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UNIFORM FINITE GENERATION OF 
SU(2) AND SL(2,R) 

FRANKLIN LOWENTHAL 

1. I n t r o d u c t i o n . A connected Lie group H is generated by a pair of 
one-parameter subgroups if every element of H can be wri t ten as a finite product 
of elements chosen al ternately from the two one-parameter subgroups, i.e., if 
and only if the subalgebra generated by the corresponding pair of infinitesimal 
transformations is equal to the whole Lie algebra h of H (observe t h a t the 
subgroup of all finite products is arcwise connected and hence, by Yamabe ' s 
theorem [5], is a sub-Lie group). If, moreover, there exists a positive integer n 
such t h a t every element of H possesses such a representation of length a t most n, 
then H is said to be uniformly finitely generated by the pair of one-parameter 
subgroups. In this case, define the order of generation of H as the least such n ; 
otherwise define it as infinity. Since the order of generation of H will, in general, 
depend upon the pair of one-parameter subgroups, H may have many different 
orders of generation. However, it is a simple consequence of Sard 's theorem 
[4, pp . 45-55] t ha t the order of generation of H must always be ^ dimension 
of H. 

T h e order of generation of SU(2)/{7, — / } , i.e., of the isometry group of the 
spherical geometry may be any (finite) integer ^ 3 ; the order of generation is 
determined by the cross-ratio of the fixed points of the pair of elliptic one-
parameter subgroups [1]. In this paper, it is shown tha t precisely the same orders 
of generation are obtained for SU(2) and t h a t the order of generation is 
determined by the Killing form of the pair of infinitesimal transformations. 
T h e order of generation of SL(2, R ) / {7 , — 1}, i.e., of the isometry group of the 
hyperbolic geometry, is infinite if both one-parameter subgroups are elliptic, 3 if 
exactly one is elliptic and 4 in all other cases, except t h a t it is 6 if both are 
hyperbolic with interlacing fixed points [2]. In this paper, it is shown t h a t this 
result is also t rue for SL(2, R) except t ha t if both one-parameter subgroups are 
hyperbolic with interlacing eigenvectors, then the order of generation is 8 
instead of 6. 

2. P r e l i m i n a r i e s . SU(2) consists of all 2 X 2 matrices 

[ E _ h «, P complex, —p a] 

with H 2 + |/3|2 = 1. T h e Lie algebra of SU(2) consists of all 2 X 2 skew-
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Hermitian matrices with trace 0, i.e., the infinitesimal transformations have the 
form 

- U - b real, y complex. 

The one-parameter subgroups of SU(2) are the solutions of the differential 
system 

a) 
dA 
dt 

y 
-ib 

and hence have the form 

A(t) = expit 
ib 

—y 
y 

-ib 

A(fl) = I 

— CO < / < + 0 0 . 

SL(2, R) consists of all 2 X 2 matrices 

a, 6, c, d real, with ad — be = 1. a b 
c d 

The Lie algebra of SL(2, R) consists of all 2 X 2 (real) matrices with trace 0, 
i.e., the infinitesimal transformations have the form 

M 

w 
u, v, w real. 

The one-parameter subgroups of SL(2, R) are the solutions of the differential 
system 

(2) 
dA u v 

w —u 
A(0) = / 

— oo < t < +oo. 

and hence have the form 

A(t) = exp</ 

Under the transformation on the Lie algebra of SU(2) or SL(2, R) induced 
by any inner automorphism of the respective group, the determinant of the 
infinitesimal transformation is an absolute invariant (this is true even if the 
"inner" automorphism is induced by an element of GL(2, C)). An infinitesimal 
transformation (only non-zero infinitesimal transformations will be considered 
henceforth) and the one-parameter subgroup that it generates are classified as 
elliptic, parabolic or hyperbolic depending upon whether its determinant is 
positive, zero, or negative respectively. Thus all one-parameter subgroups of 
SU(2) are elliptic while the one-parameter subgroup of SL(2, R) generated by an 
infinitesimal transformation 

u 
w i 

u] is elliptic if u2 + vw < 0, parabolic if u2 + vw = 0 and hyperbolic if u2 + vw > 0. 
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Since a skew-Hermitian matrix can always be unitarily diagonalized, every 
one-parameter subgroup of SU (2) can be expressed in the form 

(3) A(t) = U 0 
0 

U-\ U € SU(2). 

Similarly it follows that the one-parameter subgroups of SL(2, R) can be 
expressed in the form 

(4a) 

(4b) 

(4c) 

A(t) = C 

A(t) = C 

A(t) = C 

cos t sin t 
— sin t cos t 

C~\ C e S L ( 2 , R ) , 

1 

0 
e~ 

C~\ C Ç S L ( 2 , R ) , 

C~\ C e SL(2,R), 

depending upon whether it is elliptic, parabolic, or hyperbolic, respectively. 
Note that a one-parameter subgroup is compact if and only if it is elliptic. 
Further, observe that in the elliptic case A(t + ir) = —A(t)y while in both the 
parabolic and hyperbolic cases trace A(t) ^ 2 and hence A(t) ^ — A(s) for all t 
and s. 

Since SU(2) has no two-dimensional connected Lie subgroups, any pair of 
distinct one-parameter subgroups of SU(2) generate SU(2). A pair of 
distinct infinitesimal transformations e and rj of SU(2) can be simultaneously 
transformed into exactly one of the normal forms 

(5) 
i 0 
0 -i 

di 
i 

i 

— di 
, d ^ 0 

by means of a suitably chosen inner automorphism of SU(2). 
The only two dimensional connected Lie subgroups of SL(2, R) are those that 

leave a one-dimensional subspace of R2 invariant. Hence a pair of distinct one-
parameter subgroups of SL(2, R) generate SL(2, R) if and only if their infini­
tesimal transformations do not have a common eigenvector. A pair of distinct 
infinitesimal transformations e and 17 of SL(2, R) with no common eigenvector 
can be simultaneously transformed into one and only one of the normal forms [3] 

(6) (a) e = 

(b) 6 = 

0 1 
-1 0 v = 

0 1 
-c 0 

c > 1, both elliptic 

_ j Q ; ^ = 0 O r e l l i p t i c ' v P a r a b o l i c 

(c) e = I 1 Q ; 17 = I 0 , c è 1, « elliptic, i\ hyperboli 

^ * = 0 0 ' v = 1 0 ' b o t h P a r a b o l i c 

1C 
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(e) e = 

(0 e = 

C = 

0 1 
i o 
1 
0 -

0 
0 0 il- e hyperbolic, i) parabolic 

= C 
0 - 1 

C~l where 

r/(r — \y 
l / ( r - 1)* 

1/0" - D* 
l / ( r - 1)* 

r> 1, 

both hyperbolic with eigenvectors separating 

(g) € = 

C = 

0 
- 1 

r/ir + 1)* 
- l / ( r + 1)* 

= C 1 0 
0 - 1 

l/(f + 1 ) 1 

l / ( r + l ) è 

C - 1 where 

r ^ l , 

both hyperbolic with eigenvectors interlacing 

by means of a suitably chosen inner automorphism of SL(2, R) ("inner" 
automorphisms induced by matrices with determinant equal to —1 may be 
needed). 

If U 6 SU(2), let w = 0(z) be the unique transformation of the isometry 
group of the spherical geometry whose matrix is U; this is the natural map from 
SU(2) to SU(2)/{7, — / } . Under this map the one-parameter subgroup 
A(t) of SU (2) given by (3) corresponds to the one-parameter subgroup 
w = Tt(z) = Û(e2itÛ~l(z)) of the isometry group of the spherical geometry. If 

U 
a p 

- j 8 â 

then the fixed points of Tt (z) are just 0(0) = /3/âand O(co) = a/ — ̂ .Similarly, 
to each one-parameter subgroup of SL(2, R) there corresponds a one-parameter 
subgroup of the isometry group of the hyperbolic geometry (choose the Poincare' 
half-plane as the model for the hyperbolic geometry). Note that a pair of one-
parameter subgroups A (t) and B (s) generate SU (2) (SL(2, R)) if and only if the 
corresponding pair Tt(z) and Ss(z) generate 

(SU(2)/{7, - /} ) (SL(2 ,R) /{J f - / } ) ; 

further, the order of generation of SU(2) (SL(2, R)) by A(t) and B(s) is 
always ^ the order of generation of (SU(2)/{7, - / } ) ((SL(2,R)/{7, - / } ) ) by 
Tt(z) and Ss(z). A sufficient condition for these orders of generation to be equal 
is that at least one of the one-parameter subgroups be elliptic ; this follows from 
the fact that if A (t) is elliptic, then A(t + IT) = —A(t) and hence a matrix W is 
representable as a product of length k (k ^ 2) if and only if — W is representable 
as a product of length k. 

3. The orders of generation of SU(2). Since SU(2) is a compact 
semi-simple Lie group, the Killing form (e, -q) is negative definite. If A(t) and 
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B(s) are the respective one-parameter subgroups generated by e and rj, define 

(7) G(^(0,5W) = 7 - ^ ^ ; 
<6, €>^<77, 7 7 > 2 

Note that G(A(t), B(s)) depends only on the pair of one-parameter subgroups 
A (t) and B(s) and not on the particular representatives e and y\ that are chosen. 
It is well known that G(A(t), B(s)) is invariant under all inner automorphisms 
of the group, i.e., 

(8) G{U-lA(t) U, U~lB(s) U) = G(A(t), B(s)), U £ SU(2). 

To explicitly compute G(A(t), B(s)), where A(t) and B(s) are distinct one-
parameter subgroups, it is, in view of (8), permissible to assume that the 
corresponding pair of infinitesimal transformations e and rj is in normal form (5) ; 
a routine calculation yields 

(9) G(A(t),B(s)) =d/(d? + l)K 

Observe that G(A(t), B(s)) assumes all real values x satisfying 0 ^ x < 1. 

THEOREM 1. SU(2) is generated by any pair of distinct one-parameter 
subgroups A (i) and B{s). If G {A (t), B{s)) = 0 , then the order of generation is 3; if 

(10) cos(7r/&) < G(A(t), B(s)) ^ COS(TT/(& + 1)), 

then the order of generation is k + 2 (k ^ 2). Thus the order of generation may be 
any integer ^ 3 . 

Proof. Since both (and hence at least one!) one-parameter subgroups are 
elliptic, the order of generation of SU(2) by A(t) and B(s) equals the order of 
generation of the isometry group of the spherical geometry by Tt(z) and S8(z). 
Assume that the corresponding pair of infinitesimal transformations e and t\ is in 
normal form (5) ; then the fixed points of Tt(z) are 0 and co and the fixed points 
ofSs(z) are l/((d2 + 1)* - d) and - l / ( ( d 2 + l)h + d). Since the fixed points 
interlace, their cross-ratio, determined to within reciprocity, must be negative ; 
the unique value of the cross-ratio which is ^ — 1 is given by 

(d2 + 1)* - d 
( U ) (d*+iy + d' 
Choose \p as the unique angle, 0 < ^ ^ ir/2, such that 

™ -'»/2) = ^ f ^ ; 
\p is, in fact, just the angle between the axes of the one-parameter rotation 
subgroups of SO(3) corresponding to Tt(z) and Ss(z) [1]. From (9) and (12) it 
follows that 

(13) G(A(t),B(s)) = cos^. 
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But the order of generation of the isometry group of the spherical geometry, i.e., 
ofSO(3),byr,(s)and5*,(2)is3ifiA = 7r/2anditis^ + 2if7r/(^+ 1) g. ^ < ir/k 
k^2 [1]. 

4. The orders of generation of SL(2, R). The matrices A(t) (A ^ ±1) 
of an elliptic one-parameter subgroup have no (real) eigenvalues. The matrices 
A(t) {A 9^ I) of a parabolic one-parameter subgroup have eigenvalue 1 with 
geometric multiplicity one ; if 

A{t) = 
1 t 
0 1 

then the set of eigenvectors of A (t) {A ^ / ) consists of all vectors (x, 0), x ^ 0. 
The line x2 = 0 is both the source and the sink of this parabolic one-parameter 
subgroup: ifO < arg v < ir(iiv = (vi, v2) ^ (0, 0), define arg v = arg Vi + iv2)f 

then for all t, 0 < arg.4(/)z; < 7randlim^+00arg^4(Y)^ = 0, lim^_00arg^4(/)y = T; 
similarly, if T < arg?; < 2T, then for all t, T < arg A(t)v < 2ir and 
l im^+ œ arg A(t)v = ir, lim^_œ arg A(t)v = 2w. The matrices A{t) (A ^ / ) of a 
hyperbolic one-parameter subgroup have distinct eigenvalues el and e~l; if 

A(t) = 
el 0 
0 er% 

then the set of eigenvectors of A(t) (A ^ / ) consists of all vectors (x, 0) 
(belonging to eigenvalue el) and (0, x) (belonging to eigenvalue e~l), x ^ 0. 
The line Xi = 0 is the source of this hyperbolic one-parameter subgroup: if 
0 < arg v < 7T, then l im^ .^ arg A(t)v = w/2 while if w < arg v < 27r, then 
l i m ^ ^ arg A{t)v = 3T/2. Similarly, the line X2 = 0 is its sink. Note also 
that if for any integer n, nw/2 ^ arg v ^ (ir + nir)/2, then for all /, 
nir/2 ^ Q,rgA(t)v ^ (TT + mr)/2. 

Suppose that C G SL(2, R) and that {z>, w] is a linearly independent set in R2 ; 
let U\ = Cv, u2 = Cw. Then for each X ̂  0, there exists a matrix Z> £ SL(2, R) 
such thatDv = XuiandDw = (1 /\)u2, and, conversely, if D Ç SL(2, R) is such 
that Z}y = Xwi, Dw = TU2J then r = 1/X. It follows that if A (/) is the hyperbolic 
one-parameter subgroup with u± and u2 as eigenvectors, then every D £ SL(2, R) 
such that Dv = X^i, Dw = TU2, X > 0, r > 0 can be uniquely expressed in the 
form 

(14) D = A(t)C. 

THEOREM 2. If SL(2, R) is generated by a pair of one-parameter subgroups, then 
the order of generation is 3, 4, 8 or co . It is co i/* &0//z- are elliptic, 3 if exactly one is 
elliptic, and 4 iw a// other cases except that it is 8 if both are hyperbolic with inter­
lacing eigenvectors. 

Proof. Refer to the list of normal forms in (6). In cases (a), (b) and (c), since 
at least one infinitesimal transformation is elliptic, the order of generation of 
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SL(2, R) by A(t) and B(s) equals the order of generation of the isometry group 
of the hyperbolic geometry by Tt(z) and Ss(z). Bu t this order is oo if both are 
elliptic while it is 3 if exactly one is elliptic [2]. 

"1 0" 
(d) 

Since 

(15) 

a matr ix 

A{t) = B(s) = 

A{t)B(s)A{v) = 
1 + st 

s 
V + t + StV 

1 + sv I 

in SL(2, R) can be represented by a product (15) if and only if c ?± 0: Choose 
s = c, t = (a — l)/c, v — (d — l)/c. Similarly, it can be represented by a 
product B(y)A{t)B(s) if and only if fc ^ 0. Since 

(16) 

where 

0 
1/a 

B(-a) 
a 0 ' 1 0" a 0 ' 

_1 l/a_ _-a 1 .0 l/a_ 

'a 0 
.1 V a 

can 

(e) 

be generated by a product (15), the order of generation of SL(2, R) is 4. 

A(t) = 
cosh t sinh / 
sinh t cosh t 

B(s) = 

Note t ha t the set of eigenvectors of A(t) {A 9^ I) consists of all vectors ( — x,x) 
and (x, x), x ^ 0. 

Let u\ = ( — 1, 1), U2 = (1 ,1) and let (v, w) be any ordered pair of linearly 
independent vectors t ha t is oriented in the same way as (ui, u2), i.e., if 6 = arg v, 
<î> = arg w, then 6 — IT < $ < 6 ; only pairs (v, w) so oriented will be considered. 
Define order (v, w) (with respect to (ui, u2)) as the least positive integer k for 
which there exists both a matrix C G SL(2, R) expressible as a product of A(t) 
and B(s) of length k and also X0 > 0, r0 > 0 with Cv = X0^i, Cw = TOU2. Since 
both u\ and u2 are eigenvectors of A(t), the last (reading from right to left) 
element of any product of A (/)and-£>(s) of length k = order (v, w) t h a t represents 
C mus t always be a B(s). If order(v, w) = k, then it follows from (14) t h a t 
every matr ix D G SL(2, R) such tha t Dv = \uu Dw = TU2, X > 0, r > 0 can 
be expressed as a product of A(t) and B(s) of length a t most k + 1. I t will be 
shown below tha t order(y, w) ^ 3 for all (v, «/) ; it follows t ha t the order of 
generation of SL(2, R) is ^ 4 . In fact, it is equal to 4, since, in this case, the order 
of generation of SL(2, R ) / { / , - / } is 4 [2]. 

Let 6 = arg v, $ = arg w; a simple calculation shows t h a t order(z;, w) = 1 if 
and only if 0 < 6 < TT and cot $ = cot d + 2. Hence order(fl, w) ^ 2 if and only 
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if there exists an A(t) such that 0 < arg A(t)v < w and 

(17) cot(arg A(t)w) = cot(arg A(t)v) + 2. 

In part icular, if — TT/4 < $ < 6 < TT/4 or if — TT/4 < <£> < TT/4 and TT/4 < 6 < 
37r/4, then order(y, w) ^ 2 : in both cases, let to be the unique t such t h a t 
arg A(t)w = 0 ; then the function 

(18) f(f) = cot(arg A{t)w) - cot(arg 4 ( * > ) 

is continuous on (/o, + o o ) and satisfies l im^+ 0 O /(^) = cot(7r/4) — cot(7r/4) = 0, 
l i m ^ t 0 + / ( / ) = +co. Hence there is a t > t0 for which f(t) = 2 ; note t h a t 
for this t, 0 < arg^4(/)i> < ST/4: < TT. A similar a rgument shows t h a t if 
3TT/4 < $ < 0 < 5?r/4 or if TT/4 < <ï> < 37r/4and37r/4 < 0 < 5TT/4, then again 

order(y, w) ^ 2. 
T o show t h a t order(^, w) ^ 3 for all (A, W) , consider the four cases: 

(a') 0 = 0, (b') 0 < 6 < TT, (c') (9 = TT, and (d') TT < 0 < 2TT. In case (a ' ) , - T T < 
$ < 0 and hence i t is possible to find a B(s) such t h a t — 7r/4 < arg B(s)w < 
a r g i l s ) ? ; = 0 < 7r/4. In case (b ') , it is possible to find a 5(5) such t h a t 
- T T / 4 < a r g £ ( s ) w < TT/4 and TT/4 < arg J3(s> < 3TT/4. In case (c'), 0 < $ < TT 
and hence it is possible to find a B (s) such t h a t 37r/4 < &rgB(s)w < arg B(s)v = 
TT < 57r/4. Finally, in case (d ') , if n ^ * < 0, then it is possible to find a B(s) 
such t h a t 3TT/4 < TT ^ arg B(s)w < arg 5(5)1; < 5TT/4 while if 0 — T < $ < TT, 

then it is possible to find a B(s) such t h a t 7r/4 < arg B (s) w < 3TT/4 and 
37r/4 < 7T < arg.E>(s)y < 57r/4. Hence in all cases it is possible to find a B(s) 
such t h a t order(B(s)v, B(s)w) ^ 2, i.e., in all cases order(v, w) ^ 3. 

In both cases (f) and (g), let u 3 = (0, 1),^2 = (1, 0) iu\ and u2 are eigenvectors 
of -4(0) a n d then define order(v, w) exactly as in case (e). Observe t h a t if 
6 = arg v, $ = arg w, then order (v, w) is uniquely determined by 6 and $ since 
if X > 0, r > 0 

(19) order(X^, rw) = order(y, w) 

(f) A® = [J' J.,] , 
1 / 0 - 1 ) * - l / ( r - l ) * l 

- l / ( r - 1)* r / ( r - 1)*J 

where r > 1: choose a, 0 < a < x / 4 such t h a t cot a = r. Note t h a t the set of 
eigenvectors of B(s) (B ^ I ) consists of all vectors (rx, x) and (x, x),x 9^ 0. T h e 
source of B(s) is the line Xi = x2 and its sink is the line Xi = rxi = (cota)x2. 

If order(z), w) = 1, then 6 and $ mus t satisfy 7r/4 < 6 < T + a, — 3 x / 4 < 
$ < a ; moreover, for each 0, x / 4 < 0 < IT + a, there is a unique $ = g(0), 
— 3ir/4 < $ < a such t h a t if arg v = 0 and arg w = g(d), then order(v, w) = 1. 
In fact, choose s(6) as the unique solution of arg B(s)v = ir/2; then 

(20) $ = g(6) = arg 5- 1 (^(e))M 2 = a r g . B ( - s ( 0 ) ) M 2 . 

B(s) 
\r/(r 
[l/(r 

1)* l / ( r - 1)*" 
1)* l / ( r - l ) è 

es 0 
0 e-
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The continuous, decreasing function s (B) satisfies 

lim s(6) = +00, lim s(6) = —oo ; 
0-*(TT/4)+ 0->(7r+a)-

hence the continuous function g(6) is increasing on (7r/4, -K + a) and satisfies 

lim g(6) = - 3 TT/4 lim g{6) = a. 

Denote the unique solution of g(6) = — TT/2 by 7, and let 8 = g(7r) ; since 
g(w/2) = 0, TT/4 < 7 < TT/2 and 0 < Ô < a. 

From (20) and a straightforward calculation it follows that 

(21) cot g(6) = r + 1 - (r/cot (9) ; 

define h(6) = cot 0/cot g(d). A routine calculation yields 

dh = - (esc2 6>) (r + 1 - (2r/cot 0)) 
dd ~ cot2g(0) 

and hence dh/dd > 0 on TT/4 < 0 < TT/2, 0 ^ 7 while d/*/d0 < 0 on TT/2 < 0 < 
-IT + a, 6 9e T. Thus the behavior of h(6) is as follows: on (71-/4, 7), & is strictly 
increasing, 

lim hid) = 1, lim h(6) = +00; 
0 ^ ( T T / 4 ) + 6^y-

on (7, 7r/2], A is strictly increasing, 

lim h{6) = - 0 0 , lim Â(0) = h{ir/2) = 0; 
0^7 + 0_>Or/2)-

on [71-/2, 7r), & is strictly decreasing, 

lim /*(0) = A (TT/2) = 0, 
0_>Or/2) + 

on (7T, 7T + a), A is strictly decreasing, 

(22) 

lim hid) = —00 ; 
0 - > 7 T -

lim A(0) = +00, lim h(0) = 1. 
0->7T + 0->(7T+a)-

The graph of fe(0) is sketched in Figure 1 below. 

Figure 1. Graph of h(d). 
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T h e function h(d) will play a crucial role in the determinat ion of order(V, w) ; this 
results from the fact t h a t all the matrices A (t) preserve the rat io cot 0/cot <£, i.e., 

(oo\ cot(axg A (t)v) _ e l cot arg v _ cot 0 
cot(arg^4(/)w) e2t cot arg w cot $ ' 

I t follows immediately from the above characterization of pairs of vectors 
(v, w) of order 1 t h a t order(fl, w) ^ 2 if and only if there exists an A (t) such t h a t 
7r/4 < arg A(t)v < T + a and arg A(t)w = g(arg A (t)v). Consider the following 
cases: (a') 0 < 0 < TT/2, (b') 0 = TT/2, (C') TT/2 < 0 < TT, (d') 0 = TT, (e') w < 0 < 3TT/2, 

and (f) 3TT/2 ^ 0 S 2TT. In case (a ') , order (v, w) ^ 2 if and only if 0 - w < $ < 0. 
First , note t ha t for all A(t), 0 < arg A(t)v < TT/2. If 0 g $ < 0, then 0 ^ 
cot 6/cot $ < 1. I t follows from (23) and the fact t ha t on (TT/4, ir/2)h(d) never 
assumes a value y Ç [0, 1) t h a t for all A(t), order (A (t)v, A(t)w) > 1, i.e., 
order («/, w) > 2. If (9 - TT < $ < 0, then either cot 6/cot $ > 1 (0 - TT < 
$ < - T T / 2 ) or cot 0/cot $ < 0 ( - T T / 2 < $ < 0) or $ = - T T / 2 ; if $ ^ TT/2, 

there exists a unique 0o, TT/4 < 0o < TT/2, 0O ^ 7 such t h a t h (do) = cot 0/cot <£ 
(if $ = - T T / 2 , let 0o = 7 ) . Choose A(t) so t h a t arg 4( / )u = 0O; from (23) it 
follows t h a t arg A(t)w = g(60), and hence order (v, w) ^ 2. In case (b')> 
order(v, w) > 2 unless <£> = 0. In case (c')> order(u, w) ^ 2 if and only if 
0 < 3> < 7r/2: note t h a t on (TT/2, 7r) the range of ft(0) consists of all real numbers 
< 0 . In case (d ') , order(v, w) ^ 2 if and only if 0 < $ < ir/2: note t h a t there 
is an A (t) such t h a t arg^4 (t)w = g(ir) = dy 0 < ô < a if and only if 0 < $ < TT/2. 
In case (e')> order (v, w) ^ 2 if and only if 0 — 7r < $ < 7r/2: note t h a t on 
(71-, 7T + a) the range of A(0) consists of all real numbers > 1. Finally, in case (f ), 
order(y, w) is always > 2 since for all ^4(/), 37r/2 ^ arg ^4(£)z; ^ 2T. 

If a ^ $ < 0 ^ TT/4, then for all 5 ( s ) , a ^ arg£(<>)^ < arg B(s)v S TT/4. 
Hence for all B(s), order(B(s)v, B(s)w) > 2, i.e., order(v, w) > 3. A similar 
a rgument shows t h a t if 7T +a ^ <ï> < 0 ^ 57r/4, then again order(y, w) > 3. In 
all other cases, order(v, w) is a t most 3. T o establish this consider the three cases: 
(a') - 3 T T / 4 < 0 ^ TT/4, (W) TT/4 < 0 < TT + a, and (c') T + a ^ 0 ^ 5TT/4. In 

case (a ') , 0 — 7r < $ < a (the case a ^ 3> < 0 ^ 7r/4 is excluded) and hence it 
is always possible to find a B(s) such t h a t 0 < argB(s)v fg 7r/4 and 7r < 
argB(s)w < 27r. In case (b ') , choose 5(5) such t h a t ir/2 < argB(s)v < TT and 
0 < arg B(s)w < TT/2. In case (c'), d — ir < $ < ir + a (the case T + a ^ $ < 
0 < 57r/4 is excluded) and hence it is possible to chose B(s) such t h a t TT + a ^ 
arg £($)?; ^ 57r/4 and 0 < a < arg B(s)w < TT/2. T h u s in all three cases it is 
possible to find a B(s) such t h a t order(I3(s)z;, B(s)w) ^ 2, i.e., order (v, w) ^ 3, 
provided t h a t neither a ^ <ï> < 0 ^ 7r/4 nor w + a ^ $ < 0 ^ 57r/4 hold. In 
both these exceptional cases order(z;, w) = 4, in the first case, choose any A(t) 
such t h a t 0 < arg A(t)v ^ a; then order (A (t)v, A(t)w) = 3. In the second case, 
choose any A (t) such t h a t TT < arg A (t)v ^ T + a ; again order(^4 (/)*;, 4̂ (/)w) = 3 . 

Equa t ion (14) implies t h a t unless a ^ $ < 0 ^ 7r/4 or7r + a ^ $ < 0 ^ 
57r/4, every matr ix D £ SL(2, R) such t h a t Dv = Xwi, D ^ = TU2, X > 0, T > 0 
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can be expressed as a product of A(t) and B(s) of length a t most 4 ; in the two 
exceptional cases, (14) provides the est imate 5. This last est imate is unsatis­
factory since the direct analysis given below shows t ha t even in both these 
exceptional cases D can still be expressed as a product of length 4. 

First , consider the case a S $ < 0 S TT/4. Let /0 be the unique solution of 
arg A(i)v = a; then 0 < arg A(to)w < arg A(t0)v = a. Let s0 be the unique 
solution of arg.B(s)A(t0)w = 0 ; it follows t ha t for all s, — oo < s < s0, — 37r/4 < 
arg B(s)A(to)w < 0. Moreover, since A(t0)v is an eigenvector of B(s) belonging 
to eigenvalue es, it follows tha t 

(24) B(s)A(t0)v = esA(t0)v. 

Notice t ha t for each 5, - c o < s < s0, 

(25) order(B(s)A(tQ)v, B(s)A(t0)w) = 2 ; 

in fact, there is for each such s, a unique 6(s) such tha t 

(26) h(6(s)) = cot a/cot(arg B(s) A (to)w) 

(if arg B(s)A(t0)w = — TT/2, define 6(s) = y). The function 0(s) is continuous 
and increasing on ( — oo , s0), lims^_œ 6(s) = fi where fi is the unique solution on 
(7r/4, 7) of h(6) = c o t a , lim5^ s o- 6(s) = TT/2. Fur ther , for each s, —00 < s < s0l 

there is a unique t(s) such tha t a,rg(A(t(s))B(s)A(to)v) = 0(s), i.e., such tha t 

(27) e2t^s)cota = cot 6(s) 

and there is a unique p(s) such tha t a,rg(B(p(s))A(t(s))B(s)A(to)v) = w/2, i.e., 
such t ha t 

(28) *rg B(p(s))v(s) = TT/2 

where v(s) = (cot 6(s), 1). The functions t(s) and p(s) are both continuous and 
decreasing on ( — 00 , s0), lims_^_œ t(s) = \ In (cot fi/zot a), l i m ^ 5 0 - t(s) = —00 , 
lim^-oo p(s) = po, where po is the unique solution of (28) when v(s) = (cot fi} 1), 
lims_>s0- p(s) = 0. Now for each s, —00 < s < s0, the product 

B(p(s))A(t(s))B(s)A(t0) 

of length 4 satisfies 

(29) arg(B(p(s))A(t(s))B(s)A(to)v) = x /2 , 

arg(B(p(s))A(t(s))B(s)A(to)w) = 0. 

T h e function X(s) defined by 

(30) X(s) = \\B(p(s))A(t(s))B(s)A(to)v\\ 

= e°\\B(p(s))A(t(s) + t0)v\\ 

is continuous on ( — oo , s0) ; clearly A(s) > 0. In fact, on (-co , s0), A(s) assumes 
all positive real values. T o establish this observe tha t 

(31) lim À (s) = 0, lim \(s) = + o o . 
s->—oo s - M 0 ~ 

This completes the analysis in the case a ^ $ < 6 ^ 7r/4. 
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UT + a S $ < d S 57r/4, let to be the unique solution of arg A (t)v = ir + a. 
Let So be the unique solution of arg B (s)A (t0)w = w/2; it follows t h a t for all 
s, -co < s < 50,7r/4 < SirgB(s)A(to)w < 7r/2. I t is easily verified t h a t equat ions 
(24)-(31) inclusive remain valid for this case, with the sole exception t h a t v(s) 
now must equal ( — cot 0(s), — 1). No te also t h a t in this case, d(s) is decreasing, 
lims_>_œ 9(s) = J3 where J3 is the unique solution on (x, TT + a) of h(6) = cot a, 
l im^so- 6(s) = -K while both the functions t(s) and p{s) are now increasing, 
lim. t(s) = \ In (cot 0 /co t a), lims t(s) = + 0 0 , l i m ^ ^ p(s) = po, 

l im^so- p(s) = q0 where po and q0 are the unique solutions of (28) when v(s) 
equals ( — cot /?, — 1) and ( — 1, 0), respectively. Since both (29) and (31) again 
hold, the analysis of the case T + a ^ <ï> < 0 ^ 57r/4 is complete. 

(g) A{t) = 

B(s) 

0 

r/(r + 1)* 
- l / ( r + l )* 

l / ( r + 1)*' 

l / ( f + 1)* 

l / ( r + 1)* - l / ( r + I)* 
L l / ( r + 1)* r/(r + 1)* 

where r ^ 1: choose a, 0 < a ^ 7r/4 such t h a t c o t a = r. Note t h a t the set of 
eigenvectors of B(s) (B ^ / ) consists of all vectors (rx, —x) and (x, x), x j * 0. 
T h e source of B ($) is the line x\ = X2 and its sink is the line xi = — rx2 = 
— (cot a)x2. 

If order(v, w) = 1, then 0 and $ mus t satisfy 7r/4 < 0 < 7r — a, —a < <i> < 
7r/4; moreover, for each 0, 7r/4 < 6 < TT — a, there is a unique $ = g(0), 
—a < $ < 7r/4, such t h a t if arg v = 0, arg w = <ï>, then order(z;, w) = 1. In 
fact, choose 5(0) as the unique solution of arg B(s)v — T/2; then 

(32) 3> = g{6) = zrgB-i(s(d))u2 = arg B(-s(d))u2. 

T h e continuous, decreasing function s (6) satisfies 

lim s (6) = + o o , S(T/2) = 0, lim s(fi) = - o o ; 

hence the continuous function g(0) is decreasing on (?r/4, 7r — a) and satisfies 

lim g(0) = x / 4 , ^ ( T T / 2 ) = 0, lim g(0) = - a . 
0 _ > ( T T / 4 ) + 0_» ( * • - < * ) -

From (32) and a straightforward calculation it follows t h a t 

(33) cot g(6) = 1 - r + ( r /co t 0) ; 

define /z(0) = cot 0/cot g(0). T h e continuous function h(6) satisfies 

lim h (6) = lim h (6) = 1, 
0 - » ( T / 4 ) + 0-»( i r -a)-

A ( T T / 2 ) = 0. 

Moreover, a routine calculation shows t h a t dh/dd < 0 on (ir/4, 7r/2), and 
d&/d0 > 0 on (TT/2, IT — a) and hence Z&(0) is decreasing on (ir/4, 7r/2] and 
increasing on [ir/2, 7r — a). T h e graph of A(0) is sketched in Figure 2 below. 
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TT/2 TT - a 

Figure 2. Graph of h(6). 

Clearly if 6 = 7r/2, order(v, w) ^ 2 if and only if $ = 0. From an analysis 
completely similar to t h a t used in case (f) it easily follows t h a t if 6 ^ 7r/2, 
order(v, w) ^ 2 if and only if 0 < 0 < TT, 6 ^ TT/2 and 0 < cot 0/cot $ < 1. 
In other words, order(v, w) ^ 2 if and only if either (a') 0 < $ < 6 < T/2 or 
(b') 6 = TT/2, $ = 0 or (c') TT/2 < d < w, 6 - T < $ < 0. 

Next it will be shown tha t a sufficient condition for order(z>, w) to be ^ 3 is t h a t 
7r/4 < 6 < 7T — a. Wi thou t loss of generality, assume t h a t 6 = 7r/2; then 
- T T / 2 < $ < TT/2. If —a < $ < TT/2, there exists a 5 ( s ) such tha tO < a r g £ ( s ) w 
< argB(s)v < 7r/2 while if — 7r/2 < $ ^ —a, there exists a J5(S) such t h a t 
7T/2 < argB(s)v < ir — a < 7rand argB(s)v — x < argils)?*; ^ —a < 0. Hence 
in both cases there exists a 5 ( s ) such tha t order (5(s)z;, B(s)w) ^ 2, i.e., 
order(z;, w) ^ 3 . 

I t is easily verified t ha t for any vector v ^ 0 there exists a product 
A(q)B(p)A(f)B(s) of length a t most 4 such t ha t 

(34) TT/4 < 3.rg(A(q)B(p)A(t)B(s)v) < TT - a 

(in fact, a product of length 3 suffices unless 6 = —TT/2) . Hence order (y, w) ^ 7 
for all (^, w) (in fact, if 6 ^ —TT/2, order(z>, ze/) ^ 6 ) . From (14) it follows t h a t 
the order of generation is ^ 8 ; surprisingly, equality holds. 

Note t ha t order( — U\y — u2) = order((0, —1), ( — 1,0)) mus t be odd since 
— U\ and — u2 are eigenvectors of A{t). I t follows t h a t to show t h a t 
order( — ̂ i , — u2) = 7, it suffices to prove t ha t for all real s, t and p 

(35) order(B(p)A(t)B(s)(-u1)1B(p)A(t)B(s)(-u2)) > 2. 

Assume first t h a t 57r/4 < a r g £ ( s ) ( —U\) ^ 37r/2; then IT ^ argB(s)( — u2) < 
arg B(s)( — ui). I t follows t ha t for all t 

(36) T ^ arg A(t)B(s)(-u2) < arg A(t)B(s)(-ui) ^ 3TT/2 

and hence for all p 

(37) TT - a < arg B(p)A(t)B(s)(-u2) 

< 3LTgB(p)A(t)B(s)(-u1) < 2w - a. 

/ 
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Equat ion (35) follows immediately from (37) together with the character izat ion 
of pairs of vectors (z/, w) of order ^ 2 . If — w/2 < arg7>(s)( — u\) < —a, then 
7T — a < arg7>(s)( — w2) < *"• I t follows t h a t 

(38) - T T / 2 < arg A(t)B(s){-Ul) < 0, 

TT/2 < arg A(t)B(s)(-u2) < 7T 
and hence for all p 

(39) - 3 T T / 4 < a r g 5 ( p ) i 4 ( 0 S ( 5 ) ( - « i ) < TT/4 

and 

TT/4 < a r g 5 ( ^ ) i 4 ( / ) 5 ( 5 ) ( - M 2 ) < 5TT/4. 

Again (35) follows direct ly from (39). T h u s the order of generation is ^ 7 ; to 
prove t h a t it equals 8 it suffices to show t h a t — 7 cannot be represented as a 
product of length g 7. 

Since —I( — Ui) = ii\, —I(-u^) = ui, — / c a n n o t be represented as a product 
of length < 7 , and if it could be represented as a product of length 7, such a 
product would have to begin an end with a B (s). Hence assume 

(40) B(z)A(y)B(x)A(q)B(p)A(t)B(s) = - 7 ; 

it follows t ha t 

(41) B(z + s)A(y)B(x)A(q)B(p)A(t) = B(s)(-I)B(-s) = -I, 

i.e., —7 could then be represented as a product of length 6, a contradiction. 

Remark 1. T o unders tand why in case (g) — 7 could not be expressed as a 
product of length 7, consider the * ' inner" automorphism of SL(2, R) induced by 

Ce GL(2, R ) . 

Note t h a t al though C g SL(2, R ) , if D G SL(2, R ) , then C~lDC G SL(2, R ) . 
Clearly C transforms the pair of infinitesimal t ransformations e, 77 of case (g) into 
the pair rj, e since C takes the eigenvectors of e into those of 77 and the eigenvectors 
of rj into those of e. I t follows t h a t order((0, —1), ( — 1 , 0)) with respect to 
((0, 1), (1 , 0)) mus t equal order(( —r, 1), ( — 1, —1)) with respect to 
((r, —1), (1, 1)). Now if —7 were expressible as a product of length 7 whose first 
and last elements were a B(s), then since both (r, —1) and (1 , 1) are eigenvectors 
of B(s) it would follow t h a t order(( — r, 1), ( — 1, —1)) with respect to 
((r, - 1 ) , (1 , 1)) would be 5 and not 7. 

Remark 2. Observe t h a t in both cases (e) and (g), the order of generation of 
SL(2, R) is equal to the maximum of order(fl, w) + 1 while in (f) it equals the 
maximum of order(v, w). 

Remark 3. Note t h a t the order of generation of SL(2, R) is uniquely determined 
by the type of the infinitesimal transformations, i.e., elliptic, parabolic or hyper­
bolic, except t h a t if both are hyperbolic, then the order of generation depends 
upon whether or not the eigenvectors separate or interlace. 

(42) C = 
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5. Let w ^ oo be the order of generation of a connected Lie group H by 
A{t) and B{s). I t is of interest to determine whether every element of H can, 
in fact, be expressed as a product of length n whose last element is an A (t) ; a 
dual question may be asked of B(s). Note t ha t any element t ha t can be expressed 
as a product of length <n can be expressed both as a product of length n whose 
last element is an A(t) and one whose last element is a B(s) by inserting 
I = A(0) = B(0) an appropriate number of times. 

If there is any automorphism of the group tha t interchanges the two one-
parameter subgroups, then both questions must have the same answer. T h e 
same conclusion holds under the quite different assumption tha t n is even ; if an 
element is not representable as a product of length n ending in an A (t), then i ts 
inverse is not representable as a product of length n ending in a B(s). 

For SU(2) both questions must have the same answer since every pair of 
one-parameter subgroups of SU(2) can be interchanged by some inner 
automorphism. T h e answer is affirmative; this follows immediately from the 
fact t ha t it is affirmative for SU(2)/{ J, — 1} [1]. 

Every element of SL(2, R) can be expressed as a product A(t)B(s)A(u) bu t 
not all elements can be expressed as a product B(s) A (t)B(y) in cases (b) and (c) 
(A(f) is elliptic, B(s) is parabolic or hyperbolic, respectively) ; again this follows 
directly from the corresponding assertion for SL(2, R ) / {7 , —/} [2]. In cases 
(d)-(g) inclusive the order of generation of SL(2, R) is even and hence both 
questions must have the same answer. I t is affirmative except for case (f), i.e., 
except if both one-parameter subgroups are hyperbolic with eigenvectors 
separating. In case (d), this is clear from the proof of Theorem 2 ; in the remaining 
cases see Remark 2 above. 

T h e author wishes to thank R. M. Koch for his suggestion concerning the 
relevance of the Killing form. 
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