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MODULAR REPRESENTATIONS OF ABELIAN GROUPS
WITH REGULAR RINGS OF INVARIANTS

HARUHISA NAKAJIMA

§1. Introduction

Let k be a field of characteristic p and G a finite subgroup of GL(V)
where V is a finite dimensional vector space over .. Then G acts naturally
on the symmetric algebra k[V] of V. We denote by k[V]¢ the subring of
k[V] consisting of all invariant polynomials under this action of G. The
following theorem is well known.

TaeoreM 1.1 (Chevalley-Serre, cf. [1, 2, 3]). Assume that p =0 or
(Gl,p)=1. Then k[V]® is a polynomial ring if and only if G is generated
by pseudo-reflections in GL(V).

Now we suppose that |G| is divisible by the characteristic p(> 0).
Serre gave a necessary condition for k[V]® to be a polynomial ring as
follows.

TaEOREM 1.2 (Serre, cf. [1, 3]). If k[V]¢ is a polynomial ring, then G
is generated by pseudo-reflections in GL(V).

But the ring k[V]¢ of invariants is not always a polynomial ring,
when G is generated by pseudo-reflections in GL(V) (cf. [1, 3]).

In this paper we shall completely determine abelian groups G such
that F,[V]¢ are polynomial rings (F, is the field of p elements). Our
main result is

THEOREM 1.3. Let V be a vector space over F, and G an abelian group
generated by pseudo-reflections in GL(V). Let G, denote the p-part of G
and assume that G,>{1}. Then the following statemenits on G are equivalent:

(1) F,[VI¢ is a polynomial ring.

(2) The natural F,G,-module V defines a couple (V, G,) which decom-
poses to one dimensional subcouples (for definitions, see § 2).
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The computation of invariants of elementary abelian p-groups G plays
an essential role in the proof of this theorem. Therefore we need to study
the structure of F,G-modules V such that F,[V]¢ are polynomial rings
under some additional hypothesis (see §3). In §4 our main result shall
be reduced to (3.2).

Hereafter & stands for the prime field of characteristic p > 0 and with-
out specifying we assume that all vector spaces are defined over k.

§2. Preliminaries

An element ¢ of GL(V) is said to be a pseudo-reflection if dim (1—a)V
< 1. We say that a graded ring R = ®,.,R, is defined over a field K,
when R, = K and R is a finitely generated K-algebra. It is well known
that R is a polynomial ring over K if R is regular at the homogeneous
maximal ideal @,.,R,. For a subset A of a ring R, (A), denotes the
ideal of R generated by A. To simplify our notation we put (A) = (A,
if A is a subset of the fixed k-space V (for a subset B of a group, (B)
means the subgroup generated by B).

ProposITiON 2.1. Let G be an abelian group generated by pseudo-
reflections in GL(V) and let G, denote the p-part of G. Then k[V1® is a
polynomial ring if and only if k[V]° is a polynomial ring.

Proof. Let k be the algebraic closure of £ and let G, be the p’-part
of G. Since G is an abelian group generated by pseudo-reflections in
GL(E ®,V), we can immediately find a kG,-submodule V, and a EG,-
submodule V,, such that V, S ((®, V)%, V, € (k®,V)°” and k®,V =
V, ®V,. Therefore

E®, k[V]® = k[k ®, V]° = E[V,]% Q; k[ V,/]°”

and k[V,]%” is a polynomial ring. The assertion follows from these facts,
because k[V]¢ and E[V,]°» are graded algebras defined over fields.

ProrosiTioN 2.2. If G is an abelian p-group generated by pseudo-
reflections in GL(V), then V|/V¢ is a trivial kG-module (i.e. G acts trivially
on V/V9),

Proof. Let o€ G — {1} be a pseudo-reflection and choose ZeV to
satisfy (1 — ¢)V = kZ. Clearly it suffices to prove that Z¢ V¢ Since G
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is abelian, t(kZ) = (1 — 0)z(V) = kZ for any element z of G. Hence the
map y: G - k* defined by

< Z)
Z

Tt

is a group homomorphism, where k* is the unit group of k. But we have
Hom (G, k*) = {1}, as G is a p-group. This implies that Ze V°.

(V, G), which is called a couple, stands for a pair of a group G and
a G-faithful kG-module V such that V/V¢ is a nonzero trivial AG-module
(in this case G is an elementary abelian p-group). The dimension of (V, G)
is defined to be dim V/V¢. We say (U, H) is a subcouple of (V,G) if H
is a subgroup of G and U is a kH-submodule of V. Let us associate (V, G)
with the subspace

A(V,G) =3 (1— )V

s

of V¢ and the subring 2(V, G) which is the image of the canonical ring
homomorphism

RIVIFKVEE — R VIV .

Lemwma 2.3.  For any couple (V, G) the k-algebra 2(V, G) is a polynomial
ring.

Proof. Putting
R = k[k ®, VI°/(<k @ VO icigw)” »
we see that
R=k®, 2AV,G)

as graded algebras defined over 2. Let M, (i = 1, 2) be maximal ideals of
k[k ®, V] which contain the ideal <k ®, V0. Then, by the definition
of a couple, we can select a coordinate transform

ot FE®, V] — FE®, V]

sending I, to M, which commutes with the action of G. The contractions
of M, (1 =1,2) to k[l ®, V]¢ define maximal ideals M, of R respectively
and the transform ¢ induces Ry, = R,, Hence we conclude that R is
regular, because it is an affine domain. From this 2(V, G) is a polynomial
ring.
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We say that (V, G) decomposes to subcouples (V,,G) A1 £ i< m) if
G=®cnG, VSV, S VS forall 1<i,j<m with i %j and
V/VG(: 5 V,./VG) —@® V,Ve.
1Sism 1Sism

The set consisting of these subcouples is called a decomposition of (V, G).
Further (V, G) is defined to be decomposable, when it has a decomposition
{{V,G):1<i < m} with m = 2.

ProposiTioN 2.4. Let (V, G) be a couple which decomposes to subcouples
(V,, G) 1 < i< m). Then the following conditions are equivalent:

(1) Kk[VY)° is a polynomial ring.

@) k[V,]% (1 £i<m) are polynomial rings.

Proof. Suppose that k[V]° is a polynomial ring. Since k[V]¢ contains
E[V,]%, the canonical kG;-epimorphism V — V, induces a graded epimorphism

V2 R[V]? — [V ]% .
Clearly V¢ = V& and ¢((V) = ((VDur)% Hence (V) = (VD p10
implies
KVES v D% = K VED urp 6 -

By (2.3) we see that 2(V,, G,) are polynomial rings and therefore k[V,]%
(1 £ i < m) are also polynomial rings. Conversely we assume the condition
(2). Denote by n, the dimension of (V,,G))(1<i<m)andletf,, (1<j<n,)
be homogeneous polynomials in k[ V] such that k[V,]¢ = E[VE][f,, - - -, finl
(1<i<m). Then it follows easily that k[V]® = k[VC][f,: 1< i< m,

For a one dimensional couple (V¢ ® kX, G) we call

FX) = [ o(X)

the canonical (V¢ @ kX, G)-invariant on X. F(X) satisfies the identity
F(Y,+Y)=F(,)+ F(Y,) .
Clearly we must have kR[V¢® kX]¢ = k[V¢][F(X)] and hence

CoROLLARY 2.5. If a couple (V, G) decomposes to one dimensional sub-
couples, then k[V]® is a polynomial ring.

ProposiTION 2.6. Let G be a subgroup of GL(V) and let H be the
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inertia group of a prime ideal P of k[V] under the natural action of G.
If k[V]¢ is a polynomial ring, then k[V1" is also a polynomial ring.

This proposition is almost evident.

LemMA 2.7. Let (V, G) be a couple with dim V¢ = 1 and suppose that
{(X;:0< i < m}is a k-basis of V with V¢ = kX,. Further, for non-negative
integers t(i) (1 < i < m), let R be the graded polynomial subalgebra k[X,,

X, .., X2'™] of k[V]. Then R® is a polynomial ring and we can ef-
fectively determine a regular system of homogeneous parameters of RC.

Proof. We prove this by induction on |G| and may assume that

)= <. =tm) < t(m_, + 1)
where m, is equal to m. Let us put
U= & kXrm
0syjsma

and

U =U® @ kXrm™
mi—1<jSmq
respectively and moreover define G, to be the stabilizer of G at U,. Then
there is a subgroup G, such that G = G,® G,. Because U, is a G,-faithful
kG,-module with (G, — 1)U, = kX', we deduce that the natural short
exact sequence
0—U,—U —> @ kX" modU,—>0

mi—-1<jEmg

of kG-modules is G,-split. Therefore we may suppose that X?*™ 2 < i< n;
m;_; < j < m,) are invariants of G,. On the other hand we can effectively
determine homogeneous polynomials f; (1 < i < m,) which satisfy k[U,]*
= R[XF™,f, -+, fn]. Hence it follows that R¢= S®[f, - -, f..] Where
S = RXJXFr:2<i<n, m_,<j< mg]. Then the assertion is shown
from the induction hypothesis.

When W is a kH-submodule of U for a subgroup H of GL(U), we
denote by H(W) the kernel of the canonical homomorphism H — GL(U/W).

ProposITION 2.8. Let (V, G) be a couple such that k[ V]¢ is a polynomial
ring. Then we can effectively determine a regular system of homogeneous
parameters of 2(V, G).
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Proof. Let
0=W,SW,S--- S W,=V°
be an ascending chain of subspaces with dim W,/W,_, =1. Put R, = E[V]
and define
R, = R¢,|W,R{:, 1=sigd)
inductively where G, denotes G(W;). Then obviously the natural map
2V, G)— R,

is an isomorphism, because, by (2.6), k[ V]¢ (1 < i £ d) are polynomial rings.
Hence this proposition follows from (2.7).

Lemma 2.9. Let (V, G) be a one dimensional couple and suppose that
X, T, ---,T,} is a k-basis of V with V¢ = @,c,c, kT;. Further let F(X)
denote the canonical (V, G)-invariant on X. If ®,. kT, 2 £(V,G) and
®,.. kT, 2 L(V, G), then we have F(T)e<T,, T,, ---, T,> and

F(X) = Xpu _ ﬂpu_pu—lXpu—l mod <T3, ﬂ, ceey, Td>
where p* = |G|.

Proof. Choose a k-basis {Z;:1 < j < u} of «/(V, G) such that Z, =
T, mod @,., kT; and ®,., kT, 2 {Z,, Z,, - - -, Z,}. Putting F(X)= X? — Z2'X,
we inductively define

Fi (X) = F(X)" — F(Z,.)""F(X) (<u).

Then there exist elements g, (1 < i < w) in G which satisfy (¢, — )X = Z,
and therefore we must have F(X) = F,(X). From this we deduce that
F(T) =F, (T)" — F, .(Z)"'F, (T)
=0mod T, Ty, ---, T
and
FX) = F,.(X)? — F, (Z)"'F, (X)
= X* — TP X" mod T, T}, - -+, Ty

since Z, = Ty mod @<, kT; and F,_(X) = X" mod (T, T,, - - -, T,).

Let 2 = {(VCD® W, G):1<i< m} be a decomposition of (V, G) and
put supp, L = {i,: V¢ D D,.,, W, 2 L} for a subset L of V. Let us consider
an element 6 of GL(V) with the property that V> 2 V¢ We say 4 is
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9-admissible if G contains some subgroups G; (1 < i< m) which give
another decomposition 2" = {(VED AW,), G;): 1< i< m} of (V,G). In the
case of dim W, = 1 the transform 6 is characterized by

Prorosition 2.10. If W, = kX, (1 < i < m) then the following condi-
tions are equivalent:

(1) 6 is D-admissible.

(2) There is a permutation = on {1,2, ---, m} such that |G,| = |G.u),
S (VD W, G.) 2 L(VE@W,;, G)) (j € supp, 8(W,)) and (i) € supp, (W)
for1<i<m.

Proof. Suppose that the condition (2) is satisfied and let G;, be
{reGLV): VO 2V @ D oW, and L (V°D W, 4y, G.y) 2 L—17)V}

%10
for 1 < i, < m. Furthermore set
J = {l M(Vc ® Wi’ Gz) = M(VG @ Wn(io), Gn(io))}

and
J, = {i: JZ{(VG 6‘) Wi7 Gi) = JZZ(VG @ Wx(io)y ch(io))} M

Since G, = {1}, we pick up any element ¢ from G;, — {1}. Then, for each
jed, we can choose ;€ G; with (1 — 7))V = (1 — ¢)V. Clearly there are
integers 0 < p(j) < p (jeJ’) such that

(1 -, ff;<f>)a(Xi) = (1 — 04X

for n(i)eJ’. Further let us define integers 0 <pu(j) <p (jed — J') to
satisfy

[[ 7570(X) = 6(X)) (@@@ed —J).
JjeJ
Consequently we see that
(1- M) =a-aox) asizm),
jed

which yields
G = n T;f(j) N
JeJ
Thus the couple (V, G) decomposes to (V@ HW,), G) (1 < i< m) since
G2G; and |G| = |G| A1 i < m).

https://doi.org/10.1017/50027763000019875 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019875

236 HARUHISA NAKAJIMA

Conversely assume that (V, G) has another decomposition 2’ = {(V¢ D
(W), G):1 < i< m} and let f(8(X,)) be the canonical (V¢® (W), G))-
invariant on 4(X,). If

(X)) = Z a;X;
1sjsm
for some a,; € k, we have
f0(X) = 15]-Zs:m aijfi(Xj) .

Select a subgroup H,, of GL(Ve@® W,) such that E[V®® W% =
E[Vef(X)]. Then the natural kH,;-module V¢@ W, defines a couple
which satisfies that & (V¢@ W,, H;;) = (V¢ ® (X)), G;). On the other
hand £,(6(X;)) can be expressed as

f(0(X)) = lszjzmaijhu + 8

for g, € (Vv and h,; € k[V® ® W,]% where each h,; is monic as a poly-
nomial of X,. Therefore the canonical (V¢@® W,, G,)-invariant Fy(X,) on
X, divides f(X,) in kE[V¢ @ W,] (j € supp, #(X})). From this we must have
L(VeDOW), G) 2 L(VEDW,;, G)) (jesupp,(X,) for 1 <i<m. The
remainder of (2) follows directly from the equality

EIVAF(X), - - -, Fu(Xn)] = E[VEIIAO(X)), - - -, ful@Xa)]

We say that (V, G) is homogeneous when 2(V, G) is homogeneous con-
cerning the natural graduation induced from that of k[V] (i.e. 2(V, G) is
generated by some homogeneous part as a k-algebra). A couple (V, G) is
defined to be quasi-homogeneous if there is a subspace W of V¢ with
codim,¢ W = 1 such that G(W) = {1} or (V, G(W)) is a homogeneous sub-
couple which satisfies dim (V, G) = dim (V, G(W)).

§3. Computation of invariants
Let (VE@ kX, H,) (1 < i< m) be subcouples of (V, G) with
dim (V¢ 4+ > kX)) = m + dim V¢

isism

such that V#5 X, (I % j) and G(W) = @®,.,<. H, for a subspace W of V¢
with codim,¢ W= 1. We define Z, T, and W, to satisfy V¢ = W® kZ, W
= @44 kT, and kX, = W, (1 < j < m) respectively. F, = F(X,) denotes
the canonical (V¢ @ W,, H)-invariant on X;. Foranynandc=(c, ---,¢C,)
e Z™, let ||c|| denote the sum >, ;<. c; and {e;:1 < i < n} be the standard
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basis of Z* (Z is the set of all integers). Further we suppose that there
are pseudo-reflections 0,6 G — G(W) (1 < j £ m) with [2,;] € GL, (k) where
(¢; — DX, mod W

Zmod W '
LEMMA 38.1. Let R be a subalgebra of k[V]® which contains Ek[V°].

Assume that FOF3 - .. For (0 < ¢, < p) are linearly independent over R and
let g, be an element of the R-module

@ RF¢Fp - Fir

cer

where I' = {c = (¢, , ", cn)€Z™:0< ¢, <p and |c|| >1}. Then g =0 if
g + g, € k[V]® for a polynomial g,c k[V] with (6, — 1)g,e R A1 < j< m).

2” =

Proof. For y =(ry, -+, rm)€Z™ with 0 < 7, < p let
V.. @ RFyFy ... For—> RFF}*--- Fir

0=ci<lp
denote the canonical projection. Choose an element & = (&, ---, &) el’
such that ¥ (g,) = 0 at each yeI" with ||y| > |&]. We may assume that
& > 0. Besides we define = (p, ---,7,) as £§ —e, and put 9,9 =7 + e,

(1< i< m). Then clearly
T(o;,—1)g)=¥,(1—0)g) =0,
because (¢; — 1)g,€ R and » = 0. Further, as
(o; — DVF(X)) = Fi(o; — DX,) e k[ V°]
and k[V]¢ 2 R, we have
O0=),(0; —Dg) = 2, ¥,((o; — D¥.(&)

T€ET
lirli =izl +1

= 3 0o~ Woula)
= 2, (g + DF((e; — DX)¥,,(8)F(X)™!

74<p-1

for all 1 <j< m. On the other hand the polynomials
F((o;, — DX)) — 2,F(Z) 1<ij<m

are contained in 2[W] and hence the terms of ¥ ((o; — 1)g,) with variables
Z, T,, X; whose degrees are maximal on Z are also terms of

Z ZH(’?:‘ + l)Fi(Z)wam(gl)Fi(Xi)_l ’

7;<p-1
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where X, (j > m) are defined such that {Z, T}, X;} is a k-basis of V. This
implies that

Vs8)=T(g))=0.

Now let us study a decomposition of (V, G) in the case where m = 2,
V=VeDDBicn W), G(W) = @ici<n H;, and |H,| = p' (1 < i < m) (observe
that (V, G) is quasi-homogeneous). The rest of this section is devoted to
the proof of the following proposition.

ProrositioN 3.2. If k[V]® is a polynomial ring, then (V, G) is decom-
posable.

I, (1 £s<v) stand for equivalence classes of I ={1,2, ..., m} with
respect to the relation ~ induced by i ~ j when (V@ W, H,) = (VD
W,, H,). For each I, there is a subset JJ, of I with |I,| = |J,| such that
the submatrix [A,]¢,5erxs, (1 < s < v) is non-singular (J, (1 < s <v) are
not always disjoint). We may assume that [2,]u perxs, (1 < s < v) are
monomial matrices, replacing a decomposition of (V, H) consisting of one
dimensional subcouples by the use of an admissible transform.

Moreover suppose that k[V]¢ is a polynomial ring over k. Since

2V, §) . (RLV 1P (W2 00)H00 [ Z LV [y o) 0n

can

we have E[V]¢ = E[VC][f, -- -, f.] for homogeneous polynomials f; e R[V]
with f; = F? mod (V¢)¢™  Then it follows from (3.1) that

fi=Fr+ >, Fhy 1gism

1gjsm

where h;; are homogeneous in k[V*].

We wish to claim h;; = 0 (i % j) and show this only for the case of
i =1 Suppose that T, (1 < i< t) span the subspace & (V°® W, H,) of
V¢ and set

1sus

where b,,e k. For c= (¢, ---,c;) e N* and gek[V] sy, P(g) ek is de-
fined to be the coefficient of

TflT;z Y. Téde”l—llcll

in g which is regarded as a polynomial of T; (1 < i< d) and Z (N is the
set of all non-negative integers). Especially we denote by a,c) the value
D(Z"" hyy).
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LemMA 3.3. Let ¢ be an element of N* such that |c|| < p'. Then we
have
-1 if i=1 and ¢c=0
0 otherwise .

ac) = {

Proof. Suppose that an element c e N? satisfies ||c|| < p’. Then

1 (c=0)

O.F(Zy) {0 o

since p'*' — |lc|| > p* and
FI(Z) =Z" + E Flinl_i
1<ist
for F,; e k[W]. On the other hand we have

0 =)2(o; — Df) = CF((0; — DX)") + 3, O(Flo, — DX)h.,)
= led)c(Fl(Z)p + . Z bqu1(Tu)p)

sus=d

+ 3 AOFED) + 3 buOF(TIh)

sism

= PFL)) + 25 A@AFAZ)hy) .

Therefore this system is reduced to

— Ay (c=0)

2 afo0+ 35 aee@) = {00

isis=m c
o<lle I<llell

where a(c’) ¢ k. The assertion follows from the last equations, because the
matrix [1,;] is non-singular.

LEMMA 3.4. Let L be the subset of
{0} x --- x {0} x N*-¢

S —
t times

consisting of all non-zero elements c such that
lell = @op® + 2, odp’ — P

for v,eZ with 0, <0 (0<i<t—1) and 0< o, <p. If ceL then ayc)
=01 m).

Proof. Let ¢c=(c, ---,c,) be an element of L such that a,c) =0
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A=j<m for all ¢/eL with |c|>|c|. Obviously the equalities
O(F(A — a)X)?) =0 and O(F(Z2)h,) = a(c) follow from p'*' > |c|| and
(¢, -+ -,¢,) = 0. Further we can show that’

Qc(F i(Z V) — ai(c) = ‘81(0)“1(0) + c%:l, ﬂi(c/)ai(c,) 1< m)

lie >N’

for some B,(0), 8(c’) € k, because

F(Z) = Z* + Y F,Z»"
1sjst

where F;, are homogeneous polynomials in 2[W]. According to (3.3) a,(0)
=0 (1 <i< m) and therefore we must have

(Dc((Fi(Z) + 2 b,uFi(Tu))h,i) = a0)

suszd

because ||c|| # p°. Now the system
PF((A — 0)X)) = 3. OFlo; — DX)h)
can be expressed as
T aa@=0 (=jism,
which imply that a,(c) =0 A1 < i< m).

Lemma 35. Ifd>t, I,21and Ix 1, then a(pe))=0 4+ 1< d)
for each ie I — I,

Proof. Put ¢, = {vp* — (v— Dp''le,,,€Z° (1< v<p)and let a,(l,)
=0(1<Li<m). Since O (F(T)h,;) = 0 for uxt+ 1, by (2.9) we obtain
0, 3 Fllor = DXOh) = T 20 (FZ)h)
+ g 213050310 (FATs,)Ps)
= z:_; Lidadl) + byaav — D(P* — p e )}
+ 3 Adade) - o)
where I = {i: ®,o., kT, 2 A(VED W, H)}. But it follows from (3.4) that
a{v —(p' —p'e.)=0 @=v=p).

Thus for 2< v<p and 1< j< m we must have
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0 =)0 (F((1 —0)X))") = Qc.,<1 g;ém F(o; — l)Xi)hli)
= Z_ zijai(c'v) -+ Z . zij{ai(Cv) — ai(Cv~l)} ’

i€l t€er—-1

which shows a,p'e,,,) = 0 for ie I — I. Further let i, be an element of
I —I)NI if it is non-empty. We may suppose @®,.,., kT, 2 (V¢ D W,
H,) and set {, = pe,.; + (v — 1)(p* — p*Ne... 1 < v<p). Clearly

0y 3 Filo, = DXh) = 3 1{0uF@Dh) + 3 b0 F(TIh)
for 2< v<p. On the other hand (2.9) implies
@u,(Fio(Z)hlio) = am(Ci) - aia(C;—l) (2 s=vs D)
because O, (F(T)h,) (u =t + 1,t+ 2) are linear combinations of a,(c) such
that c= (0, ---,0,¢,,4, - -+, ¢o) and |c|]| = (v — D(p* — p*~*). But we see
04 T Fil@ = DX)he) = O, (F((1 — 0)X)) = 0
@=sv=Ep;l=sj=m),
and hence this system requires
ai()(ptecn) = aza(C;) = = aio(C;) =0.
The remainder can be proved in the same way.
Now let s, be an integer such that I,,51 and put ¢; = g,07 (1<j < m)

where j, e J,, and n; e N satisfy 4,;, & 0 and n;4,,, = — ,; respectively. Ac-
cording to (3.3)

0yl Ful(0, = DX = Ao F(Z+ T 0T ) ) = Rup'e)
for 2 < u < m, and therefore if ¢ + 1 < i < d we deduce from (8.5) that
O =Wy FAL = 0)X)) = 3 0peaFullo, = DXIh)
= A{a(p'e) + b;a,(0)} + ue%j_ oy Dustdpe) .
Since [Au,]c,merxss, 1 @ monomial matrix, these equations imply
a(pe)=0 (+1Zi<d;2<j<m).

So we have

a(p'e) = — bjial(o) = by, t+1<i<Ld)
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for 1< j< m with 2;; % 0, and then it follows from the definition of z, that
(r; — DX, e Dy, BT, A1 < j £ m). By the identities Fi(T)=01<i<1?)
we can see

) = o FY + 3 (Foh,
= Flp + F1h11 + Z fj(Fi)hxi .
2giSm
Consequently we obtain

O=)r; = Dfi= 2 (c,;F(Z) + g:)hi;

25i=m

for some homogeneous polynomials g;; in k[W] where

(z, — )X, mod W

T med W

Then, because F(Z) = Z*' mod (W, this system requires h,;, = 0 (2= i < m).
For i j we conclude that h,, = 0. Hence G contains subgroups
G, (i = 1,2) which satisfy k[V]% = k[VC][f, X., X, - -+, X,,] and E[V]® =
RIVUX, fo fos -+ s fu)]. The couple (V, G) has a decomposition {(V¢® kX,
G, (V8D Dicizm kX, Gy)}. We have just completed the proof of (3.2).

§4. Proof of Theorem 1.3
We begin with

ProrositioN 4.1. Let (V,G) be a quasi-homogeneous couple with
dim (V, @) = 2. Suppose that (V, G(W)) decomposes to one dimensional
subcouples for any proper subspace W of V¢ with G(W) = {1}. If k[V]¢is
a polynomial ring, then (V, G) is decomposable.

Proof. Since (V, G) is quasi-homogeneous, there is a subspace W of
V¢ with codim,e W =1 such that G(W) = {1} or (V, G(W)) is a homogene-
ous subcouple which satisfies dim (V, G(W)) = dim (V, G) = m. Clearly
(V, G) is decomposable if G(W) is trivial. Hence we suppose that (V, G(W))
decomposes to one dimensional subcouples (V@ W,, H)) (1 < i< m) with
|H;| = p’. Denote by X, a generator of W, and let r be the rank of the
matrix [(c; — 1)X; mod W], where o; runs through all pseudo-reflections
in G—G(W). In the case of r = m we have already shown that (V, G)
is decomposable. We may assume that r < m and that the submatrix
[(e; — )X, mod W], ;<, is non-singular.

Let F(X,) be the canonical (V¢® W, H)-invariant on X,. Further
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choose Z; from V with (1 —¢,)V = kZ; and put b,, = Z; (o, — 1)X,. Since
2(V, G(W)) is homogeneous, by (2.8) we see 2(V,G) = k[XV'*", ..., X&',
&ri1, -+, &n] where X, = X, mod V¢ and g, (r + 1 < j < m) are expressed as

g; = X}Dl + 2] aij)—(zpl

1=15r
for some a,; ¢ k. From this the polynomials
F(X)+ % a,FX) @+1=j<m)
belong to a regular system of homogeneous parameters of 2[V]¢. Thus,
forr+1<j<mand 1< u<r we have
— b, F(Z,) = (1 — 0,)F{(X))
SISZSTaij(O'u — DF(X))
= 2, biuaijFi(Zu) »

which implies that if a,; % 0

F(Z)=F(zZ) (=sisnr+l<j<m
where Z denotes a variable. Obviously this requires «/(VZE@ W, H) =
L(VEDW,, H;). Define 6 ¢ GL(V) to satisfy that

0(X;) = X, +lg_.§'raini r+1=sj=m

and V@ 2 {X;:1 <1< rfU Ve According to (2.10) 6 is a (V@ W,, H,):
1 < i £ m}-admissible transform and (V, H) decomposes to subcouples
(Ve® (W), H)) (1 <i< m) for some subgroups H; of H. Then (V,QG)
decomposes to (VD D, zj<n O(W)), D, .12;2.H)) and (V¢ D By, 6(W)), L)
where L is the stabilizer of G at @,,:<;<n O(W)).

(4.2) Let A, = K[f, [ -+, [ix] G =1,2) be graded polynomial alge-
bras with dim A, = n over a field K where f;; are homogeneous in 4,.
Suppose that A, is contained in A, as a graded subalgebra. Then A, =
A, if and only if

11 degfy, = [] degfy .
1=j=n 1=sj=n

q(R) denotes the quotient field of an integral domain R.

LEmMA 4.3. For any couple (V, G) we have the following inequality;
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[a(R[VIVED: q(2(V, G)] = |G|
and if the equality holds then k[V]® is a polynomial ring.
Proof. We prove this by induction on |G|. Let W be a subspace of
V¢ such that codim,s W=1 and W 2 &/(V,G). Then H= G(W) is a
proper subgroup of G. By the induction hypothesis we have
[QR[VIKW)): qR[VI*[KWH™)] = |H|
and if the equality holds k[V]¥ is a polynomial ring. Putting
S = (ELE ®, VI Ik ®, Wsaganr )"

as in the proof of (2.3), we can show that Sy, = Sy, for any maximal
ideals M, (i = 1,2) of S which contain the minimal prime ideal (((Z®,
V& i) (R @ Wiazgwr™ ", On the other hand it follows easily from
(2.3) that S is normal and hence S is a polynomial ring over k. Since

k® (RIVY?[{WHM)e% = 8

as graded algebras defined over &, (R[V]#/(W)")¥¥ is also a polynomial
ring. Clearly 2(V, G) can be embedded in (R[V]*[{W)H)FH[({VEYE[{W )H)eIH
and so we have

[q(R[VIV®D): g(2(V, G)] =z |G .

Now suppose that the equality of (4.3) holds and then we deduce from

this
[q(RIVIKW)): qRIVIZ[KW)H™)] = |H]| .
Therefore k[V]# is a polynomial ring. Moreover by the equality of (4.3)
and (2.3) we see that the canonical map
AV, G) —> (RIVIF[KWHR)SE LV EYE KW ) H)s

is an isomorphism and that there is an (n + 1)-dimensional graded poly-

nomial subalgebra E[f, f;, - -+, fa.a] Of R[V]¢[KW)¢ with
[ degf,=|G].

1SiSn+1

Here n denotes the dimension of (V, G) and f; 1 < i< n + 1) are homogene-
ous elements in k[V]/{W>. Then, by (4.2), we must have (R[V]?/{W)Z])e*
= E[V]°[(W)¢, because (k[V]Z[{W)#)¥" is a polynomial ring which con-
tains E[V]¢/[{W)>¢ as a graded subalgebra.
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Further if dim W > 2 let W’ be a subspace of W with codim, W’ =1
and put H' = G(W')(=H(W’)). Since k[V]¥ is a polynomial ring, by (2.6)
k[V]¥ is also a polynomial ring. Therefore we get the commutative
diagram

RLVIE KW > k[VI?[KWHH 0

H !

(RLVIF KW EYHE — (R VT [KWH ) (W KW ) — 0

of kG/H-modules with exact rows. From (E[V]Z[{W)H)e/# = R[V]°[{W)¢
the sequence

(RLVIZ KW —— (R[VIF[{W )" —> 0

is exact. Then (R[V]¥[(W’'D*)é/# s a polynomial ring which contains
E[V1¢[{W’>E, because ({WH# [(W'HyH)é/H#" ig principal. Hence we deduce
similarly from the equality of (4.3) and (2.3) that E[V]?/(W'H¢ =
(RLVI™ [KW7 R )erH,

If necessary we can continue this procedure. Consequently £[V]¢/<W )¢
is a polynomial ring for a one dimensional subspace W of V¢ The as-
sertion follows immediately from this.

By the use of (4.1) we establish

THEOREM 4.4. Let (V, G) be an indecomposable couple. Then Ek[V]¢
is a polynomial ring if and only if dim(V, G) = 1.

Proof. It suffices to prove the “only if” part. Let € denote the set
of all indecomposable couples (V,, G,) with dim (V,, G,) = 2 such that k[ V;]%
are polynomial rings. Assume that % is non-empty and choose an element
(V, G) from ¥ which is minimal with respect to the lexicographical preorder
of € defined by the value (dim (V,, G,), dim V) for (V,, G)) € ¥. From (4.1)
the couple (V, G) is not quasi-homogeneous. Let W be a subspace of V¢
with codim,¢s W =1 and put H = G(W) and u = dim V#/V¢ respectively.
Then the kH-module V defines a couple (V, H) and by (2.6) k[V]¥ is a
polynomial ring. Obviously V is decomposable as a kH-module, and hence
(V, H) decomposes to one dimensional subcouples (VF® W, H,) (v + 1
< i < m) where m = dim (V, G), since (V, G) is minimal in ¢. If (V, H)
is not homogeneous, we may suppose that

|Hu+l| é tee é [Hvl < |Hv+ll == |Hm|
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for some v < m. Otherwise set v = u (it should be noted that v >0 in
this case).

Let U=V"® D,, <50 W, (the empty direct sum is regarded as {0})
and denote by G’ the stabilizer of G at U. We can choose homogeneous
polynomials f; € k[V] (1 < i < m) such that f,e R[U] 1 £ i < v) and R[V]¢
= R[Vefs, - - -, fal, calculating a regular system of parameters of 2(V, G)
through E[V]?/{W)¥ as in the proof of (2.7). Because k[V]¢ is contained
in E[U][fo.1r - - -5 ], there is a subgroup G of G with E[V]¢ = E[Ul[fous, - - -»
f.]. Clearly G = & and the E(’-module V is decomposable. Therefore,
from the minimality of (V, G), the couple (V, G’) decomposes to one di-
mensional subcouples (V¥ @W,,G) (v+1<i< m).

We have

[g(R[UIVeD: (U, GIG))] = |G/

since f;ek[U}¥¥ (1<i<v) and G/G acts faithfully on U. By (4.3)
E[U]%¢ is a polynomial ring and so (U, G/G’) decomposes to one dimen-
sional subcouples (U¥¢ @ W/, G;) 1 < i < v). It should be noted that V¢
= U and U%% = V¢©,

Let X, (1 <i < m) denote a generator of W/ and put G = G/G’ and
P =I[G: ®,,1<:<, H;] respectively. Because R[U1° = E[V?][f, - - -, f.] by (4.2),
we deduce from the computation of 2(V, G) (cf. (2.7)) that there exist
pseudo-reflections ¢, (1 < i< r) in G — H such that the column vectors
[(6; — DX, mod W],.,c, (1 <j < 1) are linearly independent. Then G(W)
NP,<,<, {6, mod G’> = {1} and hence we see that G(W) = ®,,,<.<,H;. Putting

GNn @ H, @Q=5igv)
H - {

u+1S 750

G.NH w+1Zis<m,
we obtain another decomposition
(VEDOW,, H)):1 <i< m with H] = {1}}

of (V,H). Since {i:H] ={1}} S {1,2, ---,v}, it may be assumed that H}
—ai<u.

Let Fi(X) =X, 1<i<u and for u +1<i<m (resp. 1< i< m)
let F(X,) (resp. g(X,)) be the canonical (VZ @ W, H)-invariant (resp.
(Ve @ W, G)-invariant) on X. Assume that G;, = H;, for some u + 1<
iy, < v. Then (V,G) decomposes to (V¢ W;, H;) and (V¢ D®,.,, W,, L)
where L is the stabilizer of G at W}, and hence we must have |G}/H}}
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=p for all u + 1< i< v. Because E[V]® is contained in

K[V D @] WIS fossr 5 Ful
1€isw
there are pseudo-reflections z; (1 < j < v) in G — H which satisfy the fol-
lowing condition; for 1< i< v V& D W/ if and only if i % j. We may
suppose that Ve* 2 W) 1<i<u;v+1<j<m)and L(VZO W), H) 2
S(VIOW, H)u+1=<iZv;v+1<j<m), applying a {(VZ¥ @ W], H)):
u + 1 < i < m}-admissible transform on V.
Clearly we may assume that degf, =degg, v+ 1<i<m) and

degf,., = degf,.. = - = degfy <degf,, = -+ =degf,

for some y with v + 1< y<m. Further f,—g, W+ 1=<i<y) can be
regarded as a polynomial A, in k[U], replacing f, with linear combinations
of them. We deduce from (3.1) that

h, = 2. Fihy wW+15iy)

15750
for some homogeneous polynomials h,; in k[V¢], since (r; — 1)g,c k[V*]
v+1=5i<y;1<j=<v) and

@ m - .
kUT==" = @D EkIV°lg, &, -, &IFI'F;® -+ - Fyr.

Assume that 2, ; % 0 and let Z; be an element of V with (1 —7,)V
= kZ,. Then it follows from z,(f;) = f;, that

11— Tjo)Xio

20

k*h,

F(Z,)2 8i(Z;) -

Sowehave u+1<j,<vand K(VFOW,,H;) 2 (VDO W, H;). More-
over we find a pseudo-reflection ¢ in G; — H; because F; = g; requires
L(VEDW,, H)) 2 (VD Wj, H;), and choose Z, ¢ V such that (1 — o)V
=kZ,and Z, = Z, mod W. Let {T;:1<i< t} bea k-basis of A/ (V* D W;, H})
and select T, e V(¢ + 1< j < d) to satisfy W = @ 5,4 BT and @ic,c4-4 BT
2 A(VEOW;, H;). Express Z; as
Z,, =2 —|—1<‘Sd a,T,

for a;ek 1<i<d) and set R=R[T, ---,T,.,Z]. If a, =0, by (2.9
we have (1 — ¢;,)F;, ¢ R and g,(Z;) e R. This implies that a, % 0. Since
8.,Z)=8,Z)=0(1<Lj< 1), we see

oJo
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gto(Zjo) = 2, ajgia(T]) .
t+1s7d

Then g,(Z,) is a monic polynomial of T, in R[T,], but from (2.9) the
leading coefficient of F,(Z,;) as a polynomial of T, is a non-unit in R,
which is a contradiction. Therefore we must have f, =g, v+ 1< i < y).

In the case of y = m it follows that k[V]¢ = k[V*][g,, - - -, &.] and this
requires that (V, G) is decomposable. Hence we obtain y < m. Because
G;=H (v+ 1< i < y), the couple (V, G) decomposes to (VD D,,,<.<, W,
®Pyi1sisy HY) and (VED Dycic, W/ D D, 1c5cm W/, K) where K denotes the
stabilizer of G at the set @,.,.,<, W;. This conflicts with the selection
of (V, G). Thus the proof is completed.

Now (1.3) can be reduced to (4.4) by (2.1), (2.2) and (2.4).
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