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We present the general analytical solution of the Riemann problem (decay of a
jump discontinuity) for non-convex relativistic hydrodynamics. In convex dynamics, an
elementary nonlinear wave, i.e. a rarefaction or a shock, originates at the discontinuity
and travels towards one of the initial states. Between the left and right waves, an
equilibrium state appears represented by a contact discontinuity. The exact solution to
the Riemann problem in convex relativistic hydrodynamics was first addressed by Marti
& Miiller (J. Fluid Mech., vol. 258, 1994, pp. 317-333). In non-convex dynamics, two
sequences of elementary nonlinear waves move towards the left and right initial states.
Solving the Riemann problem involves determining the types of wave developing and the
equilibrium state where they coincide. The procedure consists of constructing the wave
curves associated with the nonlinear waves in the pressure—velocity phase space, where
the intersection of the wave curves indicates the equilibrium state. We describe the relation
between the wave curves, the explicit formulas for their calculation, and the outline of the
process for a correct derivation and representation of the waves in the spatial domain. We
present examples of the exact solution of a Riemann problem that illustrate the complex
phenomena of non-convex dynamics by using the phenomenological non-convex equation
of state proposed by Ibéiez et al. (Mon. Not. R. Astron. Soc., vol. 476, 2017, pp. 1100-1110).
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1. Introduction

We present an exact Riemann solver for non-convex special relativistic hydrodynamics
(SRHD). An initial-value problem in one spatial dimension for SRHD is a Riemann
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problem if the initial data consist of two constant states separated by a jump discontinuity.
Its exact solution has been of great importance in the development of Godunov-type finite
difference methods (Godunov 1959) and the validation of hydrodynamical codes.

The exact solution of the Riemann problem in SRHD has been studied for the case
of convex dynamics, where only simple nonlinear waves are developed (Marti & Miiller
1994; Pons, Marti & Miiller 2000; Rezzolla & Zanotti 2001; Rezzolla, Zanotti & Pons
2003). Exact Riemann solvers for convex dynamics have been proposed for different
scenarios (Declercq et al. 2000; Giacomazzo & Rezzolla 2006; Zhigiang 2010; Huahui
& Zhigiang 2016; Zhigiang 2018; Liu, Cheng & Shen 2021; Minatti & Faggioli 2023).
More complex scenarios have been studied for general systems of conservation laws (Liu
1975) and treated in non-convex Newtonian dynamics (Muller & Voss 2006). Aiming to
solve non-convex dynamics in SRHD, we start by relating the type of dynamics arising in
the Riemann problem to the convexity of the flow equations.

Let us consider the hyperbolic system of conservation laws (HSCL) describing
compressible fluid dynamics in one spatial dimension characterizing the conservation of
the physical magnitudes:

u+f(wy,=0, wu=u(tx) elU, (L1)

where u is the vector of conserved variables, U C R" is an open set, and f is the flux. The
system of equations is closed with an equation of state (EoS)

P=Pp,e), (1.2)

with p the rest-mass density, and € the specific internal energy, defining the
thermodynamics of the system.

Following Lax (1973), the nature of the wave dynamics developed in the evolution is
characterized by a scalar quantity known as the nonlinearity term:

k() = Vg - r, (1.3)

where r; and Ay are correspondingly the right eigenvector and eigenvalue of the Jacobian
of the flux associated with the kth characteristic field.

A characteristic field is said to be linearly degenerated when ni(u) = 0 for all states
u € U. Conversely, if the nonlinearity term 7y is not identically zero for all u € U, then
the characteristic field is classified as nonlinear. Nonlinear fields are classified further as
genuinely nonlinear if n;(u) # O for all states # € U. The nonlinear field is non-genuinely
nonlinear if the nonlinearity term is not identically zero for all states and there exists at
least an isolated point u; such that n;(z;) = 0 and n; changes sign in a neighbourhood of
u, (Liu 1975).

If all characteristic fields are either linearly degenerated or genuinely nonlinear, then
the HSCL is said to be convex. Convex systems develop an elementary wave for each
nonlinear characteristic field — either a rarefaction or a shock. An HSCL is non-convex
if there exists a nonlinear characteristic field that is non-genuinely nonlinear. Non-convex
systems may also develop complex wave dynamics, as composite waves (combinations of
different elementary waves) related to the non-genuinely nonlinear fields.

The convexity of SRHD equations is governed by the EoS, since the nonlinearity term
of the nonlinear fields can be expressed (Ibafiez et al. 2013) as

nizi%(g—§ﬁ>, (1.4)
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where G is the fundamental derivative (Thompson 1972)

9P
1 aV2|,
- _y_—__1Is 1.
g SV (1.5)
AR
¢s 1s the relativistic sound speed of the fluid
1 oP
=——, (1.6)
’ h 9p |,

and s is the entropy.

The sign of the Newtonian counterpart of the nonlinearity factor depends exclusively on
the sign of the fundamental derivative of the EoS. Therefore, one could define a relativistic
fundamental derivative

Gr) =G — 3¢ (1.7)
such that
c
Nt = ﬂ:;s G (1.3)

to obtain an analogous dependency.

In the evolution of the Riemann problem in compressible hydrodynamics, either
Newtonian or relativistic, there are two nonlinear fields that generate corresponding
waves moving towards the left and the right, and a linearly degenerated field inducing a
contact discontinuity in between. Two new intermediate states L, and R, appear from the
discontinuity separating the initial states L and R. In convex dynamics these are connected
to the initial states by the corresponding elementary nonlinear waves W, and are separated
by the contact discontinuity C (notation and illustration followed from Marti & Miiller
1994):

IW_L.CRW_R. (1.9)

In non-convex dynamics, two sequences of elementary nonlinear waves move towards
the left and right initial states. The evolution can be illustrated as

LY. L.CR.Y_R, (1.10)

where X' represents a sequence of waves.

The waves to the left and right, either elementary or composite, coincide at equal values
of pressure and velocity at the contact discontinuity, which in turn admits an arbitrary
jump in density.

Solving the Riemann problem involves determining the types of wave developing and
the equilibrium state where they coincide. The procedure consists of constructing the wave
curves associated with the nonlinear waves in a pressure—velocity phase space, where the
intersection of the curves indicates the equilibrium state.

This paper is organized as follows. In § 2, the equations of SRHD are reviewed. Section 3
describes the procedure to calculate the wave curves in phase space arising in non-convex
SRHD, and the mapping from the wave curves to the waves in the spatial domain. Section
4 particularizes the procedure of deriving the exact solution to a Riemann problem for a
phenomenological EoS inducing non-convex dynamics. We present the exact solution of
relativistic blast waves exhibiting composite waves in § 5, and draw our conclusions in § 6.

The code computing the exact solution presented in this paper is available from the
authors upon request.
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2. Special relativity hydrodynamics equations

The motion of a relativistic fluid is governed by the equation of continuity and the
conservation of energy—momentum:

(:Oulw);u =0,
2.1
T;l:v — O, ( )

where p is the rest-mass density of the fluid, u" is the four-velocity, and a semicolon
denotes the covariant derivative. We consider a perfect fluid with stress—energy tensor

™' = phutu” + Pg"’. (2.2)

The specific relativistic enthalpy # is related to the pressure through the internal energy
€ and the rest-mass density as

P
h=14¢€+ —. (2.3)

P
We consider Minkowski metric tensor g"* = diag(—1, 1, 1, 1) and the normalization
condition for the four-velocity wu’u, = —1. Since our study is restricted to

one-dimensional flows moving in the x-direction, u* = W(1, v, 0, 0), where v is the
spatial velocity, and W is the Lorentz factor

W=(1-v)H"12 (2.4)

Under these considerations, the one-dimensional relativistic hydrodynamical equations
can be written as

9D D
LY o, (2.5)
at ox

3S  3(Su+P)

DL 26

ot + ox (2.6)

9t 9(S—Dv)

LA AC At A 27

at + ox 27

The system is closed with EoS (1.2). The conserved variables — relativistic rest-mass
density D, momentum density S, and energy density t — are defined in terms of the
primitive variables p, v and P as

D = pW,
S = phW?v, (2.8)
T =phW2—,0W—P.

3. Wave curve structure for the Riemann problem in non-convex relativistic
hydrodynamics

Solving the Riemann problem involves drawing wave curves in the pressure—velocity

plane associated with the waves moving to the left and right. Their intersection marks the

equilibrium state, which describes the speed and the two sides of the contact discontinuity.
Three types of elementary wave curves can arise in non-convex dynamics, namely

Hugoniot curves, integral curves and mixed curves.

975 A48-4
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3.1. Hugoniot curves

Hugoniot curves are wave curves in the phase space associated with shock waves in the
spatial domain.

Given U, the set of solutions u of the HSCL, u, the state ahead of the discontinuity,
and vy the shock speed, the relativistic Rankine—Hugoniot conditions (Taub 1948) in one
dimension are defined as

S @) = f(ua) = vs(u — ug), (3.1

with vy = vs(uy, u) and f the fluxes of the SRHD system of (2.5)—(2.7).

In order to calculate the Hugoniot curve from an origin state u,, we need to derive
a relation between the pressure and the velocity of the fluid for all states u;, behind the
discontinuity.

Given u, = (Dg, S4, T4) together with P,, a state ahead of the shock, the expression for
vp = v(Pp) for each up = (Dyp, Sp, Tp) and Py, is obtained by solving the system

Dpup — Dyvg = vs(Dp — Dy), (3.2)
Spvp + Pp — Squq — Py = vs(Sp — Sa), (3.3)
Sp — Dpvp — Sq + Dgvg = vs(Th — Ta). (3.4

From (3.2), we obtain the (invariant) mass flux across the shock:
J = WiDy(vs — vg) = WiDp(vg — vp), (3.5

where W, is the Lorentz factor associated with the shock speed v;. In what follows, positive
values of j will determine waves travelling to the right, and negative values for those
travelling to the left, as in Taub (1948), Anile (1990) and Marti & Miiller (1994). The
shock speed then reads

o _ PaWava 7PV + (pal)? a6

! paWi + 2 ’

with the same sign criteria.
Rewriting (3.2)—(3.4) using the mass flux invariant (3.5), we obtain

(11 .
b ¢ Ws b Da ’ ‘
J (S Sa
P,—P,=—|———1], 3.8
b a Ws (Db Da> ( )
J 172 Ta
P,—vPp=———-——]). 3.9
UpL'p — Ugl g W, (Db Da> (3.9

From relation § = v(t + P + D) and plugging (3.7) and (3.9) into (3.8), we obtain the
flow velocity at state b as a function of the pressure Pj, and the invariant j (Marti & Miiller
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1994):

W.(P, — P W, 1 -1
vy = [haWava—i-M] [hawaﬂpb—m)( Wa )] . (.10
J J PaWy

Multiplying the conservation of the stress—energy tensor (2.1) by a unit normal n,, (Marti
& Miiller 1994), we have

P,—Pyp
2 a
Pb Pa

which relates the pressure to the mass flux, density and enthalpy of the fluid.
A relation between the enthalpy states ahead of and behind the discontinuity can be
derived from the Taub adiabat (Thorne 1973)

h h
hy — hy = (—b + —") (Py — Py), (3.12)
Pb a
which is a parabola in Ay:
P, — P h
[y e A (hi + (Py — Py) —“) = 0. (3.13)
Pb Pa

In order to ensure physical consistency, the parabola can have only a single positive
root. Since the quadratic coefficient is positive, it is necessary only to verify that the
independent term is always negative. In fact, if P, > P,, then both addends are positive and
therefore so is their sum. If P, < P,, then by dividing both addends by %, we verify that
hg > (Py — Pp)/pasince hy =1+ €, + (Py/pa) and 1 + €, > —(Pp/pa)-

Therefore, the parabola has only one positive root:

P,—P, Py — Py)? h
Loy [P Fa) +4<h§+—“(Pb—Pa)>
Ioh ,Ob a
hp = . (3.14)
2
For the purpose of completing the relations to calculate the flow velocity (3.10) as a
function of the post-shock pressure (Pp), a specific EoS is required to relate pp, to Pyp,.
Once pp is derived from the EoS, enthalpy is obtained from (3.14), and (3.11) can be
evaluated. Selecting the sign of j by the direction of the wave, the flow velocity (3.10) can
be calculated.

3.1.1. Termination and continuation of Hugoniot curves
Hugoniot curves are admissible while Liu’s entropy condition on monotonicity of the
shock speed is satisfied (Liu 1975).

Liu’s entropy condition states that a shock with origin in state u, connecting to state u;,
with uy, satisfying Rankine—Hugoniot conditions (3.1), and with shock speed vg(u,, up),
is admissible if it satisfies the entropy condition

Us(Ug, up) < vg(ug, u) (3.15)
for any u along the Hugoniot curve between u, and up,.

975 A48-6
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Liu’s entropy condition fails at local extrema of the shock speed. In Liu (1975), it is also
stated that v, = 0 & vy = A, with A, the characteristic speed of the corresponding field.
Therefore, the entropy condition can also be regarded through the characteristic speed.

When the monotonicity of the shock speed changes, Liu’s condition is violated and the
Hugoniot curve ends, ensuring admissibility of the shock wave, which is called a sonic
shock. The terminated Hugoniot curve is continued in phase space by an integral curve.

3.2. Integral curves

Integral curves in the phase space plane are wave curves associated with rarefaction waves,
which are smooth and self-similar solutions of the HSCL (Lax 1973).

The self-similar solution of the form u(§), where & = x/t, of system (1.1) simplifies to
a system of ordinary differential equations

du , . du

3 a +f (w) i 0, (3.16)
where f” is the Jacobian of the fluxes.

Following Taub’s general analysis (Taub 1978), we can derive a relation between the
velocity and the pressure of the fluid from the expressions of self-similar solutions of the
SRHD system of equations.

We consider system (3.16) for the SRHD conserved variables — relativistic rest mass,
momentum and energy densities — written in terms of the derivatives of the primitive
variables with respect to the self-similar variable &, with 9/dx = (1/t)(9/0&) and 9/t =

—(&/0:

dp 5 dv
—§) 57 w — 1) — =0, 3.17
(v—2§) a +poWu(v—§)+ )d§ (3.17)
w=8) L onw?) + @ —)prw? Y+ paw2y 4 9P g (3.18)
v(v—¢§) — v — e v =Y :
e’ PR ae TP V0 T e
dp d dv
— — &) —(phW?) + phW?* — = 0. 3.19
§q, T %‘)dg(p )+ p az (3.19)
Multiplying (3.19) by flow velocity v and subtracting the result from (3.18), we obtain

dpr dv
(1—U§)E+(U—§)PhW @

Moreover, following the principle of conservation of entropy along fluid lines, and
rewriting in terms of the self-similar variable, we have

dpP 5 dp

0. (3.20)

— =hc; —. (3.21)
dg 3
The system formed by (3.17), (3.20) and (3.21) is simplified to
_n 20 (0 — dv _
(v—=28) aE +po(Wuv—§&)+1) i 0, (3.22)
ey ¥ 20, — 5y W _
h(1 — vé)c; az + phW* (v — &) i 0, (3.23)

by substituting (3.21) in (3.20).
975 A48-7
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The new system (3.22)—(3.23) admits the trivial solution (dp/dé =0, dv/dé = 0).
Non-null solutions are obtained by imposing that the determinant of the matrix of the
system vanishes:

PhW* (v — €)% — c;(1 — vE)*) =0, (3.24)
which is satisfied when
L i (3.25)
1 —vé

where + (—) signs refer to rarefactions propagating to the left (right).
Substituting (3.25) in (3.23), we have

W2dv + S dp =0, (3.26)
0
which primitive is the Riemann invariant
1 1
Jo=oin (Y i/idp (3.27)
2 1—v P

that is constant along integral curves (Taub 1948). Then, given two states a (ahead) and b
(behind) of an integral curve, with i a state in between, we have the identity

1 1 Pi 1 1 Pi
—ln( +U“)i/ ﬁdp:—ln( +Ub>j:/ S dp (3.28)
2 1 — vy, oa P 2 1 —up o P
and then
1 1 1 Pi o Pi o Pb o
2 1=, 1= o P o P o P
(3.29)

We denote the last term, F f[f:b (cs/p) dp, as FX.
From a known state a, the flow velocity at a state b along the integral curve is given by

1+v,
- v“ exp(F2X2) — 1
= “ 3.30
V=15, . ; (3.30)
exp(F2X7) + 1
1—v,

where X? is calculated for the specific EoS.

3.2.1. Termination and continuation of integral curves
In order to determine the continuation and termination of integral curves, we analyse their
existence as self-similar solutions of system (3.16) written in terms of conserved variables
(LeFloch 2002).

System (3.16) can be written in matrix form as

Lo+ ) & —o 3.31
(=& zd+f(u))£— . (3.31)

If du/d§ # 0, then the system can be solved by means of the corresponding characteristic
equation. Therefore, there exists a nonlinear characteristic field £ € {1, 3} and a real scalar

975 A48-8
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factor a(&) such that if ri(u(£)) is the right eigenvector associated to k, and Ax(u(€)) the
corresponding eigenvalue, then

du _ 332
& a) r(u()) (3.32)

and
§ = A (u(§)). (3.33)

By calculating the derivative of (3.33) with respect to &, we obtain

I =a(®) VAc(®)) - ri(u§)), (3.34)

which allows us to determine a(§) = 1/VAr(u(€)) - rr(u(€)) when VAi(u(€))-

ri(u(§)) #0.
Then system (3.32) becomes

du _ nu)
d& VA u®) - r(u(®)’

(3.35)

Consequently, an integral curve is a smooth solution (&, ugp) of the initial-value problem

du )
d& V) - nw@)’

with VA (ug) « rr(ug) #0 and wave speed A, (u(§)).

Note that the term in the denominator is the nonlinearity factor n (see (1.3)) that
determines the convexity of the system and consequently the convex or non-convex
character of the wave dynamics.

System (3.36a,b) presents a singularity wherever the nonlinearity factor vanishes, i.e.
n(u) = 0 (Gr = 0). If this happens along an integral curve, then it is terminated because
is no longer defined. In order to continue this curve, whose last state # comes from the
limit n(u) — 0 over it, we use a particular type of a subordinate wave curve known as a
mixed curve.

u(§o) = uo, (3.36a,b)

3.3. Mixed curves
A third type of wave curve in the phase space plane is introduced by Liu (1975)
for non-convex dynamics. Mixed curves are subordinate Hugoniot curves that continue
integral curves that are no longer defined when n = 0, (Gr = 0).
Following Liu’s definition, a mixed curve % associated with an integral curve w is the
set of states u € w® such that for a state u® € w, the Rankine—Hugoniot conditions

22’ —u) = fu®) — f(u) (3.37)

hold. The construction of a mixed curve starts from the termination state of the integral
curve and advances by taking as origin of the jump discontinuity (3.37) consecutive points

u® € w in reverse order, towards the start of the integral curve.

975 A48-9
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Termination condition Next wave
Hugoniot curve (H) vy =4 A
Integral curve (7) n=0(Gr =0) M
Mixed curve (M) vy =4 T
Start of rarefaction reached H/M

Table 1. Termination and continuation conditions for the different types of wave curve.

3.3.1. Termination and continuation of mixed curves

Mixed curves are formed by states belonging to Hugoniot curves with shock speed
equal to the characteristic speed along a previous integral curve. Integral curves extend
through regions where the sign of the nonlinearity (convexity) is constant and thus the
corresponding characteristic speed is monotone. Therefore, the shock speed in a mixed
curve is also monotone, ensuring that this type of wave curve is always admissible
according to Liu’s entropy condition.

Two termination conditions for a mixed curve may occur:

On the one hand, if the shock speed /l(uo) is equal to the characteristic speed A(u)
(equivalent to v, = 0; Liu 1975), then the entropy condition fails and the mixed curve
terminates. An integral curve continues.

On the other hand, a mixed curve can end because of its own construction method.
The states of the mixed curve are related to subsequent prior states of an integral curve
in reverse order. Thus if the first state of the integral curve is reached, then the mixed
curve ends. The jump discontinuity associated with the mixed curve is continued with a
Hugoniot or mixed curve, depending on the origin of the integral curve.

We gather the termination and continuation conditions for the three different wave
curves in table 1.

3.4. Construction of the sequence of wave curves

In the evolution of a Riemann problem, the waves are born from the initial discontinuity
present in all characteristic fields (linear and nonlinear). The nonlinear waves start from
the jump discontinuity and move towards the domain boundaries in opposite directions.
The states at each of the domain boundaries are ahead of the waves travelling towards
them. As the waves move in each direction, new states are created behind them.

In convex dynamics, a single wave is generated in each direction, connecting the
equilibrium with a boundary state. In non-convex dynamics, a sequence of wave curves X
(see illustration (1.10)) is expected instead.

The wave curves are constructed from the initial states and develop through the phase
space until their intersection at the intermediate state. Next, we describe the procedure to
follow to determine the sequences of wave curves, starting with the first wave curve and
the criteria to continue each of the successive ones.

3.4.1. First wave curve

The first wave curve of the sequence moving in each direction is determined by its
compressible character. If the nonlinearity factor is positive (7 > 0, Gr) > 0), then
rarefaction waves are expansive and shock waves are compressive. Therefore, if the
pressure is going to increase from an initial condition, a Hugoniot curve is the first

975 A48-10
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P, > Py P, < Py
9mry, >0 Integral Hugoniot
Gmry, <0 Hugoniot Integral

Table 2. Determination of the first wave curve type for non-convex SRHD.

wave curve of the sequence. Conversely, if the pressure has to decrease, then an integral
curve should be the first one. If the nonlinearity term is negative (n < 0, G(r) < 0), then
the waves invert their compressible character. The criteria to decide the first curve are
summarized in table 2, where the initial state is labelled as a (ahead of the wave), and new
states along the curves are labelled as b (behind).

3.4.2. Continuation of curves

The first wave curve from each side, either Hugoniot or integral, is calculated with origin
in the corresponding initial state. It traverses the phase space until it intersects the opposite
wave curve sequence or terminates following the conditions described above and gathered
in table 1.

The sequence of wave curves forms a continuous curve in phase space, where the last
state of a wave curve is the first state of the next one. Let (v;, P;) be a point in phase
space belonging to a wave curve. To continue the curve, the pressure of the following
state is set as P;11 = P; + 6P, where 6P is a differential increment of pressure, positive
or negative according to the monotonic behaviour of the pressure determined by the first
wave curve. Using the appropriate relation to the type of wave curve, the fluid speed v;
corresponding to the pressure P;;1 is obtained. The rest of the quantities of the state are
then calculated through the EoS and other analytic relations. If state (v;, P;) is the last
state of a wave curve, then pressure P still continues the sequence but v, is calculated
through the relation of the continuing wave curve.

When calculating a Hugoniot or mixed curve, the origin state of the Rankine—Hugoniot
conditions is fixed. While the origin (v,, P,) state is maintained, the new states continue
the pressure values of the latest wave curve even if the origin state does not belong
to it. This scenario arises when the wave curve terminates to ensure admissibility of
the corresponding shock wave, although the curve is still well-defined past this point.
If a posterior wave curve reaches the sonic shock speed and the corresponding entropy
condition holds again in a different region of the phase space, then the wave curve is
resumed and the shock wave is prolonged. The origin state would be the origin used when
the Hugoniot curve first started, although the pressure values for the calculations would
continue the latest wave curve.

In order to implement this procedure in the calculations, we use a stack of wave speeds
as proposed in Muller & Voss (2006). Every time a mixed or Hugoniot curve is terminated
in a sonic point, we store its final speed in the stack. The wave speed of subsequent wave
curves is compared to the last speed introduced in the stack. If it is reached, then the
current wave curve terminates and the corresponding previous Hugoniot (or mixed) curve
is resumed. It preserves the same origin that it had when calculated for the first time, but
it continues in phase space the pressure and velocity values of the newly terminated wave
curve.

We illustrate the procedure in figure 1. A Hugoniot curve starts at initial state ug.
The shock speed reaches a maximum at u1, and the wave curve is terminated to ensure
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Figure 1. Example of a configuration of wave curves. (a) A representation of the behaviour of the wave speed
along the wave curves. (b) Their representation in the phase space.

admissibility. We store the sonic speed at state u; in the stack. The sequence of wave
curves is continued by an integral curve. It terminates when 7 (u2) = 0, and it is followed
by a mixed curve. As the shock speed during a mixed curve is the characteristic speed
during the integral curve, the speed profiles are symmetric for these two curves. When the
mixed curve reaches state u3, calculated from the first point of the integral curve u;, the
wave speed is equal to the sonic speed stored in the stack. Therefore, the first Hugoniot
curve is continued with origin in #p and using pressure values continuing u3.

3.5. Mapping wave curves to waves in the spatial domain

The Riemann problem is solved once both sequences of wave curves to the right and to the
left are constructed, and the intersection point is found leading to the intermediate states.

In the spatial domain, the position of a wave w is determined by its speed v,,. The wave
structure is created from the initial discontinuity of the Riemann problem and does not
depend on time. Instead, time 7 determines the position of the waves as

Xw = Xinit. discont. + 1 Uy (3.38)

Hugoniot and mixed curves are associated with shock waves in the spatial domain. The
shock speed is given by the last state of the wave curve, which also determines the final
state of the jump discontinuity starting at the origin point. Integral curves are associated
with rarefaction waves in the spatial domain, the states of one being the states of the
other. These waves move with speed equal to the characteristic speed of the corresponding
characteristic field.

The waves in the spatial domain are determined from the first wave curve starting at the
initial state towards the wave curve that intersects with the other wave curves sequence.
Due to the spatial location determined by (3.38), the sequence of waves appearing towards
each direction has monotonically decreasing wave speed. If a wave curve is slower than
any of the following curves, then its corresponding wave is overtaken and does not emerge
in the spatial domain. The wave corresponding to the wave curve intersecting the opposite
sequence always arises since there is no posterior (faster) wave.

The overtaking of waves is inherent to integral curves that break and are continued by
a mixed curve (Liu 1975). By definition, the mixed curve has the same wave speed as an
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integral curve but in reverse order, therefore every calculated state overtakes the origin
state from the integral curve. If all the points in the integral curve are used for calculating
the mixed curve, then the latest is overtaken completely, and only the jump discontinuity
remains in the spatial domain. If the mixed curve is terminated (as a sonic shock or because
it reaches the middle state), then the integral curve appears until the last state used for the
mixed curve, and from that last point there would be a jump discontinuity, thus appearing
as a composite wave in the spatial domain. Due to the overtaking, it is usual to have many
more wave curves in phase space than waves in the spatial domain. However, all of them
are necessarily part of the wave structure.

4. Building wave curves in non-convex SRHD with the Gaussian gamma law EoS
In this section, we derive the relations between the flow velocity and the pressure for every
type of wave curve in SRHD using an EoS that induces non-convex dynamics.

We consider the phenomenological Mie—Griineisen type of EoS (Ibafiez et al. 2017;
Marquina, Serna & Ibafiez 2019), known as the ‘Gaussian gamma law’ (GGL) EoS. It is
defined as

P = (y(p) — Dpe, 4.1
with
Y () = y0 + (11 — vo) exp(—(p — po)>/od). (4.2)

The parameters yy, y1 are such that 1 < yy < y1 < 2. The parameter o( is chosen to
guarantee causality and thermodynamic consistency of the EoS (Marquina ez al. 2019),
and pg is a scale factor for the density that can be normalized. The GGL EoS is as smooth
as the corresponding relativistic fundamental derivative is continuous.

The square of the relativistic sound speed for the GGL EoS is

=2 VP =D +py (P): (4.3)

Its fundamental derivative depends on the two first derivatives of the adiabatic index:

_1+v  p 2y ¥ () +py"(p)

g 2 2 y(p)(y(p)—D+py'(p)

(4.4)

Depending of the selection of the EoS parameters, the relativistic fundamental
derivative (1.7) (equivalently, the nonlinearity term) reaches negative values in the domain
of the EoS, therefore it exhibits thermodynamic non-convex behaviour (Ibdfiez et al. 2017,
Marquina et al. 2019).

4.1. Hugoniot curves for GGL SRHD

We follow the procedure presented in § 3 to build the Hugoniot curves. In order to obtain
values of vy, (Pp), we need to provide a way to calculate p;, for the GGL EoS.
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From (4.1) and relativistic enthalpy definition # = 1 + € + (P/p), we have

_ ) =Dphep) —1
v (p)
Considering the post-shock pressure Pp, having a known state a and using (3.14) to
calculate the enthalpy, we obtain an implicit equation on pj:
_ (v(op) = 1) pp (hp(Pp, pp) — 1)
v (pb) '
An approximation of p, can be obtained by using the Newton method. With pp and Py,
we can calculate the enthalpy /;, in (3.14), and evaluate (3.11). By selecting the sign of j

according to the direction of the wave, we can calculate the shock speed (3.6) and flow
velocity (3.10).

P

(4.5)

Py, (4.6)

4.2. Integral curves for GGL SRHD

Following the procedure in § 3 to build integral curves, we particularize XZ in (3.30) for
the GGL EoS.

Using the acoustic sound speed (4.3) in terms of the density and the internal energy, we
have

o /p,,& i fpb L [ev@ @@ =Dtry'e) 4.7)
b o 0 1+ep

In order to solve this integral numerically, we need to provide an expression relating the
energy and the density. We use the fact that self-similar solutions are isentropic. The first
law of thermodynamics with constant entropy reads

P
de = —PdV = — dp. 4.8)
P
For the EoS (4.1), we have
—1
de = yip) =1 dp. 4.9)
P

If we consider a known state a of the integral curve that is followed by a state b, then we
get

70—1
€ = €q (ﬁ) exp((y1 — Y0)Y) (4.10)

a

where Y is an integral that comes from the exponential term of the adiabatic index:

(—(p — po)z)

exp| ——>—

Pb (70

Y — / dp. 4.11)
” P

Then, from a state a we can approximate (4.7) to a state pp, using the value of the internal
energy given by (4.10) at any intermediate point. Once this is calculated, we obtain the flow
velocity using (3.30). The pressure is given by the EoS using the internal energy (4.11) and
the density.
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4.3. Mixed curves for GGL SRHD

For the purpose of calculating states of a mixed curve, we use the Rankine—Hugoniot
conditions (3.1), where the unknown is the state after the shock. The state ahead is a point
in the previous integral curve, and the shock speed is the characteristic speed in it. Using
¢ to denote values belonging to the integral curve, we obtain the system

vpW — D%u® — A(pW — D®) = 0, (4.12)
W20 (1 +€y) + (y — Dpe — 800 — PO — A(puW? (1 +€ey) —S%) =0, (4.13)

W2up(1 4 ey) —wup — S° + D — A(p(1 + ey)W? — (y — Dpe — pW — °) = 0,
4.14)

where we have used /lk(uo) = A, y(p) = y for readability. Here, W is the Lorentz factor
evaluated at v. The conserved variables here are rewritten such that the unknowns are the
density, the internal energy and the velocity. Notice that u, the integral curve state, is a
trivial solution of the system.

From (4.12), we obtain a conservation equation

pW( — ) = D°w® — ). (4.15)
Introducing this in (4.13) and (4.14), we obtain, respectively,

(y — Dpe + Wl + ye)uD?w® — 1) = $°w® — ) + PP, (4.16)
Ay — Dpe + D = H(W( + ye) — 1) = 8¢ — Dv® — a7, (4.17)

Some terms cancel out by subtracting A multiplied by (4.16) from (4.17),
W + ye)(1 — av) = WORO(1 — 1), (4.18)

and by subtracting v multiplied by (4.17) from (4.16),

pe(y — (1 — Av) = PO(1 — 2v) + DYWOhP(w® — H)(v® = v), (4.19)

where we have simplified terms using the definition of the conserved variables. Now the
system is formed by (4.15), (4.18) and (4.19).
From (4.15), we can obtain the velocity as a function of the density only:

01,0 _ 01,0 _ 2
L Do /l)\/l_/lz_i_(D (v l))
0 P

O (1,0 _ 2
1+(D (v /1))
o)

(4.20)

v(p) =

The sign of the root has been selected with the criterion that v(p®) = v° must hold.
Then the two other equations are linear in the internal energy, so we obtain

OR0(1 — 1w°
o (W o1 = av )_1) 1’ 4.21)
W(l — Av) Y
o1 OWORO (1,0 _ 0 _
. _ PO = ) + DOWORO O — D U), (4.22)
oy — D1 — )
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from each of them, respectively. Equating the expressions, we get an implicit equation in
p whose zeros are density solutions of the system

g(p) = W(l — )(yP° + (y — 1)p)
+ oW (yWD<>(u<> — D% —v) = (y — Dp( — /w<>)> : 4.23)

This equation can be solved using the Newton method employing as initial guess a
perturbation of the density in the integral curve.

5. Example of application

In this section, we present a step by step outline for the calculation of points in each of the
three types of wave curves. Then we apply the solution procedure to blast wave Riemann
problems developing complex wave structure.

5.1. Practical methodology to calculate wave curves

The first wave curve developing with the origin at each initial condition is determined by
the behaviour of the pressure along it and the sign of the nonlinearity factor at the initial
state (see table 2).

Once the type of curve is selected, consecutive points in phase space are calculated until
the end of the wave curve due to its termination conditions or to the intersection with the
opposite sequence of wave curves.

Next we recap the procedure to calculate states of each type of wave curve given its
origin, and present the numerical methods used to deal with the equations presented in the
previous sections in the implementation of the solver.

5.1.1. Practical calculation of a Hugoniot curve

The origin state of a Hugoniot curve is the start of the jump discontinuity that would end
at each calculated state of the curve, and is always the known state a in the presented
formulas.

To calculate a point in a Hugoniot curve, we choose the pressure value of the new state.
This pressure value has to be a continuation of the wave curves sequence in phase space.
Notice that the reference value of pressure that has to be continued moves along the wave
curve, but the origin state never changes. Once the pressure is selected, we calculate the
corresponding density value from the EoS. For the GGL EoS, we solve (4.6) using a
Newton iteration procedure. From the new density and pressure values, we can obtain
the enthalpy in the new state through (3.14), the squared mass flux invariant from (3.11),
and the shock speed from (3.6). In (3.11) and (3.6), we select the sign accordingly to the
direction of the movement of the wave. As the initial state is always ahead, the states
calculated from the initial left (right) state move to the left (right). Finally, we obtain the
fluid speed at the new state using (3.10) and the shock speed (3.6).

We control the termination of a Hugoniot curve by monitoring the monotonicity of the
shock speed. If it changes sign, then we perform a mesh refinement on the pressure until
the termination state, vg(u)’ = 0, is found with a certain tolerance.

5.1.2. Practical calculation of an integral curve
To calculate a point in an integral curve, we choose the density value of the new state, a
continuation of those in the wave curve sequence. This serves as the final density for the
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integral Xs in (3.29), which, depending on the EoS, may need to be solved numerically.
For the GGL EoS, the integral becomes (4.7) and needs the internal energy values related
to the density at any intermediate state used for numerical integration. We obtain them
by solving (4.10) numerically. Finally we evaluate the fluid velocity at the new state with
(3.30) and the pressure through the EoS.

Every new calculated state of an integral curve can be taken as origin for the calculation
of the next state, which allows us to take small density steps that decrease the numerical
error in the solution of (3.29).

An integral curve is no longer defined when the nonlinearity factor vanishes.
Nevertheless, when calculating states in a discrete fashion, we never reach the exact zero
where the definition equation blows up. Since the curve is defined to both sides of the zero,
we can monitor the sign of the nonlinearity factor. If it changes sign, then we perform
a mesh refinement on the density until the termination state, n(u) = 0, is found with a
certain tolerance.

5.1.3. Practical calculation of a mixed curve

The calculation of a mixed curve depends on a preceding integral curve whose start and
end states are already known. We store points of the integral curve equidistant in density
to use as origin states for each point on the mixed curve. We start calculating from the last
state of the integral curve, and move progressively towards its origin.

Given an origin state in the integral curve, we can solve the Rankine—-Hugoniot
conditions that jump to the mixed curve state. For the GGL EoS, we solve (4.23) to obtain
the density of the state belonging to the mixed curve. We use a Newton method with initial
guess a perturbation of the integral curve density. We verify that the convergence is not to
the trivial solution but, indeed, to the closer solution as Liu (1975) prescribed. Then we
can obtain the fluid velocity using (4.20), the internal energy by (4.21) or (4.22), and the
pressure through the EoS. We have noticed that (4.23) stiffens close to the state where a
mixed curve ends as a sonic shock, possibly making the root finder fail. Similar scenarios
have been reported in other exact Riemann solvers (Giacomazzo & Rezzolla 2006).

If the mixed curve becomes sonic, there is no non-trivial solution to the
Rankine—Hugoniot conditions beyond the integral curve state that serves as origin to the
termination state of the mixed curve. In the case where we cannot find a solution, we
perform mesh refinement on the integral curve to obtain a better approximation of the
termination state of the mixed curve.

Mixed curves comprise the more challenging computation of the three types of wave
curves. On the one hand, (4.23) needs to be solved numerically and converge specifically
to one of its multiple roots, needing a criterion to select the initial guess and discriminate
if the found root is appropriate. On the other hand, any refinement to the termination state,
if the shock becomes sonic or if the curve is reached by the velocity in the stack, cannot
be performed directly on the mixed curve. The last state needs to be found by increasing
the resolution of its origin state within the integral curve.

In the following, we apply our exact Riemann solver for non-convex SRHD to two blast
wave problems using the GGL EoS. We consider two sets of GGL parameters, ensuring
causality and thermodynamical consistency (Marquina et al. 2019): yo = 4/3, y1 = 1.9,
po=1,00=1.1and yp =4/3, y1 =5/3, po = 1, o9 = 0.6. The spatial domain is set to
x € [0, 1], with initial discontinuity located at x = 0.5. The initial conditions are gathered
in table 3.
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GGL1 w=4/3 =19 po =1 op=1.1
GGL2 vw=4/3 y1=5/3 po =1 op = 0.6
Blast wave 1 pL=>5 v =0 Pp=1000 pp=0.125 wvg=0 Pr=0.01
Blast wave 2 pL =1 v, =0 P =1000 pr=0.125 wvg=0 Pr=0.01

Table 3. GGL EoS parameters and Riemann problem initial conditions for the examples, taken from
Marquina et al. (2019). The labelling of the parametrizations of the EoS is different from the reference.

Origin state Termination state
Left wave curves v P P v P P Wave speed
7 0 1000 5.00 0.3394 4943  2.2664 0.2939
M — — — 0.9200 50.76  0.4424 —0.0861
I 0.9200 50.76  0.4424 09863 7438  0.1583 0.8635

Table 4. Origin and termination states of the wave curves moving to the left in the blast wave 1 Riemann
problem with GGL1 EoS.

The five orders of magnitude difference in the initial values of the pressure produces a
strong blast wave with a thin density shell. While in convex SRHD the shell is led by a
front shock, we show that in non-convex dynamics, the leading nonlinear wave can be a
composite wave instead. We describe the steps of the solution procedure and present, for
reference, the origin and termination state of all wave curves involved.

5.2. Blast wave 1 problem with GGLI

5.2.1. Wave curves

In a blast wave problem, the higher pressure decreases. In this case, the initial left state
(larger pressure) is in a convex region (G(r)(uz) > 0) and therefore an integral curve starts
to the left. The lower pressure increases and since the right initial condition is also in a
convex region of the EoS (G(r)(ug) > 0), a Hugoniot curve starts to the right.

The origin and termination states of the wave curves in the sequence moving to the left
are gathered in table 4. The first integral curve is terminated when the nonlinearity factor
vanishes. A mixed curve follows and is calculated using points from the integral curve until
it becomes a sonic shock and it is terminated. We do not indicate the origin state of the
mixed curve in the table, as the origin moves along the previous integral curve. Another
integral curve continues from the terminated mixed curve and does not traverse any other
change of sign of the nonlinearity factor. Therefore, it is continued until its intersection
with the right sequence of wave curves. The intersection in phase space takes place at
v =0.9863, P = 7.483.

The origin and termination states of the wave curves in the sequence moving to the right
are gathered in table 5. The first Hugoniot curve terminates when the entropy condition
fails. An integral curve follows, but encounters a zero of the nonlinearity factor and is
terminated. A mixed curve therefore follows. It intersects the left sequence of wave curves
before reaching the first state of the previous integral curve as origin.

The left and right sequences of wave curves are drawn in phase space in figure 2,
together with a zoom of the intersection region. The legend displays H for Hugoniot
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Origin state Termination state
Right wave curves v P P v P o Wave speed
H 0 0.0100  0.1250  0.9780  5.635  1.457 0.9958
A 0.9780 5.635 1.457 0.9843  6.992 2.266 0.9857
M — — — 0.9863  7.438 2.902 0.9907

Table 5. Origin and termination states of the wave curves moving to the right in the blast wave 1 Riemann

problem with GGL1 EoS.
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Figure 2. Wave curves for the exact

Velocity

solution of the blast wave 1 Riemann problem with GGL1 EoS.

(a,b) Wave curves. (¢) Zoom at the intersection region. Here, H denotes Hugoniot curve, I integral curve,
and M mixed curve; L refers to left-moving wave curves, and R to right-moving wave curves.
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Figure 3. Wave speeds along the different wave curves for blast wave 1 problem with GGL1 EoS:
(a) left-moving waves, (b) right-moving waves. (¢) A zoom of the upper region of the right-moving waves.

curves, I for integral curves, and M for mixed curves. We denote with L the wave curves
moving left and with R the right-moving wave curves.

5.2.2. Mapping of wave curves to spatial domain
Each calculated wave curve corresponds to a wave in the spatial domain. Given that their
position in space depends on the wave speed, wave curves in the sequence that are slower
than posterior waves are overtaken and do not appear in the solution profiles. In figure 3,
we draw the evolution of the wave speed along the wave curves.

The spatial position of a wave is calculated using (3.38). For this example
Xinit. discont. = 0.5 and we present the solution profiles at 7 = 0.4. In the description below,
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we use approximations of the wave speeds for easier reading. Tables 4 and 5 contain more
precise values.

The sequence to the left starts with an integral curve of increasing wave speed. It
starts with v,, & —0.580 and terminates when the wave speed is v,, & 0.294. In the
spatial domain, this curve translates into a rarefaction wave extending from x = 0.268
to x = 0.616. The next wave curve is a mixed curve that terminates before using all the
previous integral curve as origin. This translates into a shock wave in the spatial domain,
a jump discontinuity to the last state of the curve, from the origin of such state. This last
state has shock speed v,, & —0.086, therefore the jump is located at x = 0.464, within
the previous rarefaction wave. Indeed, the state ahead of the jump is the rarefaction state
origin of the last state in the mixed curve. The last part of the rarefaction is therefore
overtaken. Finally, another integral curve follows from this position until the intermediate
state. This is reached with v,, ~ 0.864, so the last rarefaction to the left ends at x = 0.844.
Nevertheless, the contact discontinuity moves with speed equal to the fluid speed at the
intermediate state, which is v & 0.986. The difference of velocity makes a constant state
appear between the last rarefaction to the left and the contact discontinuity.

The sequence to the right starts with a Hugoniot curve that terminates at the fastest
wave speed of the whole sequence. It translates into a shock wave, a jump discontinuity
from its origin, the initial right state, to the last state of the curve with speed v,, & 0.996,
therefore at position x = 0.898. An integral curve follows, extending from the shock. But
this integral curve is followed by a mixed curve, so as in the left sequence case, not all the
corresponding rarefaction states appear in the spatial domain. It shows up until the state
that serves as origin to the mixed curve point that intersects the left sequence. This happens
when the integral curve has wave speed v,, & 0.991, therefore at x = 0.896. At this point,
there is the shock wave corresponding to the mixed curve, jumping from the rarefaction to
the intermediate state. Since this speed is faster than the fluid at the equilibrium, there is
also a constant state between the last wave to the right and the contact discontinuity.

The profiles for density, pressure and velocity are shown in figure 4, along a detail of the
density shell. We represent with points the key states calculated for jumps discontinuities,
and the rarefactions to better show their curvature. We add lines connecting the dots to
better see the jumps of shock waves and the constant states. The three waves described
to the left are clearly seen in all profiles, while in order to appreciate the details of the
composite wave to the right, we need to focus on the density shell. It features the two
shocks united by a rarefaction fan as the front structure of the blast wave.

5.3. Blast wave 2 problem with GGL2

5.3.1. Wave curves

In this blast wave problem, the initial left state (larger pressure) is in a region of negative
nonlinearity term (Gg)(uz) < 0) and therefore a Hugoniot curve starts to the left. The
lower pressure increases, and since the right initial condition is in a convex region of the
EoS (G(r)(ur) > 0), a Hugoniot curve starts to the right.

The origin and termination states of the wave curves in the sequence moving to the left
are gathered in table 6. The first Hugoniot curve terminates when the entropy condition
fails. It is continued in phase space by an integral curve that intersects the right sequence
of wave curves. The intersection in phase space takes place at v = 0.9794, P = 4.922.

The origin and termination states of the wave curves in the sequence moving to the right
are gathered in table 7. The first Hugoniot curve terminates when the entropy condition
fails. An integral curve follows. When it reaches a zero of the nonlinearity factor, it is
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Figure 4. (a) Density, (b) zoom of its density shell, (¢) pressure and (d) velocity profiles for the blast wave 1
problem with GGL1 EoS.

Origin state Termination state
Left wave curves v P P v P 0 Wave speed
H 0 1000 1.00 0.2085 6275 0.7834 —0.8393
T 0.2085 6275 0.7834  0.9794 4922  0.0378 0.9196

Table 6. Origin and termination states of the wave curves moving to the left in the blast wave 2 Riemann
problem with GGL2 EoS.

terminated. A mixed curve therefore follows, and it is calculated until it uses the start of
the previous integral curve as origin. The first Hugoniot curve resumes with origin in the
initial state and continues the sequence. It intersects the left sequence of wave curves.
The left and right sequences of wave curves are drawn in phase space in figure 5,
together with a zoom of the intersection region. The legend displays H for Hugoniot

975 A48-22


https://doi.org/10.1017/jfm.2023.903

https://doi.org/10.1017/jfm.2023.903 Published online by Cambridge University Press

Exact Riemann solver for non-convex SRHD

Origin state Termination state
Right wave curves v P 0 v P P Wave speed
Hi 0 0.0100  0.1250 0.9566 2.642 1.272 0.9848
A 0.9566  2.642 1.272 0.9617 2.833 1.613 0.9669
M — — — 09731 3727 2416 0.9848
Hy 0 0.0100  0.1250 09794 4.922 2.733 0.9885
Table 7. Origin and termination states of the wave curves moving to the right in the blast wave 2 Riemann
problem with GGL2 EoS.
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Figure 5. Wave curves for the exact solution of the blast wave 2 Riemann problem with GGL2 EoS.
(a,b) Wave curves. (¢) Zoom at the intersection region. Here, H denotes Hugoniot curve, I integral curve,
and M mixed curve; L refers to left-moving wave curves, and R to right-moving wave curves.
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Figure 6. (a) Density, (b) zoom of its density shell, (¢) pressure and (d) velocity profiles for the blast wave 2
problem with GGL2 EoS.

curves, I for integral curves, and M for mixed curves. We denote with L the left-moving
wave curves, and with R the right-moving wave curves.

5.3.2. Mapping of wave curves to spatial domain

The position of the waves in the spatial domain can be deduced from the wave speeds
at the termination state of each wave curve. As in the previous example, we present the
solution profiles at final time 7 = 0.4.

The sequence to the left starts with a Hugoniot curve that terminates with shock speed
vy, & —0.839 and therefore translates in the spatial domain to a shock wave at x = 0.164.
The following integral curve represents a rarefaction wave. The head moves with the same
speed as the shock, and the tail reaches the middle equilibrium state with v,, &~ 0.920,
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Blast wave 1 pr=1 vy=0 Pr=1000 pr=0.125 vg=0 Pgr=0.01
Perturbation1 pr =1 vy =0 Pr=1000 pgr=0.090 vg=0 Pr=0.01
Perturbation 2 pPL = 1 v = 0 PL = 1000 PR = 0.096 UR = 0 PR =0.01

Table 8. Perturbations proposed for the blast wave 2 Riemann problem.
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Figure 7. Wave curves of perturbations 1 and 2 from the blast wave 2 problem with GGL2 EoS.

therefore ending the rarefaction at x = 0.868. The contact discontinuity moves with the
speed of the fluid, which at the equilibrium state is v &~ 0.974, therefore there is a constant
state between the tail of the rarefaction and the contact discontinuity, located at x = 0.890.

The sequence of wave curves to the right comprises four wave curves. Nevertheless,
it is the shock wave corresponding to the last calculated Hugoniot curve that is faster,
with shock speed v,, &~ 0.989. Therefore, this shock wave overtakes the waves from the
previous wave curves, and unites the initial condition with the equilibrium state at position
x = 0.896. There is a constant state from this shock until the contact discontinuity.

The profiles for density, pressure and velocity are shown in figure 6. The wave moving
to the left is the composite wave described from the left wave curve sequence. To the right,
as the front of the density shell, we observe a single shock wave although there are four
wave curves in the right sequence.

To illustrate the complexity of non-convex dynamics, we introduce small perturbations
in the density of the blast wave 2 Riemann problem. The perturbations can lead to quite
different wave structures in the spatial domain, although the sequence of wave curves in
phase space is similar. We gather the initial conditions in table 8.

The different density values at the right initial condition modify the states of the right
wave curves sequence, which in turn change the intersection with the left sequence in
phase space. We draw the intersection of the wave curves in phase space in figure 7. In
perturbation 1, the intersection takes place along the integral curve of the right sequence
of wave curves. In perturbation 2, it happens in the mixed curve that follows the integral
curve when it is terminated.
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Figure 8. Density shells of perturbations 1 and 2 from the blast wave 2 problem.

The density shells obtained from the data with perturbations are depicted in figure 8.
The front of the shell is a composite wave in both cases. In perturbation 1, we observe
a shock and a rarefaction wave, since there is a Hugoniot curve followed by an integral
curve in phase space. In perturbation 2, we observe a composite wave of two shocks with
a rarefaction fan in the middle, analogous to the one observed in the blast wave 1 problem.
Since the intersection of the wave curves happen shortly after the beginning of the mixed
curve, this one does not overtake the rarefaction completely.

6. Conclusions

We have proposed a procedure to calculate the general analytical solution of the Riemann
problem in SRHD when the system is closed with a non-convex EoS. We present
the equations defining the different wave curves in the pressure—velocity phase space:
Hugoniot curves, integral curves and mixed curves, as well as their termination and
continuation conditions. We describe the procedure to construct the exact solution and
relate the wave curves to waves in the spatial domain. We apply the exact Riemann solver
to relativistic blast wave problems that showcase the complex wave dynamics arising in
non-convex SRHD.
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