min. On the 6 d prior to the

Figure 1. Schematic outline of study protocol. Clipboard symbols represent time-points when subjective appetite measures were taken; syringe symbols blood sampling time-
points, and the water bottle symbol when fluid was consumed. CON, control supplement; CP, collagen peptides supplement (15 g/d).
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experimental trial, participants wore a physical activity monitor on
their non-dominant wrist (Motionwatch Rugged; Cambridgeshire;
UK) and were asked to record any physical activity in a diary. They
recorded training type, duration (min) and self-reported the
exercise intensity as either low,moderate or severe. The breakdown
of total time spent sedentary and participating in low, moderate or
vigorous physical activity for the 6 d prior to the trial was calculated
from the monitors. Data were collected from midnight on day 1 of
the trial and finished at midnight of day 7. Data from the physical
activity tracker was used to quantify time spent sedentary
(≤ 178·49 counts per minute (CPM)) or doing moderate
(178·5–562·49 CPM) to vigorous (≥ 562·5 CPM) activity using
threshold as per Landry et al.,(52) for the 6 d before each
experimental trial. Physical activity data are presented for thirteen
participants, as on two occasions the watches failed.

Sample processing and analysis
We were unable to obtain blood samples for one person, so blood
data are presented for n 14. From these fourteen participants, there
were four time points where blood samples could not be obtained.
At each time point, 20 ml of blood was collected, and 5 ml was
dispensed into an EDTA tube (1·6 mg EDTA/ml; Sarstedt), 4·5 ml
was dispensed into a serum tube (clotting activator; Sarstedt) and
left to clot for ~15 min, and 9 ml was dispensed into chilled EDTA
protease inhibitor tubes (dipotassium EDTA< 100 %; tacrine <
20 % and BD P800). All tubes were centrifuged (2500 × g, 10 min,
4°C), before being aliquoted and stored at −80°C until analysis.
Approximately 0·1 ml of blood was used for immediate
determination of blood glucose concentrations (StatStrip Xpress
2 Glucose and KetoneHospitalMeter; Nova Biomedical;Waltham,
MA; USA).

ELISA was used to determine ghrelin (Human Ghrelin (Total);
MerckMillipore; Billerica, MA; USA), GLP-1 (GLP-1 Total; Merck
Millipore; Billerica, MA; USA), PYY (Human PYY (Total); Merck
Millipore; Billerica, MA; USA), leptin (Human Leptin ELISA kit;
Merck Millipore; Billerica, MA; USA), insulin (insulin ELISA kit;
Diametra; Spello; Italy), dipeptidyl peptidase-4 (sDPP-4) (Human
sCD26 ELISA kit; Invitrogen; Vienna; Austria) and cholecystoki-
nin (CCK) (CCK Raybiotech; Norcross, GA; USA). Serum samples
were used to measure sDPP-4 and CCK, EDTA samples were used
to analyse insulin, and leptin and EDTA protease inhibited samples
were used to measure ghrelin, GLP-1 and PYY. Several of the
samples for CCK were above the limits of detection, even after
serial dilutions, and therefore, data are presented for n 9
participants. All inter-plate CV were < 15 %, and intra-plate CV
were < 7 % for all analysis.

Statistical analyses

We performed a sample size calculation for our primary outcome,
energy intake at the ad libitum meal. All other outcomes were
considered secondary outcomes. Our calculation was based on
previous studies examining the effects of whey protein(53) and
milk(17) on post-exercise energy intake, which observed a ~700 KJ
(~167 kcal) difference in energy intake between intervention and
control conditions. Using a 700 KJ mean difference (and 700 SD

units) and the following parameters for the power analysis: two
tailed, α0·05, power 0·80, it was estimated that ten participants
were required to detect a statistically significant difference in a
paired t test (G * Power 3.1.9.2.)(54,55)

Data analysis was performed with jamovi (The jamovi project
(2024). jamovi (Version 2.5) (Computer Software). Retrieved

from https://www.jamovi.org). All data were checked for
normality by inspecting histograms of the residuals; homogeneity
of variance was checked by plotting the residuals against the
predicted values. Energy intake, eating rate and physical activity
levels were analysed with paired t tests; appetite and GI VAS,
RPE, HR and all blood outcomes were analysed with linear mixed
models. On the main exercise trial day, blood outcomes were
measured with experimental condition (CP and CON) and time
point modelled as fixed factors and participant as a random
factor. In comparing blood samples taken fasted at familiarisation
and at day 7, only one fixed factor was modelled (CP, CON and
familiarisation). Random effects for participant intercepts were
included in the models, which were estimated with restricted
maximum likelihood. If there were significant main interaction
effects, post hoc tests were performed using Holm–Bonferroni
adjustments. Total area under the curve was calculated for all
appetite and blood variables using the time series response
analyser(56). Correlation analysis was performed to assess
relationships between variables showing statistically significant
between condition differences; details and results are provided in
the online Supplementary Material. All data are presented as
mean (standard deviation). Statistical significance is accepted as
P < 0·05. Cohen’s dz effect sizes are presented for our primary
outcome and any post hoc paired interaction effects; differences
were quantified and interpreted as ‘small’ (0·20–0·49), ‘medium’
(≥ 0·50–0·79) and ‘large’ (≥ 0·80).

Results

There was 100 % compliance with supplement intake and the pre-
trial dietary and exercise tracking and standardisation, as
confirmed in writing and verbally on arrival to the laboratory.
All diet diaries were inspected for accuracy and replication, with all
participants following the guidance provided. Body mass was 60·4
(SD 9·9) in the CP trial and 60·5 (SD 10·2) in the CON trial. Body
mass presented in Table 1 was recorded at familiarisation.

Physical activity

There was no difference in physical activity between the two
conditions: sedentary, including sleep (CP: 5234 (SD 388) min;
CON 5278 (SD 44) min; P= 0·746), low activity (CP: 1932 (SD 230)
min; CON 1966 (SD 259) min; P= 0·713), moderate activity (CP:
810 (SD 238) min; CON 794 (SD 223) min; P= 0·695) or vigorous
activity (CP: 641 (SD 139) min; CON 546 (SD 164) min; P= 0·172).

Subjective visual analogue scale (appetite and
gastrointestinal) for 6 d pre-experimental trial

The data presented are the average for the 6 mornings for pre and
30 min post supplementation and are displayed in online
Supplementary Table S1. There were no interaction effects for
any variable on the appetite VAS (P≥ 0·299). Hunger, thirst, desire
to eat, prospective food consumption and composite appetite
score increased 30 min post supplementation compared with
waking (online Supplementary Table S1). Fullness had a condition
effect (P= 0·027), where fullness was higher in CON compared
with CP.

Online Supplementary Table S2 shows the results from the GI
VAS (as described above) for the 6 d for pre and 30 min post
supplementation prior to attending the laboratory. Headache
incidence, GI discomfort and urge to defecate did not differ
between conditions (P> 0·05). However, there was a condition
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effect for nausea (P= 0·026), which was marginally higher in CON
compared with CP.

Exercise

There were no differences in heart rate during exercise between
supplements (condition P= 0·981; time × condition interaction
P= 0·979; Figure 2(a)), but heart rate did increase with the onset of
exercise (time P< 0·001). RPE increased over time (P< 0·001),
and there was a difference between conditions (P= 0·035; dz:
0·555) with RPE being higher in the CP trial but there was no time
× condition interaction (P= 0·682; Figure 2(b)).

Ad Libitum Pasta meal

Total energy intake was ~10 % (~41 kcal) lower in the CP trial
compared with CON (P= 0·037; dz= 0·593; Figure 3(a)). The
reduction in energy intake remained when accounting for body
mass (CP 6·1 (SD 2·7) kcal/kg; CON 6·8 (SD 2·7) kcal/kg; P= 0·022;
dz: 0·666). However, there was no difference in eating rate
(P= 0·263; Figure 3(b)).

Subjective appetite ratings

There were time (P< 0·001) effects, but no condition (P≥ 0·376)
or time × condition interaction effects (P≥ 0·279) for hunger
(Figure 4(a)), fullness (Figure 4(c)), desire to eat (Figure 4(e)),
prospective food consumption (Figure 4(g)), thirst (Figure 4(i)) or
composite appetite score (Figure 5(a)).

There was no difference in total area under the curve for hunger
(P= 0·788; Figure 4(b)), fullness (P= 0·744; Figure 4(d)), desire to

eat (P= 0·987; Figure 4(f)), prospective food consumption
(P= 0·932; Figure 4(h)) thirst (P= 0·674; Figure 4(j)) and
composite appetite score (P= 0·833; Figure 5(b)).

Gastrointestinal scales

There was no difference in nausea or GI discomfort between
conditions (condition P≥ 0·587; time × condition interaction
P≥ 0·412; online Supplementary Figure S1), but both nausea and
GI discomfort changed over time (P≤ 0·008). There was no
difference in headache incidence over time (P= 0·579), and there
was no time × condition interaction (P= 0·833; online
Supplementary Figure S1), but there was a condition effect
(P= 0·010; dz= 0·671), indicating incidence was lower in the CP
trial compared with CON. There was no difference between CP
and CON and no time effects for urge to defecate (condition
P= 0·767; time × condition interaction P= 0·530; time P= 0·785;
online Supplementary Figure S1).

Blood analysis at familiarisation

Samples were taken fasted before any supplementation at a
familiarisation visit (PRE). We compared these values to those
taken on day 7 of the main trials in the fasted state (0 min) after
both CON and CP ingestion, to assess any baseline, fasted
differences. There were no differences in ghrelin (P= 0·753),
insulin (P= 0·317), PYY (P= 0·054), leptin (P= 0·595) or sDPP4
(P= 0·173). CCK were significantly higher in CON compared with
pre-supplementation (PRE) (P= 0·023), but there was no
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difference with CP consumption. GLP-1 was significantly lower in
CON (P= 0·007) compared with pre-supplementation but not
different with CP consumption. Data are presented in online
Supplementary Table S3.

Blood analysis on day 7

There were time effects for blood glucose concentrations
(P< 0·001); specifically, 0 min (fasted) was significantly lower
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than post-meal (220 min: P< 0·001; and 280 min: P< 0·001;
Figure 6(a)). There were no condition (P= 0·213) or time ×
condition interaction effects (P= 0·648).

There were time (P < 0·001), condition (P < 0·001; dz: 3·87),
and time × condition interaction effects (P < 0·001; Figure 6(e))
for plasma total GLP-1 concentrations. Plasma GLP-1 was
significantly higher in CP v. CON at all time points except 0 min
and 100 min (115 min P < 0·001; dz: 1·36; 130 min P < 0·001;
dz:1·86; 145 min P < 0·001; dz: 2·12; 160 min P < 0·001; dz: 2·17;

220 min P < 0·001; dz:1·146; 280 min P < 0·001; dz: 1·12). There
was a time (P < 0·001) and a time × condition interaction
(P < 0·001; Figure 6(c)) for plasma insulin concentrations but no
effect of condition (P = 0·448). Insulin concentrations were
higher in CP v. CON at 130 min (P < 0·001; dz: 0·791), 145 min
(P < 0·001; dz: 0·467) and 160 min (P < 0·001; dz: 0·390).

Both leptin (Figure 7(a)) and total ghrelin (Figure 7(c)) had
effects of time (P≤ 0·001) and effects of condition (P≤ 0·032;
dz:≥ 0·577) with lower concentrations of both in the CP trial
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compared to CON. There were no time × condition interactions
(P≥ 0·256). PYY changed over time (P< 0·001), but there was no
condition (P= 0·743) or time × condition interaction (P= 0·100;

Figure 7(e)). There were no time (P= 0·499) or time × condition
interactions (P= 0·870; Figure 7(g)) for sDPP-4, but there was a
condition effect (P= 0·036; dz: 0·566), with higher concentrations
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in the CP trial. There were no time (P= 0·523), condition
(P= 0·494), or time × condition interaction (P= 0·768; Figure
7(i)) for CCK.

In the CP trial, total area under the curve for GLP-1 was
significantly higher than CON (P< 0·001; dz: 0·999; Figure 6(f)).
There was no difference in total area under the curve for glucose
(P= 0·121; Figure 6(b)), insulin (P= 0·421; Figure 6(d)), leptin
(P= 0·496; Figure 7(b)), ghrelin (P= 0·237; Figure 7(d)), PYY
(P= 0·466; Figure 7(f)), sDPP-4 (P= 0·346; Figure 7(h)) and CCK
(P= 0·623; Figure 7(j)).

Discussion

The main findings of this study were that post-exercise intake of
CP (15 g) reduced ad libitum energy intake (~41 kcal; medium
effect size) in a subsequent meal compared to a flavour matched
placebo (water). Whilst there were no treatment differences in
subjective appetite andGI symptoms, ghrelin was lower andGLP-1
and insulin concentrations higher in the CP trial, whichmay partly
explain the reduction in energy intake. However, 6 d of CP intake
did not significantly affect morning subjective appetite sensations
or fasting blood glucose and appetite-related hormone concen-
trations. This is the first study to report that consuming CP after
exercise increases GLP-1 and insulin concentrations and may
attenuate energy intake at a subsequent meal in healthy females.

Consuming CP 10 min after exercise reduced energy intake at
an ad libitummeal 60 min later by 10 % (~41 kcal). These findings
are consistent with previous studies examining whey protein
supplementation(19,53) or milk(17,18), which have also been shown to
reduce ad libitum energy intake following exercise. The decreased
energy intake in those studies was greater than in the present study
(~100 kcal), possibly owing to the larger doses of protein provided
(21–30 g) and/or energy content of the supplements. Differences in
protein source, supplement energy content, exercise type, meal
composition or sex could also explain the differences in energy
intake between studies. Only one previous study(24) has examined
the effects of CP on appetite, and while they found no differences in
energy intake between acute intake of CP and whey protein, direct
comparisons with our study are not possible as no inert placebo
was included. However, given previous studies in exercise
contexts(19,53) have suggested whey protein reduces energy intake
relative to a placebo/control, it is interesting that CP appears to also
demonstrate this capacity. As in previous studies(7,57,58), we chose
to compare CP to a non-energy matched placebo in a proof-of-
concept design, as no previous study has established whether CP
intake could affect appetite and hormone responses. This was
especially important for our primary outcome (energy intake) and
biochemical outcomes, as protein supplements have not been
consistently shown to alter either compared to water or energy
matched controls(4,18,53,57,59,60). Indeed, future studies are required
to examine whether CP has a greater influence on ad libitum
energy intake than an energy matched control.

There were no differences in subjective ratings of appetite and
satiety between the two supplements post-exercise on day 7. The
lack of difference post-supplementation is somewhat surprising
given that energy intake was reduced in the post-exercise meal.
However, subjective appetite/satiety ratings and ad libitum energy
intake do not necessarily correlate; indeed, several similarly
designed studies reported no differences in appetite and satiety
with post-exercise milk(46,47,51) or whey protein(19) ingestion,
despite reduced ad libitum energy intake at a subsequent meal. In
our study, the CP supplement was relatively low in energy (~60

kcal), which could partly explain the lack of change in subjective
appetite. In addition, the aforementioned studies, and ours, were
perhaps not adequately powered to detect small but statistically
significant changes in subjective appetite/satiety. There were also
no significant between supplement differences in fasted appetite or
satiety in the 6 d pre-exercise. A condition effect showed that
fullness was marginally higher with CON compared to CP (online
Supplementary Table S1) but as fullness was rated higher before
the supplement was consumed, it is unclear if this is directly related
to the supplement that was consumed 24 h prior, or random
chance. Regardless, our findings suggest that the reduction in
energy intake is unlikely to be explained by changes in subjective
appetite sensations.

One possible explanation for the reduced energy intake in the
CP trial is the decrease in total ghrelin and increase in total GLP-1
and insulin. The moderate and strong correlations (r≥ –0·477)
between the difference in GLP-1 and insulin post-supplement on
day 7, with the difference in energy intake between conditions, lend
some support to this (online Supplementary Material). As ghrelin
stimulates hunger(61), suppression of this hormone could have
contributed to the reduced energy intake in the ad libitum meal
with CP. However, there was no interaction effect, and a weak
correlation with the difference in energy intake (online
Supplementary Material) and the effect size was markedly lower
than that for GLP-1. Interestingly, GLP-1, which stimulates insulin
secretion and delays gastric emptying(62), remained significantly
higher than the control in the 2 h after the ad libitum meal,
suggesting the initial increase following CP intake cannot be
attributed to energy intake.We are unaware of any previous studies
examining CP on these hormones in humans, but in vitro studies
suggest that CP(63) or collagen hydrolysates(64) increase GLP-1
partly though inhibiting DPP-4. However, in our study, sDPP-4
was slightly elevated in the CP trial (condition effect; dz= 0·566)
suggesting other mechanisms likely explain the increased GLP-1.
The increase could be partly attributed to the insulinotropic effects
of specific peptides, or glycine, which has previously been shown to
stimulate GLP-1(64–66). Notwithstanding, our findings are in line
with human studies involving gelatin supplementation whereby a
single 20 g dose of gelatin (in both individuals with obesity and lean
individuals) was shown to increase GLP-1 and insulin concen-
trations but not total PYY or total ghrelin(67). In another study,
diets rich in gelatin (10 % or 25 % of energy intake) increased GLP-
1 and decreased ghrelin after meals and to a greater extent than
after an energy matched casein protein diet(6). Collectively, these
studies and our findings suggest that CP may stimulate the satiety
promoting hormones GLP-1 and insulin, which may lower energy
intake. The mechanisms to explain these effects warrant further
research.

Whilst there were no effects on PYY or CCK, leptin was lower in
the CP trial (condition effect). Although not statistically
significant, there was a strong positive correlation for the difference
in leptin post-supplement and difference in energy intake (online
Supplementary Material). This contrasts with a previous study(24)

that reported higher leptin concentrations in the 120 min after
consuming 40 g of CP compared with 40 g of whey protein. The
discrepancy in findings with our study could be due to differences
in dose and/or the comparator. Although leptin is thought to
suppress food intake, ad libitum energy intake in our study was
reduced by CP, suggesting leptin did not significantly influence
appetite. This could be because the increase was small and not
physiologically meaningful, or because leptin has a limited effect
on acute hunger and satiety. Indeed, acute post-prandial changes in
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leptin are not strongly associated with satiety or subsequent energy
intake(68–70), likely in part because leptin concentrations do not
tend to change until several hours post food intake, with
fluctuations more associated with longer-term regulation of energy
balance(71).

The study has limitations. First, our participants were young,
physically active females, so our findings may not translate to
males, the elderly or individuals with obesity. Second, during the
exercise, there was no difference in HR between the trials, but RPE
was higher (condition effect) during the CP trial, suggesting
participants perceived the exercise as harder. As a higher RPE is
associated with greater energy intake in some(72,73), but not all
studies(74), it is feasible that the greater RPE could have increased
appetite and energy intake in the CP trial. However, the influence
on our results was likely limited, given the difference in RPE was
minor (mean difference of 0·2–0·6), and energy intake was lower in
the CP trial. There was also no correlation between the difference
in RPE and energy intake between the two conditions (online
Supplementary Material). Third, we did not quantify systemic
changes in collagen-specific amino acids (glycine, proline and
hydroxyproline) or other peptides during the trials. However, we
are confident that these amino acids were elevated in the CP
trial, as several previous studies have shown similar doses
rapidly and markedly elevate systemic and urinary concen-
trations of these amino acids(46,47,75). We also did not assess the
effectiveness of the supplement blinding. Finally, we studied the
satiating effects of CP over a relatively short period (7 d) with the
energy intake assessment restricted to one ad libitum meal.
Future research is warranted to examine the acute (e.g. single
dose) and longer-term effects (e.g. 4 weeks) of CP intake and on
appetite, energy intake and weight management in individuals
with obesity and athletic populations, in the absence of exercise.
In addition, future studies should assess the dose–response of
CP intake on appetite and compare its effects on other dietary
protein sources.

In conclusion, our findings demonstrate that 7 d of CP
supplementation, with the final dose consumed post-exercise on
day 7, increases circulating insulin and GLP-1 concentrations
and reduces ad libitum energy intake in physically active
females. Our findings suggest that if consuming CP after
exercise for health or recovery benefits, there may be a
compensatory decrease in energy intake at the next meal.
However, the 10 % (41 kcal) reduction in energy intake after CP
was relatively small, so may not be clinically meaningful. Future
research should explore the underlying mechanisms and to
examine the effects of longer-term CP supplementation, at
different doses, on appetite and weight management in other
populations.

Supplementary material. For supplementary materials referred to in this
article, please visit https://doi.org/10.1017/S0007114525103851
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