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ABSTRACT

Software now allows archaeologists to document excavations in more detail than ever before through rich, born-digital datasets. In
comparison, paper documentation of past excavations (a valuable corpus of legacy data) is prohibitively difficult to work with. This pilot
study explores creating custom software to digitize paper field notes from the 1970s excavations of the Gulkana site into machine-readable
text and maps to be compatible with born-digital data from subsequent excavations in the 1990s. This site, located in Alaska’s Copper River
Basin, is important to archaeological understanding of metalworking innovation by precontact Northern Dene people, but is under-
represented in the literature because no comprehensive map of the site exists. The process and results of digitizing this corpus are pre-
sented in hopes of aiding similar efforts by other researchers.
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El software ahora le permite a los arqueólogos documentar las excavaciones con más detalle que nunca a través de conjuntos de datos de
origen digital. En comparación, la documentación en papel de excavaciones pasadas (un cuerpo muy valioso de datos) es difícil de trabajar.
Este estudio piloto explora la creación de un software para digitalizar notas de campo de las excavaciones de Gulkana en la década de 1970 a
texto y mapas que sean legibles por máquina y compatibles con datos de origen digital de excavaciones posteriores en la década de 1990.
Gulkana, ubicado en la cuenca del río Copper de Alaska, es importante para la comprensión arqueológica de la innovación metalúrgica por
parte de los Dene del norte antes del contacto, pero está subrepresentado en la literatura ya que no existe un mapa completo del sitio. El
proceso y los resultados de la digitalización se presentan con la esperanza de ayudar a otros investigadores en esfuerzos similares.

Palabras clave: datos heredados, arqueología digital, análisis computacional de textos, sistemas de información geográfica

For years, scholars have predicted that widespread adoption of
new software tools will trigger a paradigm shift in archaeological
practice (Huggett 2015; Roosevelt et al. 2015; Schmidt and
Marwick 2020). One example comes from Roosevelt and col-
leagues’ (2015) “Excavation is Destruction Digitization,” which
describes the process of applying a “born digital” approach to
document an excavation in detail. Roosevelt and colleagues argue
that born digital documentation allows the archaeological cliché
“excavation is destruction” to be reframed as “excavation is
digitization.” They argue that the creation of digital excavation
data facilitates data sharing and allows archaeologists to examine
broader questions about the past by “generat[ing] publishable or
near-publishable quality data at . . . collection, so that additional
data preparation . . . becomes unnecessary” (Roosevelt et al.
2015:18).

Although these benefits should not be written off, I question
where this paradigm shift will leave the many thousands of sites
that were excavated before such technology was available. These
sites are preserved through collections of artifacts and hard copies
of accompanying records (Allen et al. 2019; Childs 2004;
MacFarland and Vokes 2016). Legacy data (data from past
research, including excavation notes, site reports, and results from
previous analyses) can be difficult to use, requiring considerable
preprocessing and cleaning (McManamon et al. 2017; Sobotkova
2018). This is especially the case for analog (i.e., not digital) legacy
data, such as handwritten excavation notes (Heath et al. 2019). In
fact, Heath and colleagues suggest that broad, multisite analyses
are biased toward digital datasets and tend to exclude datasets
existing in physical form, given that they are more difficult to use.

To make analog legacy data sets as useful as (and facilitate their
integration with) born-digital data, they must be converted into a
formatwithwhich a computer can directly interact (effectively “reborn
digital”). This pilot study explores this digitization process with
handwritten field notes from the 1970s excavations of theGulkana
site (a precontact Northern Dene seasonal habitation; Hanson 2008;
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Workman1976). This site is important to aNorthernDenedescendant
community (theAhtna) and to archaeological understandingof native
copper innovation.However, thesite remainsunderrepresented in the
scholarly literature because there is no comprehensive map of the
disparate excavations conducted there. To facilitate further analysis
and publication of theGulkana site, spatial data need to be parsed
from PDF scans of field notes handwritten during the 1970s excava-
tions. These spatial data can then be converted into a digital form to
enable synthesis with born-digital data frommore recent excavations.

This pilot study attempts to automate digitizing spatial data from
these 1970s field notes into a machine-readable format. I explore
the feasibility of training a machine learning algorithm to digitize
these handwritten texts, and of using custom software to parse
spatial data from them. I describe this process in the hope that it
may provide a model for future attempts to address the broader
disciplinary issue of digitizing analog legacy data.

In the pages that follow, I will introduce the Gulkana site, detail the
costs associated with digitizing legacy data, and briefly summarize
past applications of relevant methods within the discipline. I then
describe the methodology used and the results of each step
individually. I conclude by detailing necessary future work, pro-
viding recommendations for other researchers undertaking similar
efforts, and addressing the implications of this research for archae-
ological legacy data and the trend toward Big Data.

BACKGROUND

The Gulkana Site
Prior to the construction of the Trans-Alaska Pipeline in the late
1970s, researchers excavated a portion of the Gulkana site

(GUL-077) to mitigate the project’s impact on cultural resources. A
location that had been selected for gravel extraction also marked
a habitation in traditional Ahtna territory occupied several times
prior to the contact period (Figure 1). Archaeologists conducted
rescue excavations at the Gulkana site in 1975 and 1976 (Workman
1976). The site was excavated again in 1995 and 1996, this time by
the Office of History and Archaeology, Alaska Department of
Natural Resources, before the surrounding area was once again
mined for gravel (Hanson 2008). Although portions of the site
remain undisturbed, it now largely exists in the records of these
excavations.

The site stretched nearly a kilometer and was marked on the
surface by 49 depressions used for storage or associated with
semipermanent shelters (Hanson 2008). I will refer to these
depressions as “pit features” to acknowledge their sophisticated
construction. These pit features are indicative of repeated sea-
sonal habitation by Northern Dene hunter-gatherer-fisher bands
interacting with the surrounding landscape. Materials recovered
from these structures were radiocarbon dated and suggest a
period of use between AD 935 and 1485 (Arndt 1977; Hanson
2008; Workman 1976:143).

Most notably, the excavations recovered an abundance of native
copper artifacts (Hanson 2008; Workman 1976). Native copper
refers to copper occurring as pure nuggets. This form of copper is
available at multiple locations throughout the region, especially in
the nearby Wrangell and Saint Elias mountain ranges (Cooper
2012; Cooper et al. 2008). Native copper was used by the Ahtna
and other Dene people primarily for tools, but it also had prestige
and spiritual associations (Cooper 2011, 2012). Native copper
artifacts recovered from GUL-077 include awls, knives, projectile
points, and a few examples of ornamental objects (Cooper 2012;
Hanson 2008; Workman 1976; for images of native copper

FIGURE 1. Ethnolinguistic map of the Copper River region, including the Gulkana site and nearby sources of native copper
(Wrangell and St. Elias Mountains). Adapted from Cooper 2011.
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nuggets and tools from the Gulkana site, see Cooper et al. 2015).
Native copper was traded throughout the Alaska-Yukon region
and down to the coast for practical and prestige uses (Cooper
2012). The Gulkana site likely played an integral role in this net-
work—roughly one-third of the native copper artifacts recovered
from the Alaska-Yukon region were found at GUL-077 (Cooper
2011, 2012). The context of these artifacts indicates that GUL-077
may have been a production site for native copper objects
intended for trade (Cooper 2012). In this way, understanding the
Gulkana site can improve archaeological understanding of native
copper and contribute to a narrative that emphasizes the agency
of Native Alaskans to engage in metalworking innovation prior to
European contact (Cooper et al. 2015). The site has been
addressed in a handful of publications (Cooper 2011, 2012;
Cooper et al. 2015; Hanson 2008; Workman 1976), but it is cur-
rently underutilized within the context of understanding precon-
tact Northern Dene culture.

The inaccessibility of information about the Gulkana site is due in
part to the nature of the documentation of the 1970s excavations.
Detailed spatial data, which contextualize the site’s artifacts and
features, are embedded in handwritten field notes. However,
these notes are difficult to read and contain extraneous informa-
tion, such as excavators’ personal musings about the project, their
colleagues, and their lives (Figure 2). Digitizing the text of these
notes into a typed, machine-readable format will make them
easier to read and search. Parsing spatial data from them will
facilitate digital mapping. However, digitizing legacy data in this
way is costly (Sobotkova 2018).

The Costs of Digitizing Legacy Data
The laborious digitization process presents a major obstacle to
use of analog legacy data (Sobotkova 2018) by academic and
public stakeholders alike. Transcription is necessary to digitize the
text of analog legacy records. When done manually, this process is
tedious and time consuming. Researchers can alternatively pay to
outsource this work (for example, the website gotranscript.com
charges $3 per page), but this may not be feasible for datasets
that contain sensitive locational information. This process is
especially difficult for handwritten files, such as legacy excavation
notes (Heath et al. 2019).

Digitizing spatial data within these texts is also costly. Sobotkova
describes one project where she spent most of a $7,000 budget to
extract spatial data from legacy PDF documents. She estimates
that this process took her team 700 hours to complete. Looking
back on this research, she projects that optical character recog-
nition (OCR) and computational text analysis (CTA, which is using
software to analyze texts) may have saved $2,000 and 250 hours of
work (Sobotkova 2018).

Mapping and Text Analysis in Computational
Archaeology
In this research, I explore whether custom software employing
geographic information systems (GIS), CTA, and OCR can min-
imize the labor necessary to parse spatial data from handwritten
excavation notes. Most of these methods have already been
incorporated into archaeological practice, and some have been
applied to legacy data on a regional scale (Brandsen et al. 2020;

Jeffrey et al. 2009; Richards et al. 2011). Of course, the use of GIS
for mapping is now nearly ubiquitous in the discipline. Applying
CTA to archaeological texts is much less common, but it has
recently been used to analyze archaeological publications (e.g.,
Park et al. 2020; Schmidt and Marwick 2020). Finally, OCR is often
used as a digitizing tool by archaeologists (e.g., Heath et al. 2019;
McManamon et al. 2017) and is also common in the digital
humanities, along with text extraction (Damerow et al. 2017; Pintus
et al. 2015). These spatial and textual analysis methods have been
combined in archaeological research through what Murrieta-
Flores and Gregory (2015) refer to as Geographic Text Analysis
(GTA).

METHODS
The initial dataset consisted of handwritten field notebooks that
had previously been scanned and converted to PDFs. I employed
the following methodology to extract machine-readable text and

FIGURE 2. A scanned page from a field notebook. Full pages
such as these can also be used as training images. This limits
time spent collecting training images, but it leads to a more
tedious annotation process. Additionally, these pages may not
necessarily include a comparable number of instances for each
character.
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maps from these documents: (1) use OCR to make the text in
these files machine readable; (2) use custom software to extract
spatial data from text through text parsing; (3) use custom software
to create shapefiles from location data. Where possible, I used
open source software (software for which the source code is
available for review and extension) because of its benefits in terms
of cost, transparency, reuse, accessibility, and potential for col-
laboration (Ducke 2012, 2015; Marwick 2017).

Step 1: Optical Character Recognition
For the first step of this digitization pipeline, I employed OCR to
translate PDF scans of handwritten documents into machine-
readable text files. I specifically used the open source engine
Tesseract 3.05, which applies machine learning to identify char-
acters (Tesseract 2020). Out of the box, Tesseract is trained to
recognize typed characters from many fonts and languages. It
must be trained to identify new characters through a process that
involves giving Tesseract labeled examples. Given that I planned
to explore training Tesseract to read handwritten text, I opted to
use an older version of Tesseract (Tesseract 3.05) instead of newer
versions, which take significantly longer to train (Clausner et al.
2020; Tesseract 2021). I used the Linux Ubuntu operating system
for the OCR component of this research to comply with the lim-
itations of Tesseract’s training documentation. Subsequent steps
used Windows 10. The training process included collecting refer-
ence images, creating box files to indicate the locations of char-
acters in these images, and, finally, running training commands.

Step 1a: Collect Reference Images. There are multiple ways to
structure the training data passed to Tesseract. One option is to
use images directly from the target corpus to train Tesseract. This
approach results in a realistic training corpus and requires little
preprocessing on the part of the developer. However, creating
box files from these images is time consuming, and certain char-
acters may be omitted or underrepresented (White 2013). For this
reason, I opted to construct training images artificially by selecting
individual characters from the corpus and combining them to form
sentences (Figure 3). This approach came with its own issues. For
instance, it was time consuming to construct these images.
Additionally, it was difficult to replicate the structure of the original
field notes, create an approximately equal distribution of each
character, and ensure that the characters selected were chosen
from unique points in the text to minimize redundancy.

Step 1b: Create Box Files. Tesseract relies on files called “box
files” to interpret training images. These files contain data
identifying each character in a training image and listing the
boundaries of a box that surrounds the character. To make this
process go more smoothly, I used jTessBoxEditor software to
visualize these box files (VietOCR 2021). Converting the training
images into box files is tedious, especially for samples with many

characters (such as pages from the target corpus, including
Figure 2). For all training images, a user must enter an x/y loca-
tion and dimensions to represent a box around each character
(being careful to ensure that no boxes overlap) and then list the
character associated with each box (Figure 4). The resulting file is
a text file that contains a list of characters included in the training
image, and the location and dimensions of the box associated
with each.

Step 1c: Run Training Commands. Finally, with a training corpus of
images and box files amassed, the last step is to use this corpus to
train Tesseract. This is accomplished by running a series of com-
mands that compiles all of the information in the box files into one
file that represents the new “language” Tesseract has “learned”
(see Supplemental Text 1). The user can then apply this new
dataset to have Tesseract attempt to identify characters in an
image from the target corpus (Tesseract 2020). The result of this
final step is a plain-text file representing Tesseract’s interpretation
of the characters in the input image. If accurate, this machine-
readable dataset can then be used for further computational
analysis.

Results of Step 1 (OCR). This step proved time consuming and
difficult, and it amounted to little trainable data. These results
support Clausner and colleagues’ (2020:75) assertion that training
OCR engines is “unnecessarily complicated . . . and therefore
inefficient.” In this pilot study, considerable time investment
resulted in just a handful of examples for most letters and some
punctuation marks—a corpus insufficient to train Tesseract. To
quantify this insufficiency, I ran the “trained” and base Tesseract
on a page from the target corpus and counted the number of
correct identifications. Base Tesseract was able to identify just 1%
of this test image (5 of 433 characters). The “trained” model
identified even fewer—0.7% (3 of 433). However, this does not
indicate that training was counterproductive. It is important to
note that the model created in this research does not build on the
base Tesseract model. Therefore, the accuracy of the base
Tesseract model should not be used as a baseline but as a target
to exceed.

Because my trained model was insufficient to digitize the text of
the field notebooks, further analysis in this project relied on
documents that had been manually transcribed as part of the
training process. While transcribing the field notebooks, I was
forced to consider the implications of data cleaning. Would it be
better to fix spelling errors and grammatical mistakes to make the
resulting corpus clearer, or would these alterations impact the
integrity of the data? Although this hesitation may seem overly
cautious, Rawson and Munoz (2019) argue that even these “erro-
neous” data can be meaningful, and in fact comprise a corpus
valuable in their own right. Therefore, I chose to create a tran-
scription as close to the original text as possible.

Step 2: Computational Text Analysis
After making the textual component of the Gulkana legacy data
machine readable, the next step was to do the same for the
spatial data. Excavation documentation contains a wealth of
spatial information. Archaeologists have used natural language
processing (NLP; computational processing of long-form texts as
they would be written or spoken “naturally”) to “geoparse”—or
extract locational information from—archaeological reports

FIGURE 3. Example of a training image created by the
researcher. This image was created by cropping an empty line
from a scan of a field notebook, then overlaying characters cut
and pasted from other locations in that notebook.
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(Jeffrey et al. 2009; Murrieta-Flores and Gregory 2015). However,
NLP geoparsing typically acts on place names, such as cities or
landmarks, instead of the relative location identifiers used to refer
to artifacts and features in archaeological excavation notes (e.g.,
S34E42). Currently, there exists no automated process to convert
these relative location identifiers into machine-readable maps.
The remainder of this research was conducted with the intention
of exploring the use of computational techniques to accomplish
this goal.

Before spatial data could be mapped, I first had to identify and
isolate it (i.e., parse it) from the body of the excavation notes. I
created a CTA algorithm, named ArchLocateR, for this task. This
analysis leveraged two techniques: (1) use of regular expres-
sions to parse spatial data (e.g., N24 W7) from the text and (2)
use of part-of-speech tagging to select proximate nouns that
might be related to that location. I opted to use the program-
ming language R for this step. In addition to being open source,
R is commonly used by digital humanists and archaeologists
(Ducke 2015). This disciplinary reach was an important factor in
programming language choice for this step, given that
ArchLocateR could be customized for other corpora of excava-
tion notes.

Step 2a: Geoparsing. I created a regular expression to identify
strings of characters in the corpus that follow patterns commonly
used for excavation locations. The expression had to recognize
location words that included between zero and two decimal
points (e.g., N24W7, N22.5W34, or N23.4W33.7), and even those
that contained range information, designating a line or rectangle
(e.g., N35-40 W10). It was difficult to encapsulate so many possi-
bilities in just one expression. Moreover, all of these forms
appeared not only in this order but also “backward,” with the
direction preceding the distance measurement (e.g., 4S3W,
4-6S10E, and 5.5N20.5E). This proved especially troublesome,
because these instances could be interpreted as either “forward”

or “backward” if preceded or followed by an additional number
(e.g., 4N10E 4cmbd). Therefore, I chose to write in a preference for
“forward” location words, ignoring any “backward” locations that
overlapped with a “forward” one.

Results of Step 2a (Geoparsing). To analyze the accuracy of
ArchLocateR at parsing locations from field notebook texts, I ran
ArchLocateR on a corpus consisting of notes relevant to a feature
referred to as “pit 40” (hereafter, Feature 40). The output of the
program was then compared to a validation table created by
manually identifying locational information in the Feature 40 cor-
pus. This revealed that three location words had been overlooked
while creating the validation table. However, the algorithm iden-
tified them correctly. I have taken this omission into account when
comparing the accuracy of the twomethods. Otherwise, I treat the
results of the manual identification as the target output for
ArchLocateR.

The algorithm was remarkably successful (Table 1). It correctly
identified 68 of 76 location words (89%). There were no false
positive identifications. The location words that were not recog-
nized deviated from the expected formats by containing words
(e.g., 5.56-5.64N and 3.80-4.0E), measurement units (e.g.,
N140cmE340cm) or unexpected punctuation (e.g., N0/E2). In
future work, it may be possible to handle these variants in the
regular expression.

I performed a χ2 goodness-of-fit test to compare the algorithm’s
results with my manual identification (Table 2). There was no sig-
nificant (a = 0.05) difference between the results of the algorithm
and the results of identification done manually by a researcher
familiar with the dataset (X2(1, N = 76) = 1.57, p = 0.21). Although
these results must be verified with more data, this is a promising
indicator that CTA may be able to lower the time investment
required to extract locations from excavation notes without com-
promising accuracy.

FIGURE 4. Using jTessBoxEditor to create a box file from the training image in Figure 2. The user draws boxes around each
character. These boxes are represented on the left (and in the resulting box file) by a starting location and dimensions.
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Step 2b: Parsing Labels for Spatial Data. The next step was to
parse the descriptions associated with the spatial data collected in
Step 2a. To do this, I first annotated the text to identify nouns and
adjectives. I split the document by word and used the Apache
OpenNLP library (Hornik 2019) to tag each word with a part of
speech. Using this information, ArchLocateR attempts to find a
chain of nouns and adjectives that may be related to each location
word. Two algorithms are employed in this process, given that
there are two distinct categories of locations in the corpus, and
upon preliminary review of my sources, I observed that authors
tended to treat each differently. The corpus contained location
information related to two components of the excavation: modern
features created by the excavators, such as excavation units, test
pits, and baulks; and features recovered during the excavation,
such as artifacts, structures, ecofacts, and taphonomic features. In
this corpus, I observed that the location words used to refer to
these topics tended to take different structures, with excavation
information referenced by location words where direction pre-
ceded distance (e.g., N4E2) and findings taking the opposite

structure (e.g., 4N2E). Differences also seemed to occur in the
structure of descriptions. When addressing features related to the
excavation, authors tended to list the associated description in
close proximity to the location marker (e.g., “Pit N4E2”). On the
other hand, location words associated with an object found during
the excavation were typically listed at the end of a paragraph
containing information about that object (Figure 5).

Accordingly, ArchLocateR uses two different techniques to find
descriptions associated with each form of a location word. For
“forward” location words, typically associated with excavation
structures, the algorithm finds the closest chain of nouns and
adjectives to each location word. The algorithm accomplishes this
by radiating outward from the location word, preferring preceding
words, until it identifies a nearby noun. If the words adjacent to
this noun are nouns or adjectives, these words are collected as
well. For “backward” location words, typically associated with
objects found during excavation, the algorithm collects the chain
of nouns and adjectives closest to the beginning of the sentence
containing the location. If the sentence does not contain a valid
noun, ArchLocateR moves on to the beginning of the previous
sentence until a noun is found.

The software can accept a file input that lists words to be ignored
when identifying descriptions (i.e., stop words). Here, these are
nouns identified by the researcher as unlikely to be the object
located at a given location. The stop words predominantly consist
of excavators’ names, archaeological terminology (e.g., CMBD),
and words that were improperly identified as nouns (see
Supplemental Text 2).

For excavation structures and found objects alike, the output of
this step is a phrase consisting of nouns and adjectives, hopefully

TABLE 1. Comparing the Accuracy and Time Investment of Identifying Location Data by Hand and Algorithmically.

Location
Description (Excavation

Structures) Description (Findings) Description (Total)
Time

Expended

Exact
Match

Partial
Match

Exact
Match

Partial
Match

Exact
Match

Partial
Match

Identified by
researcher

96% — — — — — — 17:38

Identified by software 89% 11% 22% 54% 78% 46% 68% 0:16

Note: The algorithm’s accuracy is broken into two sections: excavation structures (such as units and test pits) and findings (including artifacts, archaeological features,
and ecofacts). This categorization was created because excavators tended to treat excavation structures and findings differently in their notes.

TABLE 2. Cross Tabulation of Researcher and Algorithmic
(ArchLocateR) Success at Identifying Location Words in the

Text.

Identification performed by

Researcher Algorithm

Correctly Identified? Yes 73 68

No 3 8

Total 76 76

FIGURE 5. Example of a relative location coordinate associated with a found object. Transcription: “Found what appears to be a
charred seed in the yellowish-grey sandy silt near west wall of test pit. Depth 96 cm. below datum. Coordinates 5.02N 3.14E.”
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representing the item that can be found at that location (e.g.,
“gray projectile point”). These descriptions, and the locations they
are related to, are written to a CSV file for further analysis.

Results of Step 2b (Parsing Labels for Spatial Data). I used the
validation table described above to analyze the accuracy of
ArchLocateR at parsing descriptions associated with spatial data.
However, for some locations there was no label to parse—that is,
not all locations were explicitly associated with an object in the
texts. In archaeological notes, location words are often used as a
proper name for an excavation unit. Therefore, some location
words were not associated with a noun—they themselves repre-
sented the entity at that location. These location words are
ignored in the following accuracy calculations, decreasing the
total number of viable entries to 50.

Overall, the algorithm returned an exact match (identifying both
the correct location and referent) in 23 instances (46%). Of the
remaining locations, the algorithm identified at least part of the
referent in an additional 11 instances. These include cases where
the algorithm only retrieved part of the correct phrase (for
instance, “piece” instead of “piece of wood”) or retrieved ad-
ditional incorrect words (for instance, the program returned
“sandy silt seed” instead of “seed”). Although exact accuracy is
preferred, these partial successes are still revealing and can be
understood easily with minimal context. Therefore, the algorithm
was at least partially successful at extracting 68% of the
descriptions.

Given that excavation features and found objects were treated
differently by note takers (and by ArchLocateR), the results of this
step should be analyzed accordingly. Surprisingly, the algorithm
was much more effective at identifying the objects associated with
“backward” location words (78% partial success as opposed to
just 22% with the excavation features; see Table 1). This may be
because discussions of excavation features tended to be more
ambiguous and less structured. On the other hand, excavators
tended to list found objects at the beginning of a paragraph or
sentence, with locations at the end (see Figure 7). This structure
may have made them easier to isolate.

Results of Step 2 (Time Requirement). To compare the time cost of
manual and automated (with ArchLocateR) text parsing, I timed
myself identifying spatial data and descriptions in the corpus as if I
were manually creating a map from the texts. It took me 18 min-
utes to read through the document and create a spreadsheet of
the spatial information it contained. It is worth noting that I have
become familiar with this corpus over the course of the research,
which likely improved my time significantly. For comparison, I also
timed the same process with a document I was less familiar with.
These documents were of comparable lengths (22,444 vs. 25,186
characters), although the second document contained more
location information (107 locations instead of 77 locations). This
second document took 46 minutes to transcribe into a spread-
sheet of spatial data and labels.

The algorithm accomplished this work in seconds (16 and 17 sec-
onds, respectively)—more than an order of magnitude faster than
even a researcher familiar with the dataset. Of course, this does not
mean that this computational approach will cut time investment so
dramatically.Dataoutputby theprogrammust still be verifiedby the

researcher, but this process should be simpler and more manage-
able than undertaking the entire process manually.

Step 3: Mapping in GIS
Although GIS software can accept CSV file input, it cannot
interpret the location words output from step 2. To allow the
program to recognize these data as location information, they
must be converted into coordinates. I created another program,
called ArchShape, to convert a datum coordinate and list of
relative location words to an ESRI shapefile. I used the pro-
gramming language Java to develop ArchShape because it
includes prebuilt libraries to interact with GIS.

The algorithm requires two CSV files as input: one containing the
site’s datum coordinate and another containing location words
and descriptions. Using the datum coordinate, the algorithm
converts the location words into a point, line, or polygon in space.
This information, along with the associated descriptions, is then
output to a shapefile using the Java library GeoTools (OSGeo
2021). Although the shapefile format is proprietary (belonging to
ESRI), it is designed to standardize GIS data between various
platforms. Therefore, these files can then be opened in any GIS
platform, including ArcGIS and open source alternatives such as
QGIS (Library of Congress 2020).

Results of Step 3 (Mapping). I manually mapped the spatial data
from the Feature 40 corpus for validation and comparison pur-
poses. This process was timed and took 98 minutes to add all the
data manually from the validation table created in step 2 to ArcGIS
Pro, using the “edit feature class” functionality to draw a point,
line, or polygon for each location. Again, the algorithm performed
much more quickly, requiring just 64 seconds to convert the
location words into shapefiles, which could then be opened di-
rectly in ArcGIS Pro.

In addition to being fast, the algorithm was also effective at
mapping. Although the location words ArchLocateR failed to
recognize are omitted from the map, the vast majority of the
objects were mapped, and the resulting representation of Feature
40 closely resembles the map created manually (Figures 6 and 7).
In fact, much of the variation between the two maps may be due
to human error—it is difficult to estimate distances in ArcGIS Pro,
even with the help of guidelines.

DISCUSSION

Future Work
This pilot study digitized only a handful of the 58 field notebooks
associated with the 1970s excavations of the Gulkana site. The
map created from these notebooks provides a clearer picture of
one feature of the site, but there are many more to address. The
remaining notebooks will be the focus of ongoing research, the
intent of which will be to integrate the spatial data from the 1970s
excavations (trapped in handwritten field notebooks and digital
scans of them) with digital spatial data collected during excava-
tions in the 1990s. Until all these records are integrated and
mapped, any picture we have of the Gulkana site will be
incomplete.
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FIGURE 6. A comparison of maps created manually by the researcher from the Feature 40 corpus and created algorithmically
through steps 2 and 3 of this analysis. Labels have not been cleaned and are as they appear in the original text.
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FIGURE 7. Comparison of details included in a section of maps in Figure 6 (the northeast quadrant of unit N6E4).
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During this process, it may also be necessary to improve the
software utilized in this research. For instance, it may be possible
to increase the accuracy of ArchLocateR by modifying the algo-
rithm to use a more complex machine learning approach (such as
Named Entity Recognition) to identify the descriptions associated
with locations more accurately. More urgently, further research is
warranted to find a solution to digitize the text of handwritten
excavation notes. Although this study demonstrates that training
OCR on handwritten excavation notes is time intensive, it is pos-
sible that this issue could be resolved through hiring an assistant
to create training files, or by employing software designed to
expedite this process (Clausner et al. 2020). Alternatively, it may be
beneficial to explore using a cleaner dataset of excavation notes
or even a premade dataset, such as the National Institute of
Standards and Technology’s Special Database 19, which contains
thousands of handwritten training images (Flanagan 2020) to
minimize the time cost of this training. This pilot study was not
exhaustive, so OCR should not be ruled out for this purpose.
However, it is worth noting that OCR often has low success with
identifying handwritten characters (Blanke et al. 2012; University of
Illinois Library 2021), in spite of ongoing research in the digital
humanities and in computer science (e.g., Pintus et al. 2015). It may
be worth exploring an alternative solution, such as reading the
notes through voice recognition software (Heath et al. 2019).

Recommendations for Scholars Facing Similar
Work
When digitizing, it is important to consider the implications of
data cleaning. By selecting just locations and descriptions from
the corpus, mapping effectively serves as a complex form of data
cleaning, paring the input down until only mappable data remain.
This is relevant to a broader conversation in CTA: how can ambi-
guity be incorporated in computation (Jurafsky and Martin 2000;
Kintigh et al. 2015; Liu 2016; Nguyen et al. 2019; Rawson and
Munoz 2019)? This conversation is beginning to be picked up in
digital archaeology as well (Huggett 2020), and even in the con-
text of legacy data (Noack Myers 2019; Sobotkova 2018). Each field
notebook contains a wealth of information relevant to the objects
being mapped, but this algorithm (and even manual mapping)
ignores most of it. For example, Figure 5 contains contextual
information associated with location data. Although this informa-
tion is all relevant to the object in question, likely only “charred
seed,” “96 cm below datum,” and the location would be included
in a map created manually. Although the original “messy” data
are not necessarily lost, they are omitted from the new, “cleaner”
dataset. It is worth considering how these additional data can be
incorporated.

Additionally, researchers must consider the maintenance require-
ments associated with digitization. All digital tools and data
require ongoing work in the form of maintenance—the hyper-
innovative digital landscape threatens to make archaeological
tools and datasets obsolete or inaccessible (Eiteljorg 2004; Kintigh
et al. 2015; Lercari et al. 2018; Richards 2017). Although the soft-
ware and data created in this research rely on relatively stable file
formats (CSV, TXT, shapefiles) and tools (Java, R, and GIS), they are
still at risk of obsolescence in the future, when these are eventually
replaced. Ducke (2012) has proposed that open source software
may provide a solution by fostering engagement beyond the
scope of just one project, although this would require the

participation of a deeply invested community. Regardless,
researchers must be aware of the maintenance needs of digital
tools and datasets when planning and budgeting for projects
(Childs and Benden 2017; Eiteljorg 2004).

It is also important to consider that digitizing archaeological leg-
acy data is not sufficient to guarantee its usefulness as a shared
disciplinary resource. Archaeologists have recently promoted the
adoption of the FAIR principles, introduced in 2016, which call for
data to be findable, accessible, and interoperable, as well as
reusable (Wilkinson et al. 2016). This article has explored a solution
for increasing reusability and interoperability of a legacy dataset
by digitizing it into a modernized, machine-readable format.
However, the software I outline in this article is not meant to
address issues of findability and accessibility. Digital curation and
publishing tools such as tDAR, ADS, and Open Context must be
employed to these ends (McManamon et al. 2017).

Finally, there are ethical concerns associated with working with
archaeological legacy data. Legacy datasets are not only valuable
to academic analyses. They are also meaningful to nonacademic
communities, particularly descendants (Heath et al. 2019; Neller
2004). Archaeologists have an ethical obligation to make data
available to interested publics when possible (Allen et al. 2019;
Childs 2004; Society for American Archaeology 1996). To ethically
interpret archaeological data that may impact a descendant
community, archaeologists should follow the CARE principles.
This amendment to the FAIR principles, proposed by the Global
Indigenous Data Alliance (GIDA) in 2019, is intended to advocate
for Indigenous interests in the open science movement—namely,
collective benefit, authority to control, responsibility, and ethics
(Research Data Alliance International Indigenous Data Sovereignty
Interest Group 2019). The Gulkana site remains significant to the
Ahtna descendant community, so future efforts to interpret the
Gulkana site will strive to fulfill the CARE principles through col-
laboration with Ahtna leadership and public outreach to increase
local awareness of the site.

Broader Impacts
Centuries of archaeological excavations have created a large body
of paper records that remain valuable to the discipline (Jeffrey
et al. 2009). The Gulkana site is just one example of this broader
disciplinary issue, referred to as the “legacy data backlog”
(Altschul et al. 2017; Kansa and Kansa 2018; McManamon et al.
2017; Nicholson et al. 2021; Wollwage et al. 2020). Therefore, it is
my hope that the software created and tested in this research can
be used as a guide for more broadly designed tools to digitize
analog archaeological legacy data.

Efforts to revitalize archaeological legacy data are especially
impactful during this period. These problems are relevant to the
burgeoning field of Big Data, given that legacy datasets are
quintessential examples of large, complex, and unstructured
datasets (boyd and Crawford 2012). As Kintigh and colleagues
(2015:5) argue, archaeologists should build on developments in
Big Data to create “analogous tools to deal with ‘complex data.’”
Archaeological legacy datasets are a perfect corpus to explore
these themes because of their complexity, as they often consist of
textual data, maps, images, and physical objects (Kintigh et al.
2015).
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Furthermore, the shift toward analyzing archaeological legacy data
seems to be gaining momentum. Archaeologists have repeatedly
emphasized that legacy datasets are an immense heritage
resource (Lindsay and Williams-Dean 1980; Society for American
Archaeology 1996; Sullivan and Childs 2003). However, it was not
until the COVID-19 pandemic that the discipline took full advan-
tage of this corpus of information (Howey and Brouwer Burg 2021).
The pandemic forced many researchers to abandon field data
collection plans for the summers of 2020 and 2021. However,
because of the nature of my research, the global pandemic had
relatively little impact on my own work. In this way, it took a global
health crisis to demonstrate the importance of legacy data and the
impacts of barriers to accessing these datasets (Di Fiore 2020). As
archaeologists return to the field, it will be crucial to remember
these lessons and commit to digitizing analog legacy data for
future analysis.

CONCLUSION
The goal of this pilot study was not to create a panacea for ar-
chaeological data management. Rather, this study investigated
the feasibility of creating software to digitize handwritten exca-
vation notes into machine-readable texts and maps so that they
can be analyzed alongside born-digital data. This research
demonstrates that custom, open source software may be capable
of automating the digitization process enough to overcome major
barriers to digitizing analog data, especially the tedious mapping
process. The solution explored in this research is specific to the
Gulkana site, but I hope that this article will serve as a useful guide
for other researchers working with similar analog datasets.
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