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COUNTEREXAMPLE TO A CONJECTURE
OF GREENLEAF

BY
PAUL MILNES

Greenleaf states the following conjecture in [1, p. 69]. Let G be a (connected,
separable) amenable locally compact group with left Haar measure, u, and let U
be a compact symmetric neighbourhood of the unit. Then the sets, {U™}, have the
following property: given ¢>0 and compact K C G, Imy=my,(e, K) such that

|p(xU™ N U™)[w(U™)—1|<e Vm=m, and Vxek.

In this paper we exhibit a counterexample to this conjecture, the group G of
pairs {(x, ») | x, y € R, x>0} with multiplication, (x1, y;)(xXs, ¥2) = (X1X2, X1 Y2+ 1),
and the polygon, U, whose sides connect, in order, the points, (1/n, n), (1, 1),
(n, n%), (n, —n?), (1, —n), (1/n, —n) and back to (1/n, n), where n>2. U us a com-
pact symmetric neighbourhood of the unit (1, 0). We prove that

w((@, 0)U™ A UNu(U™<1—(1—1/a)/8 ¥m =1,2,3,...,ifn>2and a> 1.

The group G can be regarded as a subset of the plane. It is easy to check by
induction that:

(i) each U™ is symmetric about the x-axis.
m+1

(i) max{y | (x,»)) e U™ = > n'<2n™*' (n>2, always).
i=2

(iii) U™ is contained between the lines x = 1/n™ and x = n™.
(iv) each U™ is convex in the y-variable; that is, if (x, y,), (x, ;) € U™ and
0<b<1, then (x, by, +(1—b)y,) € U™

Left Haar measure, p, on G is given by du=x"2 dy dx, so p(U™ N {(x, y) | x=1})
<f Y 4nmtix~2 dx<4n™*t. From (iv) we deduce that the upper part of the
boundary of U™ is given by {(x, y) € U™ | y=max {y, | (x, y1) € U™}}.

LemMma. U™ N {(x,y) | x<1}, m>2, is bounded above by the lines

y = x(z ni)+n from x = 1/n™ to x=1/m1
2
y= x(z ni+n’") x = 1/nm-1 x=1/nm"2
2
m—1
y= x( > n‘)+112+n2 x = 1/nm-2 x = 1/npm-3
2
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m-1
y= X( 2, ni+ﬂ"“1)+n2 x = 1/nm=3 x = 1/nm-¢
2
m—2 . 3 )
y = x( > nl)+n3+2n’ x = 1/nm"* x = 1/n"-°
2 2
m—2 ) 3 )
y= x( z n1+nm—2)+2nt X = l/nm—s x = l/I’lm_G
2 2
. m—k k+1
Y= x( > nt)+nFtiy S ont x = 1/nm-2k x = 1jpm-2-1
2 2
m—k k+1l
y = x( z ni+nm—k)+ z n x = l/pm-2%-1 x = 1/pm-2k-2
2 2

Proof. We give an indication of the proof of the induction step. Suppose the
formulae are true for m. Since U™** is convex in the y-variable, we calculate

max {y | (xo, ) € U"*1} = y, for each x, € [1/n™*1, 1].
Now, if (x,, y) € Um+1,

(%0, ¥) = (x1, y1)(x3, ¥2) = (X1X2, X1Y2+ Y1),
where (X1, ;) € U and (x,, yo) € U™. The way to get the maximum value of x;y,+y;
is to choose x; € [1/n, n] as large as is compatible with x;x,=x, and x, € [1/n™, n™],
then choose y,(y,) as large as possible keeping (x1, 1) € U ((xo/x1, y2) € U™).
The result of these instructions is that the upper boundary of U™*! between
x=1/n' and x=1/n' "1 is:

(i) the left translate by (n, n%) of the upper boundary of U™ between x=1/n’*1
and x=1/w if j<m—1;

(i) the right translate by (1/n™, 31, .2 1) of the upper boundary of U between
x=1and x=nif j=m;

(iii) the right translate by (1/n™, 31,2 1') of the upper boundary of U between

x=1/nand x=1if j=m+1.
Using (ii) and (iii), the induction formulae are easily verified for m=2 (only two
lines apply). We verify the formula for the boundary of U™*! between x=1/nm*1-2k

and x=1/n""2%¢, where m+1—2k <m—1, namely, k> 0.
Since
m—-k+1

m—k k k
(n, nz)(x, x > nt4nt+> ni) = (nx, n(x > iR+ n") +n2)
2 2 2 2

which lies on the line, y=x SF+V-* n' 4 n*+1+5k+1 pt, we are finished. The other
formulae can be verified similarly.
Ifa>1,

+1

a/n™

w(U™\(a, 0)U™) > J 2nx=2 dx> 20+ (1 —1/a),

1/n™
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since all the line segments bounding U™ above lie above the line, y=n. It remains
to show w(U™)<16n™+1, We have w(U™ N {(x,y) | x=1})<4n™*! already, and
use frequently the fact that >3 ' <2n’.

Computing an upper bound for (U™ N {(x, y) | x <1}), we must sum some series
of terms having powers of » ranging from m (or m+1) down to m/2 or (m—1)/2,
depending whether m is even or odd. We add in all the powers down to zero to
facilitate computation.

1nm-2 1nm-1
4nmxx~2 dx + 4nm~2xx~2dx+ .- = 8n™logn
1/nm 1/nm=2
+8nm~2logn+ .- <16n™logn.
1/am=2 1/nm—4
2n™xx =% dx + 2n™~1xx~2dx+ .- =2n"logn
1/am=1 1/nm=3
+2n""tlogn+ - <4n™logn.
1nm -1 1/nm=3
2nx~2dx+ 2n?x"2dx+ - = 2™t —n™)
1/am 1/am=-2
+2(rm—nm ")+ - <20m L,
1 1
2nx~2 dx+ 2nm8x~2dx+ - <2n™ 42014 . <4n™
1/nm—2 1/nm=4

Adding up, we have
p(U™) <4n™*14+16n™ log n+4n™ log n42n™** +4n™ < 16n™*1,

since (log n)/n<2/5 when n>2.

Among the terms calculated when evaluating an upper bound for u(U™), the
only one that has not been grossly overestimated and becomes dominant, as
n —00, is the second last one calculated, 2n™*1, Thus, by choosing #n and a large,
one could have u((a, 0)U™ N U™)/uw(U™)<e, Vm=1,2,3,...,for any given ¢>0
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