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Abstract. Higher-dimensional binary shifts of number-theoretic origin with positive topo-
logical entropy are considered. We are particularly interested in analysing their symmetries
and extended symmetries. They form groups, known as the topological centralizer and
normalizer of the shift dynamical system, which are natural topological invariants. Here,
our focus is on shift spaces with trivial centralizers, but large normalizers. In particular,
we discuss several systems where the normalizer is an infinite extension of the centralizer,
including the visible lattice points and the k-free integers in some real quadratic number
fields.
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1. Introduction
Shift spaces under the action of Zd form a much-studied class of dynamical systems, both
for d = 1 (cf. [28]) and for d � 2. In the latter case, much less is known in terms of general
classifications, and even subclasses such as those of algebraic origin [34] are still rather
enigmatic, despite displaying fascinating facets that have been intensively analysed. In
particular, one is looking for interesting topological invariants to help analyse the jungle,
and quite a bit of progress in this direction has been made recently.
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Among the available tools are the automorphism group of a shift space and its various
siblings and generalizations; see [2, 15–19] and references therein. Here, we adopt the point
of view of [2, 9] to analyse both the (topological) centralizer (denoted by S below) and the
normalizer of the shift space, the latter denoted by R, as this pair can be quite revealing as
soon as d � 2. In fact, both the topological setting and the extension to higher dimensions
go beyond some of the initial studies [21, 26] that specifically looked at reversibility in the
measure-theoretic setting for d = 1; see [2, 31, 33] and references therein for more on the
early reversibility results. Further, the groups S and R are often explicitly accessible, both
for systems of low complexity, where S is often minimal due to some form of topological
rigidity, and beyond, where other rigidity mechanisms of a more algebraic nature emerge.

Below, we consider binary shift spaces of number-theoretic origin, as motivated by
recent progress on B-free systems and weak model sets; see [6, 19, 20, 23] and references
therein. By way of characteristic examples with pure point spectrum, we demonstrate that
positive topological entropy may very well be compatible with small or trivial centralizers,
which means that S agrees with the underlying lattice (meaning a cocompact discrete
subgroup of Rd ) or a finite-index extension thereof, but also that such systems may have
considerably larger normalizers, which is of particular interest for d � 2. In fact, as shown
in [9, 13], it is the group R that captures some obvious symmetries, as visible from the
chair tiling and related shift spaces with their pertinent geometric symmetries. Also, the
computability of S and R in these cases can be an advantage over some of the more
general, abstract (semi-)groups that are presently attracting renewed attention.

The paper is organized as follows. After the introduction of some concepts and
notions in §2, we set the scene with the well-known example of the visible lattice
points of Z2 in §3, leading to Proposition 3.2 and Corollary 3.4, which in particular
show that one has R = Z2 � GL(2, Z). Then §4 states and proves this for Zd with
d � 2 (Theorem 4.1) and introduces the general framework of lattice-based shift spaces,
which can often be characterized by a rather powerful admissibility condition for its
elements (Proposition 4.4). Then, under some mild assumptions, the normalizers are
always maximal extensions of the corresponding centralizers (Theorem 4.5), with elements
that are affine mappings (Corollary 4.7).

Section 5 explains the general number-theoretic setting of an algebraic B-free system in
higher dimensions, based on the classic Minkowski embedding of (commutative) maximal
orders and their ideals as lattices in Rd for a suitable d . Here, Theorem 5.3 states the results
on the triviality of S and the direct product nature of R, which are true under a coprimality
condition of the ideals chosen for B and a mild convergence condition, together known
as the Erdős property, in generalization of the one-dimensional notion [19] from B-free
integers.

Sections 6 and 7 then cover some paradigmatic examples from quadratic number fields.
In the complex case, we treat the shift spaces generated by the k-free Gaussian or the
k-free Eisenstein integers (Theorems 6.4 and 6.5). In both cases, R is the extension of
S � Z2 by a maximal finite subgroup of GL(2, Z), which is substantially different from
the case of the visible lattice points. Finally, in the real case, we consider k-free integers
in the maximal order of Q(

√
m) for m ∈ {2, 3, 5}. Here, Theorem 7.3 states that R is the

semi-direct product of S � Z2 with a non-trivial infinite subgroup of GL(2, Z), which can
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be given a clear interpretation in terms of algebraic number theory. The latter case, which
to the best of our knowledge is the first example of this type, is intermediate between known
examples from inflation tilings and shifts such as that generated by the visible lattice points.
Thus, it looks particularly promising for future work and extensions to general number
fields.

2. Preliminaries
Let Γ ⊂ Rd be a lattice in d-space, that is, a discrete and cocompact subgroup of Rd .
Below, we will be working with the full shift (or configuration) space {0, 1}Γ , equipped
with the standard product topology, and certain of its closed subspaces (called subshifts
or simply shifts). We will generally use X to denote such a shift space, referring to either
the full shift or the subshift under consideration. When the situation is independent of the
geometry of the lattice, we will choose Γ = Zd for simplicity. Any element x ∈ X can also
be viewed as a subset of Γ , by taking the support of x, that is, by mapping x to

Ux := supp(x) = {n ∈ Γ : xn = 1} ⊆ Γ .

Conversely, any point set U ⊆ Γ can also be viewed as a configuration, by mapping it
to xU = 1U , that is, to its characteristic function. As usual, X admits a continuous action
of Γ on it, defined by T : Γ × X −→ X, where T (t , x) = Tt (x) with (Tt (x))n := xn+t .
When working with Zd , we shall usually refer to its standard basis as {e1, . . . , ed}, and
align this with the elementary shift action of the d commuting shift operators Tei . For the
action of Zd in this case, with t = (t1, . . . , td ), this simply means Tt (x) = T

t1
e1 · · · T tded (x)

for all x ∈ {0, 1}Zd .
Likewise, there is an action of Γ on its subsets defined by

αt (U) = t + U := {t + u : u ∈ U}.
It is easy to check that UTt (x) = α−t (Ux). If we denote the power set of Γ by �, we thus
get the commutative diagram

X
Tt−−−−→ X

γ

⏐⏐� ⏐⏐�γ
�

α−t−−−−→ �

(2.1)

where γ is the mapping defined by x �→ Ux . This is a homeomorphism if we equip� with
the local topology, where two subsets of Γ are ε-close to one another when they agree on
the ball of radius 1/ε around 0. Consequently, by a slight abuse of notation, we will not
distinguish these two points of view whenever the context is clear. This means that we will
consider a subset U ⊆ Γ simultaneously as a configuration, and vice versa.

In this spirit, we also consider the group of lattice automorphisms, Aut(Γ ) � GL(d, Z).
Indeed, if Aut(X) denotes the group of homeomorphisms of X, any M ∈ Aut(Γ ) induces
an element hM ∈ Aut(X), where

(hM(x))n := x
M−1n

. (2.2)
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In fact, the mapping M �→ hM defines an injective group homomorphism. Here, one can
check that UhM(x) = MUx , so the counterpart to (2.1) is the commutative diagram

X
hM−−−−→ X

γ

⏐⏐� ⏐⏐�γ
�

M−−−−→ �

(2.3)

which makes calculations with elements of the form hM more convenient in the formula-
tion with subsets. From now on, we identify X and �, and use the symbol X for both. For
ease of understanding, we will normally use x, y for configurations and U , V for sets.

A point set S ⊂ Rd , by which we mean an at most countable union of singleton sets, is
said to have natural density if

dens(S) = lim
r→∞

card(S ∩ Br)
vol(Br)

exists, where Br denotes the closed ball of radius r around 0. One can use other sets for
averaging, as long as they are centred around 0 and satisfy some condition of Følner or van
Hove type; see [4, 8] for details.

Below, we shall need the following simple result on sublattices of a given lattice, where
the term sublattice is meant to include the property that the corresponding index is finite.

FACT 2.1. Let Γ be a lattice in Rd , and let Γ1 and Γ2 be sublattices of Γ , with
corresponding indicesm1 and m2, respectively. Then Γ1 ∩ Γ2 and Γ1 + Γ2 are sublattices
of Γ as well.

Further, if the indices m1 and m2 are coprime, one has Γ1 + Γ2 = Γ , which implies
that Γ1 meets all cosets of Γ2 and vice versa.

Proof. If [Γ : Γi] = mi , one has miΓ ⊆ Γi by standard arguments, which implies

m1m2Γ ⊆ Γ1 ∩ Γ2 ⊆ Γ1 + Γ2 ⊆ Γ .

The sublattice property for Γ1 ∩ Γ2 and Γ1 + Γ2 is then clear.
The next statement is a consequence of what is sometimes referred to as the diamond

isomorphism theorem, but can also be seen directly as follows. Set n = [Γ : (Γ1 + Γ2)]
and ni = [(Γ1 + Γ2) : Γi]. Then, for i ∈ {1, 2},

mi = [Γ : Γi] = [Γ : (Γ1 + Γ2)][(Γ1 + Γ2) : Γi] = nni ,

which implies n| gcd(m1, m2) = 1 and thus Γ1 + Γ2 = Γ . The final implication for the
cosets is a now simple consequence.

An important concept for shift spaces is that of a block map; see [28] for background.
When working with subshifts X ⊆ AZ

d
and Y ⊆ BZ

d
over finite alphabets A and B, a

continuous mapping h : X −→ Y is called a block map if there is a non-negative integer
� such that, for every x ∈ X and all n ∈ Zd , the image y = h(x) at position n is fully
determined from the patch {xn+m : m ∈ [−�, �]d}, that is, from the knowledge of x within
a d-cube of sidelength 2� centred at n. In other words, the action of h can be seen as
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the result of a sliding block code φ = φh that, for some fixed � ∈ N0, maps a cubic block
of (2�+ 1)d symbols from A to a single letter from B, positioned at the centre of the
block (which can easily be modified when needed). This is the symbolic version of a
local derivation rule from discrete geometry [4, §5.2]. An important result that we shall
need repeatedly is the Curtis–Hedlund–Lyndon (CHL) theorem: if a continuous mapping
h : X −→ Y intertwines the shift action on X and Y, it must be a block map based on some
code φ of the above type [28, Theorem 6.2.9].

Below, we shall only be interested in subshifts on which the action of Γ is faithful,
which means that the subshift contains non-periodic elements. In this context, it is also
natural to consider the affine lattice group Γ � Aut(Γ ), whose elements (t , M) act on
Rd via (t , M)(y) := My + t , and correspondingly on X. In this formulation, the group
multiplication is (t , M)(s, N) = (t +Ms, MN), with neutral element (0, 1) and inverse
elements (t , M)−1 = (−M−1t , M−1). This group will become important later.

Further notation and concepts can now better be introduced with a paradigmatic
example, which will simultaneously motivate the various extensions to follow.

3. Visible lattice points and their shift space
Consider the visible points V of the square lattice, Z2, which are defined as

V := {(m, n) ∈ Z2 : gcd(m, n) = 1}.
They are also known as the primitive points, and are used in many places; see also the cover
page of [1]. Clearly, one has V = Z2\ ⋃

p∈P (pZ2), where P denotes the set of rational
primes. Figure 1 shows a finite patch around the origin, in comparison with another set that
will be discussed later, in §6. Let us recall some well-known properties of V ; see [4, 8]
and references therein for background and further results.

FACT 3.1. The set V is uniformly discrete, but not relatively dense. In particular, V
contains holes of unbounded inradius that repeat lattice-periodically. Yet, it satisfies
V − V = Z2 and has natural density dens(V ) = 1/ζ(2) = 6/π2, where ζ(s) is Riemann’s
zeta function.

Furthermore, the set V is pure point diffractive, with the diffraction measure being
invariant under the action of the affine group Z2 � GL(2, Z).

Now, let XV := Z2 + V be the orbit closure of V under the shift (or translation) action
of Z2, where the closure is taken in the standard product topology, also known as the local
topology due to its geometric interpretation: two configurations (or subsets) are close if
they agree on a large neighbourhood of 0 ∈ Z2. In particular, since V has holes of arbitrary
size, one immediately obtains that ∅ ∈ XV , where ∅ is the empty set and represents the
all-0 configuration. Clearly, XV is a compact space, which is canonically identified with a
subshift in {0, 1}Z2

, and (XV , Z2) is a topological dynamical system.
Call a subset of Z2 admissible if it misses at least one coset modulo pZ2 for any p ∈ P .

One easily verifies that the set of admissible sets constitutes a subshift of {0, 1}Z2
as well,

denoted by A. Since the set V by the remark above misses the zero coset modulo each
pZ2, one readily verifies that the elements of XV are admissible, so XV ⊆ A. In fact, it
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FIGURE 1. Central patch of the visible points of Z2 (dots) and of the square-free Gaussian integers (circles).
The cross in the centre marks the origin

was shown in [5, Lemma 4] that V shows all cosets except the zero coset modulo each
pZ2, and is thus a maximal element of XV . Further, one has the following result, the first
part of which will be generalized below on the basis of Propositions 4.4 and 5.2.

PROPOSITION 3.2 [5]. The space XV coincides with the shift space of admissible sets, A.
In particular, XV is hereditary (closed under the formation of subsets). The topological
dynamical system (XV , Z2) has topological entropy (6/π2) log(2).

With respect to the existing natural frequency measure νM, which is also known as
the Mirsky measure, the measure-theoretic dynamical system (XV , Z2, νM) has pure point
dynamical spectrum, but trivial topological point spectrum.

The measure νM is ergodic for the Z2-action, and V is a generic element for νM in XV .
Moreover, the measure-theoretic entropy for νM vanishes.

The characterization of a number-theoretic shift space via an admissibility condition
was originally observed by Sarnak for the square-free integers, and later extended to Erdős
B-free numbers in [20] and generalized to the lattice setting in [32]. Since this step is vital
to us, we later present a streamlined version of the proof that covers the generality we need.

Remark 3.3. The generating shifts induce unitary operators on the Hilbert space
L2(XV , νM), and the simultaneous eigenfunctions form a basis of this space [6, 7]. Except
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for the trivial one, no other eigenfunction is continuous. However, as follows from a recent
result by Keller [24] (see also the discussion in [6, 10]), there is a subset of XV of full
measure on which the eigenfunctions are continuous. This is related to the fact that V
is a weak model set of maximal density [6] in the cut and project scheme (R2, H , L)
with compact internal group H = ∏

p∈P Z2/pZ2 and the lattice L being the diagonal
embedding of Z2 into R2 ×H . It is an interesting open problem to understand the missing
null set, and to connect it with the rather intricate relation between the topological and the
measure-theoretic structure of this dynamical system.

Let Aut(XV ) be the automorphism group of XV , by which we mean the group of all
homeomorphisms of XV , irrespective of whether they commute with the generators T1, T2

of the Z2-action or not. The translation action of Z2 on XV is faithful, as a result of which
we have G := 〈T1, T2〉 � Z2. Clearly, XV is not the full shift, and ∅ is the only fixed point
of XV under the translation action, since Z2 (as the all-1 configuration) is not an element
of XV .

The symmetry group of XV (see [2] and references therein for background) is

S(XV ) := centAut(XV )
(G) = {H ∈ Aut(XV ) : GH = HG for all G ∈ G},

which clearly contains G as a normal subgroup. This centralizer is often called the
automorphism group of the subshift, denoted by Aut(XV , G), but we prefer to avoid the
potential confusion with the automorphism group in the above (or Smale) sense. For any
S ∈ S(XV ), S(V ) has a dense shift orbit in XV (as V has dense orbit by definition).
Moreover, one has S(∅) = ∅ since S(∅) can also be seen as a fixed point under the
translation action.

Now, consider an arbitrary S ∈ S(XV ). By the CHL theorem, there is a block code
(or map) φ: {0, 1}[−�,�]2 −→ {0, 1} of a suitable size (parameterized by �) such that, for
any x ∈ XV , the value of Sx at a position k ∈ Z2 is given by the value under φ of the
corresponding block of x around this very position, which we call its centre. This means

(Sx)k = φ(x[k+[−�,�]2]),

where x[k+[−�,�]2](m) = xk+m for m ∈ [−�, �]2. Since S(∅) = ∅, it is clear that
φ(0[−�,�]2) = 0.

Next, following [2, 9], we define the extended symmetry group as

R(XV ) := normAut(XV )
(G) = {H ∈ Aut(XV ) : HGH−1 = G},

which contains both G and S(XV ) as normal subgroups. Every H ∈ R(XV ) must satisfy
H(∅) = ∅, as H(∅) can once again be shown to be fixed under any element of G.
Since every (extended) symmetry induces an automorphism of G � Z2 via the conjugation
action, R(XV ) can at most be a group extension of S(XV ) by Aut(Z2) = GL(2, Z).

Let us state the final result for this specific example, which is a special case of our more
general statement (Theorem 4.1) in the next section.
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COROLLARY 3.4. For the topological dynamical system (XV , Z2), the symmetry group is
the minimal one, so S(XV ) = G � Z2, while the extended symmetry group is

R(XV ) = S(XV )� Aut(Z2) � Z2 � GL(2, Z),

hence the maximal extension possible.

This result shows that positive (topological) entropy is highly compatible with a
minimal centralizer, while the factor group R(XV )/S(XV ) need neither be a finite nor a
periodic group, where the latter statement implies that the factor group contains elements
of infinite order. This combination can also occur for subshifts with zero entropy, as can
be seen from the subshift that is obtained as the orbit closure of a singleton configuration
and contains the shift orbit of this configuration together with the all-0 configuration (cf.
[4, Example 4.3]).

4. General lattice setting
The statement of Corollary 3.4 is not restricted to d = 2. Indeed, one has the following
generalization; see [5, 8, 32] for its first part.

THEOREM 4.1. Let V = {(n1, . . . , nd) ∈ Zd : gcd(n1, . . . , nd) = 1} = Zd\ ⋃
p(pZ

d)

be the set of visible points of Zd , with d � 2, and consider the topological dynamical
system (XV , Zd) with XV = Zd + V . Then XV has topological entropy log(2)/ζ(d) and
satisfies XV = A, where A consists of all admissible subsets of Zd , that is, all subsets
U ⊂ Zd such that, for every p ∈ P , U misses at least one coset modulo pZd .

The symmetry group, or topological centralizer, of this system is S(XV ) = Zd , while its
extended symmetry group, or topological normalizer, is R(XV ) = Zd � GL(d, Z).

Proof. The statement on the centralizer is a rigidity result that is driven by the identity
XV = A, which also forces XV to be hereditary. It follows from a slight modification of
the argument put forward in [29], which we repeat here in a form that is tailored to the
higher-dimensional lattice systems we consider here and below. It employs a lattice version
of the Chinese remainder theorem (CRT) based on the pairwise coprime sublattices of
the form pZd (p prime) of the integer lattice. Note that the solutions of a system of
congruences appear lattice-periodically, which guarantees some flexibility regarding the
actual position of solutions in the square lattice. This argument also works for general
lattices.

We start from the identity XV = A, which follows from Proposition 3.2 together with its
generalization in Proposition 4.4 and Theorem 4.5 below. First, we show that any symmetry
S ∈ S(XV ) acts on the singleton set U0 = {0} ∈ XV as a translation, so S(U0) = U0 + k

for some k ∈ Zd , where U0 ∈ XV follows from XV = A. Since S is a homeomorphism
that commutes with the shift action, it corresponds to a block code φ, by the CHL theorem.
Here and in what follows, we identify any subset of Zd with its characteristic function, and
thus with a binary configuration, as explained in §2. Then S(U0) = U0 + k is equivalent to
saying that φ takes the value 1 on exactly one block with singleton support. For the latter,
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note first that φ cannot take the value 0 on all blocks with singleton support, as this would
imply S(U0) = ∅ which is impossible (S is invertible and we already have S(∅) = ∅).

Assuming the existence of two different blocks with singleton support that are sent to
1 by the code, there exist a prime p and an admissible set U ⊂ Zd of cardinality pd − 1
that comprises all cosets modulo pZd except the zero coset, together with the property that
S(U) shows all possible cosets modulo this very pZd and is thus no longer admissible. To
see this, p is chosen such that the difference n of the centres of the two blocks (a non-zero
element of Zd ) does not belong to pZd . In fact, by the CRT, the pd − 1 elements of U can
be chosen arbitrarily well separated from one another. Then the assertion follows because
S(U) will contain a translate of U ∪ (n+ U) and, since S(U) is admissible, a translate of
this union is contained in V. Thus, for somem ∈ Zd , bothU +m and (U + n)+m consist
of pd − 1 elements and are equal modulo pZd (both showing all non-zero cosets modulo
pZd )—a contradiction to n �= 0 modulo pZd from the construction.

After replacing S by S′ := Tk ◦ S, so that S′(U0) = U0, and slightly enlarging the size
of the block code, one can assume that the only block with singleton support that is sent
to 1 is the block that has value 1 only at 0. One is then left to show that S ′ = id. For
convenience, we now rename S′ as S, and show that S = id.

This follows from the maximality of V together with the crucial observation that
S(U) ⊆ U (equivalently U ⊆ S−1(U)) for all U ∈ XV , due to the properties of the block
code for S just established. So, any (automatically admissible) block of 1U with value 0
at its central position is sent to 0 by the code. This claim can be shown by an argument
similar to the one used above. Assume the existence of an admissible block C with value
0 at its centre that is sent to 1 by the code. This block then appears in V at a position s
with s ∈ pZd for a suitable p. Again, one can choose a set U of pd − 1 elements of V
that shows all cosets except the zero coset modulo pZd . By the CRT, we may assume that
these pd − 1 elements are well separated and also well separated from s (together with
the whole block s + C of V at s). It is then immediate that U ∪ (s + C) is admissible and
that S(U ∪ (s + C)) will contain the set U ∪ {s} and thus shows all cosets modulo pZd , a
contradiction.

It remains to determine the normalizer. Since G � Zd , with Aut(Zd) = GL(d, Z), there
is a group homomorphism

ψ : R(XV ) −→ GL(d, Z)

that is induced as follows. If H ∈ R(XV ), we have HGH−1 = G, so a set of generators
of G must be mapped to a (possibly different) set of generators under the conjugation
action. Starting from our canonical choice, G = 〈Te1

, . . . , Ted 〉, one finds HTiH
−1 =∏

j T
mji
j where the mji are the matrix elements of MH = ψ(H). It is routine to verify

the homomorphism property. In particular, with Tn = T
n1
e1 · · · T nded , one gets

HTnH
−1 = TMHn

. (4.1)

For M ∈ GL(d, Z), in line with equation (2.2), define the mapping HM on
X = {0, 1}Zd by

(HMx)n = x
M−1n

,

https://doi.org/10.1017/etds.2020.111 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.111


3210 M. Baake et al.

which clearly is a homeomorphism of X. Now, each M maps our set V onto itself, as
GL(d, Z) acts transitively on V . Consequently, the orbit {t + V : t ∈ Zd} is also mapped
onto itself by M , hence M preserves XV by continuity. In other words, invoking (2.3), we
see that HM is an element of R(XV ), and that

1 −→ S(XV )
id−→ R(XV )

ψ−−→ GL(d, Z) −→ 1

is a short exact sequence. Moreover, the mapping

ϕ : GL(d, Z) −→ Aut(XV )

defined by ϕ(M) = HM is a group homomorphism as well, with ψ(HM) = M . Conse-
quently, H := ϕ(GL(d, Z)) is a subgroup of R(XV ) that is isomorphic with GL(d, Z).
Since ϕ ◦ ψ acts as the identity on H, our claim follows.

Remark 4.2. With respect to the patch frequency (or Mirsky) measure, the situation is also
the same as for d = 2, meaning that the dynamical spectrum of (XV , Zd , νM) is pure point,
with trivial topological point spectrum. Nevertheless, the measure-theoretic eigenfunctions
are continuous on a subset of XV of full measure; see the discussion in [6].

In fact, the above multi-dimensional setting allows for a further generalization.

Definition 4.3. Let B = {bi | i ∈ N} be an infinite set of positive integers that is primitive
in the sense that bi |bj implies i = j . Consider the point set VB = Zd\ ⋃

i∈N biZd in Rd ,
and define XB = Zd + VB, which is compact. Then the dynamical system (XB, Zd) is
called a B-free lattice system. It is called Erdős when the bi are pairwise coprime and
satisfy

∞∑
i=0

1
bdi

< ∞,

which is an additional condition only for d = 1.

Note that d = 1 is the case of B-free systems in Z, which is extensively studied in
[19, 23] and references therein. The primitivity condition really is an irreducibility notion,
as any multiple of some bi could simply be removed from the set B without any effect on
VB. It is obvious that Zd in Definition 4.3 can be replaced by any lattice Γ ⊂ Rd . However,
since this does not change the arithmetic situation at hand, we restrict our attention to Zd

for now.
A set U ⊂ Zd is called admissible for B if, for every b ∈ B, U meets at most bd − 1

cosets of the sublattice bZd . Equivalently, U is admissible if it misses at least one coset
of bZd for each b ∈ B. The set of all admissible subsets of Zd is again denoted by A, and
constitutes a subshift. By definition, VB ∈ A, and we thus have XB ⊆ A. If P and Q are
disjoint finite subsets of Zd , we define the locator set

L(P , Q) := {t ∈ Zd : t + P ⊂ VB and t +Q ⊂ Zd\VB}
by analogy with the treatment in [32]. One has the following connection, which is a
generalization of both [20, Proposition 2.5] and [32, Theorem 2].
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PROPOSITION 4.4. Assume that (XB, Zd) is Erdős, and let P and Q be disjoint finite
subsets of Zd . Then the following properties are equivalent.
(1) L(P , Q) has positive natural density.
(2) L(P , Q) �= ∅.
(3) P is admissible for B.

Proof. The implication (1) ⇒ (2) is clear. IfL(P , Q) �= ∅, one has t + P ⊂ VB for some
t ∈ Zd , so t + P ∈ A and hence P ∈ A, which shows (2) ⇒ (3).

It remains to prove (3) ⇒ (1). To this end, let m = card(P ) and set

S1 := {b ∈ B : min(card(P mod b), bd − 1) < m},
which is a finite subset of B. Further, for the elements q ∈ Q, select distinct elements bq
from B\S1, and set S2 = {bq : q ∈ Q}. Without loss of generality, we may choose each
bq large enough so that p ≡ q mod bq has no solution with p ∈ P , which is to say that q
is a representative of a coset modulo bq that is missed by P . Since card(S2) = card(Q),
S := S1 ∪ S2 is still a finite subset of B, with S = S1 for Q = ∅.

Since P is admissible for B, we know that, for each b ∈ B, at least one coset of bZd is
missed by P . Let pb be a representative of this coset, where we may choose pb = q for
all b = bq ∈ S2 due to our choice of S2. As our system is Erdős, we can invoke the lattice
version of the CRT to see that there is an element t0 ∈ Zd such that

t0 ≡ −pb mod b for all b ∈ S.

Note that, with the choice of the pb for b ∈ S2 just made, this comprises the congruences
t0 ≡ −q mod bq for all q ∈ Q. In fact, due to the pairwise coprimality, we know that the
set of all solutions is given by the lattice coset t0 + cZd with c = ∏

b∈S b. For any t from
this coset and then every b ∈ S, we thus have t + p �≡ 0 mod b, which is to say that t + P

avoids the zero coset for all b ∈ S, while t + q ≡ 0 mod bq , so no element of t +Q can
lie in VB.

Now, let Rn := {b ∈ B\S : b � n}, which is finite, where we assume the integer n to be
large enough so that Rn �= ∅. Consider

Θn := (t0 + cZd) ∩ {t ∈ Zd : t �≡ −p mod b for all b ∈ Rn and all p ∈ P }.
The second set is a finite union of translates of the lattice γnZ

d with γn = ∏
b∈Rn b. Invok-

ing Fact 2.1, it is clear that Θn consists of finitely many cosets of the intersection lattice,
which is cγnZ

d , and thus has a well-defined natural density. Consequently,Θn has density

dens(Θn) = c−d
∏
b∈Rn

(
1 − card(P )

bd

)

because, modulo b for any b ∈ Rn, no two points of P can be equal by our choice of S1.
Each term in the product is a positive number, again due to our choice of S1 ⊆ S, so the

Erdős condition guarantees that the infinite product satisfies
∏
b∈B\S

(
1 − card(P )

bd

)
= D > 0,
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which is to say that it converges to a positive number. Since Θn+1 ⊆ Θn for all large
enough n, say n � n0, we can take the limit n → ∞ and conclude thatΘ∞ := ⋂

n�n0
Θn

is a set of solutions of our congruence conditions, for all b ∈ B, with positive natural
density. So, for any t ∈ Θ∞, we have t + P ⊂ VB together with t +Q ⊂ Zd\VB as
claimed.

THEOREM 4.5. Let (XB, Zd) be a B-free lattice system, with symmetry group S = S(XB).
Then the group of extended symmetries is given by R = R(XB) = S � GL(d, Z), which
is to say that the extension is always the maximally possible one.

If (XB, Zd) is Erdős, one has XB = A, the system is hereditary, and it has minimal
symmetry group, S = G � Zd , and we thus get R = Zd � GL(d, Z).

Proof. Due to the assumptions, any B-free lattice system defines a shift, with faithful shift
action, so its symmetry group, S(XB), contains a normal subgroup that is isomorphic with
Zd , namely the one generated by the shift action itself, G.

Since Aut(Zd) = GL(d, Z), anyM ∈ GL(d, Z)maps Zd onto itself, hence one also has
M(bZd) = bM(Zd) = bZd for any b ∈ B. This implies M(VB) = VB. We thus see that
H := ϕ(GL(d, Z)) is a subgroup of R(XB) that is isomorphic to GL(d, Z). Since we have
ψ(H) = ψ(R(XB)) = GL(d, Z), where ψ is the group homomorphism from above, S is
the kernel of the group endomorphism ϕ ◦ ψ . By construction, ϕ ◦ ψ acts as the identity
on H, and the claimed semi-direct product structure follows.

Clearly, we have XB ⊆ A, as explained earlier. For the converse inclusion, when XB
is Erdős, consider an arbitrary S ∈ A and, for n ∈ N, set Sn = S ∩ Bn(0), which is finite.
By Proposition 4.4, for each n ∈ N, there exists some tn ∈ L(Sn, (Zd ∩ Bn(0))\Sn) �= ∅,
which means that

(VB − tn) ∩ Bn(0) = Sn.

Consequently, limn→∞(VB − tn) = S in the local topology, and S ∈ XB. This shows
A ⊆ XB and hence XB = A. Clearly, XB is then also hereditary. Now, a straightforward
modification of the centralizer argument used in the proof of Theorem 4.1 establishes
S = Zd .

Alternatively, the structure of the last proof can be summarized by stating that

1 −→ S id−→ R ψ−−→ GL(d, Z) −→ 1

is a short exact sequence where H := ϕ(GL(d, Z)) is a subgroup of R with H � GL(d, Z)
and the property that ϕ ◦ ψ acts as the identity on H. Outside the class of Erdős B-free
lattice systems, the centralizer can indeed be a finite-index extension of G, as is known
from one-dimensional examples of Toeplitz type [25], but we do not consider this case
below.

Example 4.6. Let k ∈ N be fixed and consider the lattice Zd . Then B = {pk : p ∈ P}
leads to the k-free lattice points in d dimensions, which is Erdős for kd � 2. They have
been studied from various angles in [5, 8, 32], and provide a natural extension of our
motivating example from §3.
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In particular, one always obtains a measure-theoretic dynamical system (XVB , Zd , νM)

with pure point diffraction and dynamical spectrum, as in Remark 4.2. The topological
entropy is log(2)/ζ(kd), while the measure-theoretic entropy with respect to the natural
patch frequency (or Mirsky) measure νM always vanishes [32], as it must in view of the
fact that the dynamical spectrum of (XVB , Zd , νM) is pure point.

The result of Theorem 4.5 can be examined more generally as follows. Let (X, Zd) be a
faithful shift, with centralizer S(X) and normalizer R(X), and assume that hM ∈ Aut(X)
for some M ∈ GL(d, Z), where hM is the mapping defined in equation (2.2). Let Tn with
n ∈ Zd denote the shift by n as before, so (Tnx)m = xm+n, and consider any H ∈ R(X)
with M = ψ(H). Then, for any � ∈ Zd , one obtains the commutative diagram

X
H−−−−→ X

h
M−1−−−−→ X

T�

⏐⏐� TM�

⏐⏐�
⏐⏐�T�

X
H−−−−→ X

h
M−1−−−−→ X

(4.2)

from equation (4.1), where h
M−1 ∈ Aut(X) by assumption. So, h

M−1 ◦H ∈ Aut(X) com-
mutes with the shift action, hence is a block map by the CHL theorem.

At this point, the structure of the centralizer enters crucially, and one obtains an
interesting consequence as follows, where ψ : R(X) −→ Aut(Zd) is the homomorphism
from above.

COROLLARY 4.7. Let (X, Zd) be a faithful subshift with trivial centralizer. Consider
an element H ∈ R(X) with hψ(H) ∈ Aut(X). Then H is an affine mapping and
hψ(H) ∈ R(X).
Proof. From diagram (4.2), with M = ψ(H), we know that h

M−1 ◦H ∈ S(X), so this
mapping equals Tn for some n ∈ Zd . This means H = hM ◦ Tn, which acts as

(Hx)m = x
M−1m+n.

The equivalent formulation with sets, due to the relation hM ◦ Tn = TMn ◦ hM , now reads
H(U) = −Mn+M(U), which is affine.

Finally, since H ∈ R(X), one also has hM = H ◦ T−n ∈ R(X).
The occurrence of affine mappings in the context of Zd -actions, as a sign of some degree

of rigidity, is also known from [27, Theorem 1.1], and will become important later.

5. Number-theoretic setting
The concept of a B-free lattice system from Definition 4.3 is only one possibility to
generalize the one-dimensional notion. For another, combining methods from the theory
of aperiodic order [4] with classic results from elementary and algebraic number theory
[12, 30], one may start with the treatment of square-free integers in algebraic number fields
as in [14], and simplify and generalize it as follows.
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Let K be an algebraic number field of degree d , so [K : Q] = d < ∞. Let O be the ring
of integers in K, which is the unique maximal order in K, such as Z for K = Q, Z[i] for
K = Q(i), or Z[

√
2] for K = Q(

√
2). Let ι: O −→ Rr× Cs be the mapping defined by

z �→ (ρ1(z), . . . , ρr(z), σ1(z), . . . , σs(z)),

where ρ1, . . . , ρr are the real embeddings of K into C, while σ1, . . . , σs arise from the
complex embeddings of K into C by choosing exactly one embedding from each pair of
complex conjugate ones (in particular, we have d = r + 2s). Clearly, depending on K, one
either takes ρ1 or σ1 to be the identity.

Now, if b is a non-zero ideal of O, its absolute norm is defined by N(b) := [O : b]. In
fact, for any of the above choices, the image ι(b) is a lattice in Rr × Cs � Rd , and the
absolute norm of b is precisely the index of the sublattice ι(b) in the lattice ι(O), and thus
a finite number. The map ι is usually called the Minkowski embedding of O; see [4, 12, 30]
for details.

To continue, let K be an algebraic number field of degree d , and O its ring of integers,
with Minkowski embedding Γ = ι(O) ⊂ Rd . Let B = {bi | i ∈ N} be an infinite set of
non-trivial ideals of O, where B is assumed to be primitive in the sense that bi ⊇ bj
implies i = j . Let Γi = ι(bi ) and consider VB := Γ \ ⋃

i∈N Γi ⊂ Rd , which thus is the
Minkowski embedding of O\ ⋃

i∈N bi , and define its hull as the orbit closure

XB = Γ + VB

in the local topology, so XB is compact as in our previous examples.

Definition 5.1. In the setting just explained, the topological dynamical system (XB, Γ ) is
called an algebraic B-free lattice system, or simply an algebraic B-free system.

Such a system is called Erdős when the bi are pairwise coprime (meaning bi + bj = O
for all i �= j ) and satisfy

∞∑
i=1

1
N(bi )

< ∞.

As before, we call a set U ⊂ Γ admissible for B when, for every b ∈ B, the set U meets
at most N(b)− 1 cosets of Γb := ι(b) in Γ , that is, misses at least one. All admissible
subsets of Γ once again constitute a subshift, denoted by A, which contains XB by
construction.

PROPOSITION 5.2. Assume that (XB, Γ ) is Erdős, and let P and Q be disjoint finite
subsets of Γ . Then the following properties are equivalent.
(1) The locator set L(P , Q) := {t ∈ Γ : t + P ⊂ VB and t +Q ⊂ Γ \VB} has positive

natural density.
(2) L(P , Q) �= ∅.
(3) P is admissible for B.

Proof. This is a variant of the proof of Proposition 4.4, where (1) ⇒ (2) ⇒ (3) is again
clear. We thus need to establish (3) ⇒ (1).
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Let m = card(P ) and choose S1 as the set of all ideals b ∈ B with the properly that
card (P mod Γb) < m or N(b) � m. As before, S1 is finite. Then, for S2, select distinct
ideals from B\S1, denoted by S2 = {bq : q ∈ Q}, where, without loss of generality, we
may select ideals bq of sufficiently large absolute norm such that P does not meet the
coset modulo bq represented by q. Then consider S = S1 ∪ S2, which is still finite. As all
ideals b ∈ B can be viewed as lattices Γb via the Minkowski embedding, we can again
invoke the CRT to find an element t0 ∈ Γ so that

t0 ≡ −pb mod Γb for all b ∈ S,

where pb is a representative of a coset modulo Γb that is missing in P , which we know
to exist. Due to our construction of S2, we may choose pbq = q for all q ∈ Q, as a result
of which the above congruences actually comprise t0 ≡ −q mod Γbq for all q ∈ Q. By
pairwise coprimality of the b ∈ B, we see that the set of all solutions is the coset t0 +G,
where G is the Minkowski embedding of the ideal

∏
b∈S b. For any t from this coset,

t + P avoids the zero coset of Γb for all b ∈ S, while no element of t +Q is in VB, so
t +Q ⊂ Γ \VB.

Now, for n ∈ N, consider the set Rn := {b ∈ B\S : N(b) � n}. For a suitable n0 and
then all n � n0, the set Rn is non-empty and finite. Next, define

Θn := (t0 +G) ∩ {t �≡ −p mod Γb for all b ∈ Rn and all p ∈ P }.

Then Θn is once again a finite union of translates of a non-trivial intersection lattice and
thus a set of positive natural density, the latter being given by

dens(G)
∏
b∈Rn

(
1 − card(P )

N(b)

)
.

As in the previous case, the product is convergent as n → ∞ by the Erdős condition, so
Θ∞ := ⋂

n�n0
Θn is a subset of Γ of positive density such that, for any t ∈ Θ∞, we have

t + P ⊂ VB and t +Q ⊂ Γ \VB.

THEOREM 5.3. An Erdős algebraic B-free system (XB, Γ ) satisfies XB = A and is hered-
itary. Moreover, it has minimal symmetry group, so S = S(XB) = Γ � Zd . Moreover, its
extended symmetry group is of the form R(XB) = S �H, where H is isomorphic to a
non-trivial subgroup of GL(d, Z).

Proof. While XB ⊆ A is clear, A ⊆ XB is shown exactly as in Theorem 4.5, this time on
the basis of Proposition 5.2, so XB = A, and this shift is hereditary. Then the statement on
the centralizer follows, once again, from a straightforward modification of the argument
used in the proof of Theorem 4.1.

Let X = XB, and take an arbitrary H ∈ R(X). Here, we have M := ψ(H) ∈ Aut(Γ )
by analogy with our previous cases, and diagram (4.2) changes to
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X
H−−−−→ X

h
M−1−−−−→ Y

T�

⏐⏐� TM�

⏐⏐� ⏐⏐�T�
X

H−−−−→ X
h
M−1−−−−→ Y

(5.1)

where Y := h
M−1(X), while T� with � ∈ Γ is the shift in this case. Note that both X and

Y are subshifts of {0, 1}Γ , on which Tn and hM are still well defined, and it is clear that
∅ ∈ X ∩ Y. This new diagram is again commutative, so χ = h

M−1 ◦H intertwines the
shift actions on X and Y. Consequently, by the CHL theorem, χ is a block map.

The space Y inherits important properties from X, such as its characterization through
admissibility (now defined via the images of cosets in X under h

M−1 ) as well as being
hereditary. After minor modifications, the arguments from the proof of Theorem 4.1 now
show that χ must be a shift map, hence equal to Tn for some n ∈ Γ . But TnX = X, whence
H ∈ Aut(X) now implies

Y = h
M−1(X) = h

M−1(HX) = TnX = X,

and we are back in the situation of Corollary 4.7. Consequently, H is an affine mapping,
with H = hM ◦ Tn, and hM ∈ R(X). We thus have a short exact sequence

1 −→ S(X) id−−→ R(X) ψ−−→ H := ψ(R(X)) −→ 1

with H a subgroup of Aut(Γ ). In particular, we get R(X) = S(X)�H as claimed.
To see that H is non-trivial, we observe that the unit group O× is non-trivial (it

contains at least the elements ±1) and, via the Minkowski embedding, isomorphic to a
subgroup of Aut(Γ ) � GL(d, Z). Each element of O× maps any ideal b onto itself, so the
corresponding mapping induced by the Minkowski embedding is a bijection of VB, and
thus gives rise to an extended symmetry. Further elements emerge from non-trivial Galois
automorphisms of K, such as complex conjugation when K is a totally complex extension
of Q. Consequently, the claim on the nature of H is clear.

Remark 5.4. The systems covered by Theorem 5.3 show many similarities with the k-free
lattice points discussed earlier. In particular, they have positive topological entropy, which
can in principle be determined from their description as weak model sets of maximal
density in the sense of [6]. The spectral properties will reflect the comments made in
Remark 4.2. We leave the details to the interested reader.

Unlike the situation in Theorem 4.5, the group H will generally not be Aut(Γ ) �
GL(d, Z), as we shall see in §6 below. In particular, for M ∈ Aut(Γ ) and b ∈ B, it need
not be true that M(b) = b or M(VB) = VB. The following negative result, obtained via
methods from analytic number theory, was pointed out to us by Blomer [11].

FACT 5.5. Let M ∈ GL(2, Z)\O(2, Z). Then there exist Gaussian primes ρ ∈ Z[i] � Z2

such that a positive proportion of square-free Gaussian integers α ∈ Z[i] satisfies ρ2 | Mα,
and Mα is thus not square-free in Z[i].
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As we shall see in the next section, a simpler statement of purely algebraic nature exists,
which suffices for our purposes and permits various generalizations.

6. Power-free Gaussian and Eisenstein integers
From now on, we shall need some classic results on quadratic number fields, which can all
be drawn from [22, Chs. 14 and 15] or from [35]. To keep things simple, we only consider
rings of integers that are Euclidean, so that we can easily work with primes and prime
factorization (up to units) rather than with ideals; see [3] for various generalizations in our
context.

As an example of an algebraic B-free system that is Erdős, let us view Z2 as Z[i], the
ring of Gaussian integers, and consider, for some fixed 2 � k ∈ N, the subset of k-free
elements (to be defined below). Z[i] is the maximal order in the quadratic field Q(i), and
is Euclidean. The unit group of Z[i] is

Z[i]× = {1, i, −1, −i} � C4.

If P denotes the set of rational primes as before, the Gaussian primes [22, Theorem 252]
can be represented by

PG = {1+i} ∪ {p ∈ P : p ≡ 3 mod 4} ∪ {π , π̄ : ππ̄ = p ∈ P with p ≡ 1 mod 4},

where ·̄ is complex conjugation. The three subsets correspond to the ramified prime, where
(1 + i)2 = 2i, the inert primes, and the (complex) splitting primes, respectively. Within
the last, by a slight abuse of notation, we assume one representative pair for each p to
be selected, for instance by requiring π to lie in the positive quadrant. This way, the
representation of the primes is unique, and prime factorization works up to units.

Now, for any integer k � 2, we can define V (k)G as the set of Gaussian integers that are
not divisible by the kth power of any Gaussian prime. This is the set of k-free Gaussian
integers. Figure 1 contains an illustration of the set V (2)G , which was also used in [14]. We
begin with a geometric symmetry consideration of V (k)G as follows.

LEMMA 6.1. Let k � 2 be fixed and let A : Z[i] −→ Z[i] be a Z-linear bijection that maps
V = V

(k)
G into itself, A(V ) ⊆ V. Then A is a bijection of U = Z[i]×, and of V as well. As

such, it is of the form A(x) = εσ (x) with ε ∈ U and σ ∈ {id, ·}, that is, ε is a unit and σ
a field automorphism of Q(i).

Together, these mappings form a group, which is the stabilizer of V in GL(2, Z), denoted
by stab(V ). The latter, for any k � 2, is the dihedral group D4 � C4 � C2 of order 8,
which is the symmetry group of the square and as such a maximal finite subgroup of
GL(2, Z).

Proof. Clearly, any A of the form A(x) = εσ (x) maps units to units, and V onto
itself. Conversely, if A preserves U and A(1) = ε, bijectivity of A implies A(i) = iε or
A(i) = − iε, and Z-linearity of A determines the image of any x ∈ Z[i] from here. This
gives A(x) = εx in the first case, and A(x) = εx̄ in the second. It thus remains to show
that any Z-linear bijection A of Z[i] with A(V ) ⊆ V must preserve units.
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Let us begin with a simple but powerful observation on the coprimality structure of
the k-free Gaussian integers. Consider x ∈ V, with gcdG(x, p) = 1 for every odd rational
prime, where the gcdG in Z[i] is unique up to units. Then p�x ∈ V for any 1 � � < k,
hence alsoA(pk−1x) = pk−1A(x) ∈ V, which implies gcdG(A(x), p) = 1. This argument
cannot be extended to p = 2 = −i(1 + i)2, which is ramified. Nevertheless, we may
conclude that

A(U) ⊆ U ∪ (1 + i)U ∪ · · · ∪ (1 + i)k−1U ,

where we now need to exclude all but the first set on the right-hand side.
Observe that, when A is a mapping as specified, then so is the mapping A′ defined by

A′(x) = εA(x), for any ε ∈ U . We may thus assume A(1) = (1 + i)m for some integer
0 � m � k − 1 without loss of generality, matched by A(i) = κ(1 + i)n with κ ∈ U and
0 � n � k − 1. Now, from Z-linearity in conjunction with bijectivity on Z[i], we know
that det(A) = ±1, where

det(A) = Im(A(1)A(i)) = Im(κ(1 − i)m(1 + i)n).

When n � m, this gives det(A) = 2m Im(κ(1 + i)n−m), which cannot be unimodular
unless m = 0, so A(1) = 1 and det(A) = Im(κ(1 + i)n).

Observing (1 + i)2 = 2i, an analogous argument now also excludes n � 2, so A(i) = κ

orA(i) = κ(1 + i). In the first case, we getA(i) = i orA(i) = −i from bijectivity, andA is
also a bijection onU . WhenA(i)= κ(1 + i), we getA(1 ± i)=A(1)± A(i)= 1 ± κ(1 + i).
Irrespective of which unit κ is, one of the images is an element of norm 5, where the norm
refers to the field norm† of x ∈ Q(i), which is defined by N(x) = xx̄ as usual. But such
a norm value is impossible by our previous coprimality argument, and thus rules out this
case.

When m > n, a completely analogous chain of arguments gives n = 0 and m = 1,
which is then once again ruled out by the coprimality result. This leaves us with the
mappings that preserve U as claimed.

This result has the following immediate consequence, which can be seen as a simplified
(and purely algebraic) case of Fact 5.5.

COROLLARY 6.2. Let k � 2 be a fixed integer and V = V
(k)
G the set of k-free Gaussian

integers. If A ∈ GL(2, Z)\ stab(V ), there exist a Gaussian prime ρ and an element w ∈ V
such that ρk divides A(w).

No such prime can be inert, and it cannot be ramified when k is even.

Proof. By Lemma 6.1, we know that A ∈ GL(2, Z) with A(V ) ⊆ V must be an element
of stab(V ), from which the first statement is clear.

The matrix A is unimodular modulo pk for any rational prime p. As such, it cannot
change the number of cosets of pkZ2, and maps the zero coset onto itself. This rules out
the case that ρ ∈ PG is inert.

† Note that the absolute norm of an ideal in Z[i], which is always principal, agrees with the field norm of its
generating element in this case.
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If ρ = 1 + i, we have N(ρ) = 2, and the same argument applies to ρ when k

is even.

Under the identification of Z[i] with Z2, let us now consider the subshifts

X
(k)
G := Z2 + V

(k)
G ,

which share many properties with our previous examples. In particular, they once again
satisfy X

(k)
G = A, with the appropriate notion for admissibility, and are hereditary. Further,

they have pure point spectrum with trivial topological point spectrum, and the sets V (k)G
are generic elements for the corresponding patch frequency (or Mirsky) measure, the latter
defined via any averaging sequence of growing balls centred at 0.

PROPOSITION 6.3. Let (X(k)G , Z2) with fixed k � 2 be the faithful shift generated by the
k-free Gaussian integers. Then its centralizer is trivial, S = Z2, while the normalizer R
consists of affine transformations only. In particular, R contains a subgroup of the form
Z2 �D4, where D4 = stab(V (k)G ) is the group from Lemma 6.1.

Proof. The claim on the symmetries is a consequence of our general result in Theorem 5.3,
which asserts that the centralizer is trivial, so S = Z2.

For the extended symmetries, we are once more in the situation of diagram (5.1) from
the proof of Theorem 5.3. Consequently, by Corollary 4.7, each element of the normalizer
is an affine mapping, namely an element of the affine lattice group Z2 � GL(2, Z).

That Z2 �D4 is a subgroup of R follows from Lemma 6.1. Indeed, since the Z2-orbit
of V (k)G is dense in X

(k)
G by construction and each element of R is continuous, anyM ∈ D4

maps X(k)G onto itself, as does any affine mapping (t , M) with t ∈ Z2 and M ∈ D4.

It remains to complete the determination of R, which leads to the following result.

THEOREM 6.4. The symmetry group and the extended symmetry group of (X(k)G , Z2), with
fixed k � 2, are given by S = Z2 and R = S �D4, respectively, where D4 = stab(V ) =
C4 � C2 is the symmetry group of the square, and as such a maximal finite subgroup of
GL(2, Z). In particular,C4 � Z[i]×, whileC2 is the group of field automorphisms of Q(i),
generated by complex conjugation.

Proof. The role of Z2 �D4 is clear from Proposition 6.3. To complete the proof, we need
to show that the only Z-linear, bijective mappings of X(k)G onto itself are the ones we already
know from Lemma 6.1.

As in the case of k-free lattice points, now by Theorem 5.3, we have X
(k)
G = A, where

A is the subshift that consists of all admissible subsets of V= V
(k)
G . Here, V itself has

the property that, for any π ∈ PG, precisely the zero coset of the principal ideal (πk) is
missing.

To complete the proof, we have to show that no Z-linear bijection of Z[i] � Z2 outside
of stab(V ) can map A into itself. So, let A ∈ GL(2, Z)\ stab(V ). Then, by Corollary 6.2,
there are a ρ ∈ PG and an element w ∈ V such that ρk|A(w). Set n = N(ρ)k and z1 = w.
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We will now choose Gaussian integers z2, . . . , zn such that the set S = {z1, z2, . . . , zn}
is admissible while A(S) meets all cosets of the principal ideal (ρk) in Z[i].

To this end, choose a non-empty, finite set P of Gaussian primes that contains all primes
with N(π) < N(ρ) but none with N(π) = N(ρ). Concretely, when N(ρ) > 2, we just
take all primes of smaller norm, while we simply choose the inert prime 3 when ρ = 1 + i.
In any case, we have P = {π1, . . . , πm} with m � 1 this way.

Let L = (πk1 · · · πkm), which is a sublattice of Z[i] of index N(π1 · · · πm)k . Since this
index is coprime with n = N(ρ)k , we know from Fact 2.1 that L meets all cosets of
A−1(ρk), and so does 1 + L, as this is just a translate. Select numbers z2, . . . , zn ∈ 1 + L
such that A(z2), . . . , A(zn) meet all non-zero cosets of (ρk), and set S := {z1, . . . , zn},
with z1 = w. Clearly, the set A(S) now meets all cosets of (ρk) and is thus not admissible
for ρ, so A(S) �∈ A. If we can show that S itself is admissible for all Gaussian primes, we
are done.

Clearly, S is admissible for all Gaussian primes π with N(π) > N(ρ) by cardinality.
If S meets all cosets of (ρk), each of them must occur precisely once. Then we modify S
via replacing z2 by z′2 = z2 + w, which reduces the number of cosets in S by one, without
reducing the number of cosets in A(S) because w is k-free with A(w) ≡ 0 mod (ρk).

If ρ is a splitting prime, we also have to check ρ̄, which is not an associate but has the
same norm. If S meets all cosets of (ρ̄k), we need to modify one element zi with i > 1
to remove one coset from S. Due to the previous step, we can use neither z′2 nor the other
element of S that is now congruent to z′2 modulo (ρk). Since n � 4, there is at least one
other element, z4 say, that can be replaced by z4 + w. The new set S is now admissible for
all Gaussian primes of norm at least N(ρ), while A(S) still meets all cosets of (ρk) and is
thus not in A.

If ρ �= 1 + i, it remains to see whether S is now also admissible for all π with
N(π) < N(ρ). By our construction with the lattice L, we know that, modulo (πk), all
zi are congruent to w, 1 or 1 + w, so we meet at most 3 cosets. Since N(π)k � 2k � 4,
we are good, and S is admissible for all Gaussian primes, while A(S) is not, and we have
the desired contradiction.

A completely analogous chain of arguments works for the ring of Eisenstein integers,
Z[ρ], where ρ = e2π i/3 = 1

2 (−1 + i
√

3) is a primitive third root of unity. This is the ring
of integers in the imaginary quadratic field Q(ρ), and is again Euclidean. The unit group is

Z[ρ]× = {(−ρ)m : 0 � m � 5} � C6,

while the Eisenstein primes [22, Theorem 255], up to units, are represented by

PE = {1 − ρ} ∪ {p ∈ P : p ≡ 2 mod 3} ∪ {π , π̄ : ππ̄ = p ∈ P with p ≡ 1 mod 3},

again in the order of the ramified prime, where (1 − ρ)2 = −3ρ, the inert primes, and the
complex splitting primes, where one pair (π , π̄) is selected for each p in the last set.

Defining V (k)E for fixed k � 2 as the set of k-free Eisenstein integers, which we may
view either as a subset of the triangular lattice, which is Z[ρ], or (equivalently) as one
of the square lattice via {(m, n) ∈ Z2 : m+ nρ ∈ V (k)E }, the analogue of Lemma 6.1 now
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gives mappings of the formA(x) = εσ (x)with ε ∈ Z[ρ]× and σ ∈ {id, ·̄}, hence the group
D6 � C6 � C2, which is another maximal finite subgroup of GL(2, Z), this time the one
that is the symmetry group of the regular hexagon.

Defining the subshifts

X
(k)
E := Z[ρ] + V

(k)
E ,

one obtains the following analogue of Theorem 6.4, the proof of which need not be
repeated, as the method is the same.

THEOREM 6.5. The symmetry group and the extended symmetry group of (X(k)E , Z[ρ]),
with fixed k � 2, are given by S = Z[ρ] � Z2 and R = S �D6, respectively, where
D6 = C6 � C2 is the symmetry group of the regular hexagon, and as such isomorphic to
a maximal finite subgroup of GL(2, Z). In particular, C6 = Z[ρ]×, while C2 is the group
of field automorphisms of Q(ρ), generated by complex conjugation.

So far, we have seen extension groups that are either all of GL(2, Z) (for the visible
lattice points), or finite subgroups thereof (for the k-free Gaussian or Eisenstein integers).
In particular, the subshifts defined by the two examples illustrated in Figure 1 are clearly
distinguished by different extended symmetry groups. At this point, it is a natural question
whether infinite true subgroups of GL(2, Z) may also occur. To this end, we take a look at
the corresponding dynamical systems for real quadratic fields.

7. Power-free integers in real quadratic number fields
Let us first consider subsets of Z2 constructed by means of k-free integers in Z[

√
2],

namely

V
(k)
2 := {(m, n) ∈ Z2 : m+ n

√
2 is k-free in Z[

√
2]},

where k ∈ N with k � 2 is fixed. This set emerges via the isomorphism between Z2 and
the Minkowski embedding of Z[

√
2] into R2 (cf. [4, §3.4.1]). Here, with λ := 1 + √

2
denoting the fundamental unit, the unit group is

U = Z[
√

2]× = {±λn : n ∈ Z} � C2 × C∞,

where we also note that Z[
√

2] = Z[λ]. This ring is again Euclidean, so we can work with
unique prime decomposition up to units.

The primes [22, Theorem 256] can be represented as

P2 = {√2} ∪ {p ∈ P : p ≡ ±3 mod 8} ∪ {π , π� : ππ� = p ∈ P with p ≡ ±1 mod 8},
where (·)� denotes the mapping that is the unique extension of

√
2 �→ −√

2 to a field
automorphism of the quadratic field K = Q(

√
2). The relevant field norm is then given

by N(x) = xx�, which means N(m+ n
√

2) = m2 − 2n2 or, equivalently, N(r + sλ) =
r2 + 2rs − s2. Once again, to gain a representation modulo units (integers of norm ±1),
one pair is selected in the last set for each p. Note that the field norm can be negative here,
as a result of which the absolute norm of a principal ideal is now the absolute value of the
field norm of a generating element.
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For some of the calculations below, it is helpful to express λn in terms of λ and 1,
for arbitrary n ∈ Z. Defining the bi-infinite sequence (cn)n∈Z by the recursion cn+1 =
2cn + cn−1 with initial conditions c0 = 0 and c1 = 1, one obtains the analogue of the
Fibonacci numbers for the quadratic field K. In particular, they satisfy c−n = (−1)n+1cn
for all n ∈ Z, and the first few numbers are

. . . , 29, −12, 5, −2, 1, 0, 1, 2, 5, 12, 29, . . .

The required formula for the units now reads

λn = cnλ+ cn−1 = cn

√
2 + (cn + cn−1), (7.1)

which holds for all n ∈ Z, as can easily be checked by induction.

LEMMA 7.1. Let A : Z[
√

2] −→ Z[
√

2] be a Z-linear bijection that maps V = V
(k)
2 into

itself, for some fixed integer k � 2. Then A is of the form A(x) = εσ (x) with ε ∈ U and
σ ∈ {id, (·)�}, so maps U = Z[

√
2]× onto itself. Together, these mappings form the group

stab(V ) = U � C2 = C2 × (C∞ � C2) = C2 ×D∞ of infinite order.

Proof. Any A of the form A(x) = εσ (x) satisfies A(V ) = V and maps U onto itself,
while the converse direction will be a consequence of showing that no further Z-linear
bijection of Z[

√
2] exists that maps the set V into itself.

So, let A be a Z-linear bijection of Z[
√

2] with A(V ) ⊆ V . As in the proof of
Lemma 6.1, we observe that x ∈ V with gcd

K
(x, p) = 1 for any odd p ∈ P implies

pk−1x ∈ V and A(pk−1x) = pk−1A(x) ∈ V , hence gcd
K
(A(x), p) = 1 as well. Since

2 = (
√

2)2, which is the only ramified prime in this case, we see that A(1) and A(
√

2)
must be elements of the union

U ∪ √
2U ∪ 2U ∪ · · · ∪ (√2)k−1U ,

where we may assume that we have, once again without loss of generality, A(1) = 2m/2

and A(
√

2) = κ2n/2 with κ ∈ U and 0 � m, n � k − 1. Here, we also know that this must
result in a mapping with determinant ±1.

Now, define W : Q(
√

2) −→ Q by W(x) = (x − x�)/2
√

2, and observe that this gives
det(A) = W(A(1)�A(

√
2)), hence

det(A) = W(κ(−1)m(
√

2)m+n).

Whenm+ n is even, som+ n = 2�, this means det(A) = (−1)m2�W(κ), which can only
be unimodular if � = 0 and thus m = n = 0. With κ = ±λr = ±(cr

√
2 + (cr + cr−1))

from (7.1), we then get det(A) = ±cr , which in turn implies cr = 1 and thus r = ±1. So,
we have to consider A(1) = 1 together with A(

√
2) = ±λ. Both choices, however, lead to

a contradiction to our coprimality condition by observing that 2 ± √
2, which has norm 2,

is then mapped under A to 3 + √
2, which is a number of norm 7.

Likewise, when m+ n = 2�+ 1, we have det(A) = (−1)m2�W(κ
√

2), which forces
� = 0 and thus either m = 1 and n = 0 or m = 0 and n = 1. In both cases, κ = ±λr
can only lead to a unimodular determinant when cr + cr−1 ∈ {±1}, which then
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means r ∈ {−1, 0, 1}. When m = 1 and n = 0, we get A(1) = √
2 together with

A(
√

2) = κ ∈ {±λ, ±1, ±λ�}. All six choices lead to contradictions to coprimality with
odd primes, by considering images of 1 ± √

2 or 2 ± √
2 under A.

It remains to consider m = 0 and n = 1, so A(1) = 1 together with A(
√

2) = κ
√

2,
with the same options for κ as in the previous case. Once again, κ = ±λ and κ = ±λ�
are impossible, as can be seen by considering A(1 ± √

2). The choices κ = ±1, however,
give the mappings A(x) = x and A(x) = x�, which map U onto itself, as does any
multiplication of such an A with an arbitrary ε ∈ U .

Let us now consider the subshifts X(k)2 := Z2 + V
(k)
2 , in complete analogy to above.

PROPOSITION 7.2. The symmetry group and the extended symmetry group of (X(k)2 , Z2),
with fixed k � 2, are given by S = Z2 and R = S �H, respectively, where the extension
group is H = stab(V (k)2 ) = U � C2 � C2 ×D∞, which is infinite.

Proof. From Lemma 7.1, we see that Z2 �H is a subgroup of R. The latter is a subgroup
of Z2 � GL(2, Z) by Corollary 4.7. It thus remains to show that H = stab(V (k)2 ) contains
all GL(2, Z) elements that map X

(k)
2 into itself. This last step can be established by the

method from the proof of Theorem 6.4, with the field norm replaced by the absolute
norm.

There are other real quadratic fields that are Euclidean, such as Q(
√
m) with m = 5

and m = 3, which play prominent roles in the theory of aperiodic order, as they are
connected with systems with fivefold and 12-fold symmetry, respectively; see [4, §2.5.1]
for background.

For m = 5, the ring of integers is Z[τ ], where τ = 1
2 (1 + √

5) is the golden ratio. This
ring has unit group U = Z[τ ]× = {±τn : n ∈ Z}, and the primes [22, Theorem 257] are
represented by

P5 = {√5} ∪ {p ∈ P : p ≡ ±2 mod 5} ∪ {π , π� : ππ� = p ∈ P with p ≡ ±1 mod 5},

where (·)� is the field automorphism of Q(
√

5) induced by
√

5 �→ −√
5, with our usual

convention for the splitting primes in place. The only ramified prime is 5, while the field
norm on Z[τ ] is N(m+ nτ) = m2 +mn− n2, which can be negative.

Finally, let us consider the slightly more complicated case m = 3, where the ring of
integers is Z[

√
3]. Its unit group is given by Z[

√
3]× = {±ηn : n ∈ Z}, with fundamental

unit η = 2 + √
3. Here, in contrast to the two previous cases, all units have norm 1.

Employing [35, Theorem 11.1], one sees that the primes up to units can be represented as

P3 ={1 + √
3,

√
3} ∪ {p ∈ P : p ≡ ±5 mod 12}

∪ {π , π� : ππ� = ±p ∈ P with p ≡ ±1 mod 12}

with the usual convention for the last set, where (·)� is now induced by
√

3 �→ −√
3.

Unlike before, since the field discriminant is 12 and thus divisible by 2 and 3, there are two
ramified primes, where (1 + √

3)2 = 2η is the additional relation.
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This leads to more cases to consider in the determination of stab(V (k)3 ), but the
Z-linear bijections of Z[

√
3] that map V (k)3 into itself, for some fixed k � 2, are still the

expected ones, namely the maps A of the form A(x) = εσ (x) with ε ∈ U = Z[
√

3]× and
σ ∈ {id, (·)�}; we leave this proof to the interested reader.

In both cases, a proof analogous to the one of Proposition 7.2 gives the following result.

THEOREM 7.3. The symmetry group and the extended symmetry group of (X(k)m , Z2), with
fixed m ∈ {2, 3, 5} and k � 2, are given by S = Z2 and R = S �H, respectively, where
the extension group is H = stab(V (k)m ) = U � C2 � C2 ×D∞, which is an infinite group
that does not depend on k, where U is the unit group.

The advantage of using the normalizer in addition to the centralizer as a topological
invariant becomes obvious in dimensions d � 2. In [9], this was demonstrated for the chair
tiling shift and for Ledrappier’s shift. In both cases, R was an extension of S of finite index.
As our number-theoretic examples above show, this phenomenon occurs again, but R can
also be an infinite-index extension of S, either for trivial reasons (visible lattice points)
or for non-trivial ones (k-free Z[

√
2]-integers). At present, we do not know whether such

an infinite extension is also possible for minimal, deterministic (zero-entropy) subshifts.
In any case, these groups allow the distinction of several subshifts (up to topological
conjugacy) that have the same centralizer, but different normalizers, such as (XV , Z2)

and (X(2)G , Z2) from above.
Due to the nature of the associated dynamical system, the structure of the hull

XV (given the property of hereditariness and the natural topology employed) allows for
local symmetries (that is, transformations that preserve finite local substructures in the
set V up to translation) to manifest themselves. To some extent, they may be observed
by analysing the extended symmetry group R(XV ). While symmetries of the set V in
the standard sense (global symmetries) are obviously local symmetries in this new sense,
the converse is not clear. It is easy to build sets V that have many local symmetries
while lacking global symmetries entirely. Thus, it is interesting to note that, in the current
context, those two kinds of symmetries happen to be the same, giving rise to the question
whether this is a natural phenomenon on sets defined in an ‘algebraic’ form in more
general ways.

This setting deserves further attention, in particular in the context of dynamical systems
of number-theoretic origin. As this will require a more general approach via ideals, as well
as some additional and less elementary results from algebraic and analytic number theory,
we defer this to a separate investigation [3].
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