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On varieties of soluble groups |l

J.R.J. Groves

It is shown that, in a variety which does not contain all
metabelian groups and is contained in & product of (finitely
many ) varieties each of which is soluble or locally finite,
every group is an extension of a group of finite exponent by a

nilpotent group by a group of finite exponent.

1. Introduction

For unexplained notation and terminology and for basic results
concerning varieties of groups, we refer to Hanna Neumann's book [7]. We
differ from [7], however, in using doubly underlined Roman capitals to
represent varieties and Y(G) to denote the verbal subgroup of the group

G corresponding to the variety Y .

It has been known for some time now that a proper subvariety ¥V of
the variety of all metabelian groups is finite exponent by nilpotent by
finite exponent; that is, Y =B N B for some integers n and ¢ (see,
for example, 6.1.1 and 6.1.2 of Bryce [1]). It is natural to ask whether

this carries over for soluble varieties; more precisely, if ¥V is a

soluble variety which does not contain Ae - the variety of all metabelian

groups - is it true that ¥ =B N B for some integers »n and ¢ ?

3mel'kin [8] has shown that it is true if V¥ is nilpotent by abelian and
this was extended by Gupta [4] to the case in which Y is nilpotent by
nilpotent. Also, the present author has shown in [2] that a counterexample
to the problem would have to contain a variety which cannot be generated

by finite groups.

Received 13 July 1972. The author thamks Dr L.G. Kovdcs for his
constructive suggestions on the presentation of the material.
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The purpose of this note is to give an affirmative answer to the above
question. In fact we will prove the following, somewhat more general,

result.!

THEOREM. Let V be a subvariety of a product of (finitely many)

varieties each of which ts either locally finite or abelian. If ¥ does

. 2 .
not contain A~ , then Y =BNB for some integers n and c .

We observe that this result may be regarded as an extension of a
dichotomy of Hall. Using commutator-subgroup functions, Hall defines a
special class of varieties of soluble groups - those varieties obtainable
from the trivial variety by commtation; see, for example, [5]. He then
notes certain natural dichotomies of these varieties; in particular, a
'Hall variety' is either nilpotent or contains the variety of all
metabelian groups. The present theorem extends this dichotomy to varieties
of soluble groups in general. For a fuller discussion and for a number of

related results, we refer to [3].

2. Proof of the theorem

The proof will be by contradiction. Let Y. be a counterexample to

1

< < 4 <
the theorem and suppose that X‘l = =S=l ip where each §; (L =171 =r)

is either locally finite or abelian. Choose ¢ maximal with respect to

the property that 32 = =Y-l A =S=t é’r is still a counterexample; clearly

t < r . By the choice of t , there exist integers m and d such that
< .

leAgt_,_l...grsBNg andso;l‘?_ngN .As!zlsa

=

counterexample, it is clear that S, = A and that l3 = var[gm(l’m[!g))]

is also a counterexample.

]

<<
Observe that ¥3 =< AB NZ and let G

generator of G and denote BNz(G) by B . Then B is abelian and so

Fmﬁ%) ; let x be a free

gp(B, x) is metabelian. By the hypothesis of the theorem, gp(B, x)

! Remark (added 21 August 1972). After this paper was accepted for
publication, it was brought to the author's attention that M:|. Kargapolov
and V.A. Curkin had already established the soluble case of this result;
see [6].
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generates a proper subvariety of éQ and so by, for example, Proposition 3

of [2], gp(B, x) € B Nc}=3'n for some integers n and ¢ . Hence, if

b eB, [bn, c:x:n:]n =1 (in general, [g, ch] denotes the commutator
(g, B, ..., h] with h repeated ¢ times). As B is abelian, it

2
follows that [b, cxn]n =1 forall b €B . Let T denote

,n?

{b €B| b =1}. Then T 1is a fully invariant subgroup of G having

finite exponent. As V

3 is a counterexample, so also is ¥ = var(G/T) .

Write H = G/T = F_(Y) , denote «F by y , B/T by A and note that,
n
for all elements a of A4 , [a, cy ] =1.

Let C denote the centraliser of 4 in H ; as we noted in [Z;
p. 98], C is a verbal subgroup of H . Hence K = H/C is a relatively
free group; let {yC, Yy vees yd+1} "be part of a free generating set of

K and denote (yC)n by g and [yl, ""yd+1] by h . We claim that

: .
L= gp(hg [ 2 =0, 1, ] is infinite. For, otherwise th = h for

some integer J ; rewriting this, [yl, cees Ygero (yc)nJ] = 1 . But this
relation in the free generators of K clearly implies that X ¢ nd+l§'nj .
As K = H/C and C centralises A , it follows that ‘ld+1%1j(ﬂ)

i 7 . . A . A i
centralizes B N +l__§_n‘7(H) , SO £d+l£ng(ﬁ) € [E, éml] But %n ¥ is
locally finite and so, by Lemms 6 of [3], @, gml\il < QZA for some

< . . .
natural number 7 . Hence Y = élgd**lénj . However, in this case, it
would follow that ¥V A Mﬁl is a counterexample which, by Proposition 3

of [2], is not possible. Thus L[ 1is infinite; as it is a subgroup of

y‘d(K) , which is a group of finite exponent in Y , it is also locally
finite.

Now K 1is naturally embedded in the automorphism group of A and so

0
o
8

also in the endomorphism ring of A4 . In this ring, (g—l)c

7
alg-1)® = la, eg)l =1 for all a €4 . Let M=gp(hg | 0 =4 < 2¢-1
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and let R be the subring of this endomorphism ring generated by M . As

R is additively generated by M , the additive subgroup R+ of R 1is

finitely generated.

The next step is to show that [ =R . It will suffice to show, by
1
induction, that WY €R for all i >0 . This is true by essumption if

7
1 < 2e¢-1 and so we suppose that Jj = 2¢-1 and that W ¢R for all
1 < gJ . A little notation is required. Denote the Lie commutator uv - vu
of two arbitrary elements u and v of the endomorphism ring of A Dby

(u, v) 3 if k 1is a positive integer, the element (u, kv} is just
{(u, vy, ..., v} with v repeated k times. Also (f] denotes the

binomial coefficient in the usual way. Then the following formula is well

known (and easily verified by induction):

k , , .
(u, kvd= J (-1)° (I‘:’]vtuvk—z .
i=0 *

Using this formula, it follows that

f (-1)j‘i{gf]h9i =g go (15[ 3, )gng®

=0 J=t
=g Xn, jg) =g Nhn, jlg-1)
= g7 .ﬁ (-1)7’(§](g-1)1h(g-1)'7't
=0
=0 .
as (g—l)c=0 and, as J = 2¢-1 , either 2 2 ¢ or Jj-i 2 ¢ . We can

1
therefore express th as a linear combination of the W with £ < J

and so th € R , which completes the inductive step. Thus L[ =R .
Since R 1is & ring with identity, its right regular representsation

+
gives a natural embedding of itself into the endomorphism ring of R .
Hence, by the previous step, L can be embedded as an infinite periodic

+ +
subgroup of the automorphism group of R . But R 1is a finitely
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generated abelian group and it is well known (see, for example, Theorem T1
of Wehrfritz [9]) that every periodic subgroup of its automorphism group is

therefore finite. This contradiction completes the proof of the theorem.
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