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ON ZERO-TRACE COMMUTATORS

FUAD KlTTANEH

We present some results concerning the trace of certain trace class

commutators of operators acting on a separable, complex Hilbert

space. It is shown, among other things, that if X is a Hilbert-

Schmidt operator and A is an operator such that AX - XA is a

trace class operator, then tr(AX - XA) = 0 provided one of the

following conditions holds : (a) A is subnormal and A*A - AA*

is a trace class operator, (b) A is a hyponormal contraction

2
and 1 - AA* is a trace class operator, (c) A is normal and

o 3

A*A - AA* is a trace class operator, (d) A and A are normal.

It is also shown that if A is a self - adjoint operator, if f

is a function that is analytic on some neighbourhood of the closed

disc{s ; \z\ < ||i4||} , and if X is a compact operator such that

f(A)X - Xf(A) is a trace class operator, then tr(f(A)X - Xf(A))=0.

An operator means a bounded linear operator on a separable, complex

Hilbert space H . Let B(H) , K(H) , C? , and C denote

respectively, the algebra of all bounded linear operators acting

on H , the class of compact operators, the Hilbert - Schmidt class, and

the trace class operators in B(H) . It is known that K(H) , C_ and C,
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are two-sided ideals in B(R) and that if X and Y are in C_ , then

XY e

If T e C. and {e.} is an orthonormal basis of H , then the

trace of T , denoted by tr T = \(1e., e.) is independent of the choice
• %• tr

of {e .} . If X and Y in B(H) are such that both XY and YX lie
tr

in C^ , then tr (XY) = tr O W [7, Corollary 3.8].

If H is finite dimensional, then every commutator, that is,

operator of the form AX - XA , has zero trace. In fact by the Shoda -

Albert and Muckenhoupt result [2], an operator on a finite dimensional

Hilbert space is a commutator if and only if it has trace 0. If,

however H is infinite dimensional, and AX - XA is in C_ , then

tr (AX - XA) may not be zero even though A is a normal operator. For

example, if U is the unilateral shift operator, if A = all + bU* where

J <=z | = \b\ ̂  0 , and if X = U , then AX - XA = b(l - UU*) is a rank one

operator, hence in C- , but tr (AX - XA) = b . But if A is assumed

to be diagonalizable, and X is in B(H) such that AX - XA e C. ,

then tr (AX - XA) = 0 (just evaluate the trace using the eigenvectors of

A) . Also if X is required to be compact and A is a self - adjoint

operator such that AX ~ XA e C then tr (AX - XA) =0,3. result which

is due to Helton and Howe [3, Lemma 1.3].

In [S], G. Weiss proved that if N is a normal operator, and X

= 0 .

is a Hilbert-Schmidt operator such that NX - XN e C , then tr(NX - XN)

The purpose of this note is to extend the result of Weiss to non-

normal cases, and the result of Helton and Howe to non self-adjoint cases.

For other extensions the reader is refered to 141. In LSI the question

as to whether Weiss' theorem remains true under the weaker assumption

that X e K(H) was raised. Namely, if N is a normal operator and X

is a compact operator such that NX - XN e C , must tr(NX - XN) = 0?

In [9] it was observed that if C? possessed the generalized Fuglede
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property (that is for normal N and X e B(H), NX - XN e C implies

N*X - XN* e C.), then the answer to this question would be yes.

Motivated by the work in [5] we now present the following general-

izations of Weiss' result.

THEOREM 1. Let A e B(H) be subnormal with A*A - AA* e

X e Cn and AX - XA c C„ , then tr(AX - XA) = 0 .
6 i

If

Proof. By assumption there exists a Hilbert space Rj and there

exists a normal operator N on H $ H such that N =

Let Y =

1.

Then Y e C? as an operator acting on H

Now NY - YN =
AX - XA -XR

0 0

A*A - AA* = RR* £ C1 . Thus R e

N being normal implies that

and so XR e Hence

NY - YN e C1 . Weiss' result now implies that tr(NY - YN) = 0 . But

tr(NY - YN) = tr(AX - XA) . Therefore tr(AX - XA) = 0 as required.

COROLLARY. Let A e B(H) be a subnormal and rationally oyolia

operator. If X e Co and AX - XA e C, , then tr(AX - XA) = 0 .

Proof. The conclusion follows from Theorem 1 and the fact that if

A is a rationally cyclic hyponormal operator, then A*A - AA* e C^ [1].

If 4 £ B(H) is a hyponormal contraction, and if 1 - AA* e C. ,

then 1 - A*A £ C? . In fact it follows from the hypothesis that

1 - AA* > 0 , 1 - A*A > 0 , and ((1 - A*A)f,f) < ((1 - AA*)f,f) for

any vector f e H [5, Lemma 1].

THEOREM 2. Let A e B(H) be a hyponormal contraotion with

1 - AA* e C . If X e C and AX - XA e C7 , then tr(AX - XA) = 0 .

(l-AA*)h~
Proof. Let U = on H 9 H . Then U is
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unitary [Z]. Let Y =
X

0 1
0\

Then IE - YU =
AX - XA -X(1-AA*)'

(1 - A*A)*X

Since 1 - AA* e C' , it follows that 1 - A*A e C? . Thus both

- AA*) and - A*A) lie in

f:Z - e C1 and

. But X e C. implies that

Since 4X - XA e C , it follows

that UY - YU e C2 . Now Weiss' result implies that trfOT - YU) = 0

since U is unitary and Y e C . But - TOJ = tr(AX - XA) and

so the proof is complete.

THEOREM 3. Let T e B(E) be such that T2 is normal and

T*T _ TT* e C1 . If X e C2 and TX - XT e Cj , then tr(TX - XT = 0 .

Proof. Since T is normal, it follows by Radjavi's and Rosenthal'

0 0

structure theorem [6] that T = 0 B , where A,B are normal

1 0 -B

operators, C S 0 and one - to - one, BC = CB , and a(B) is contained

in the closed upper half - plane. Now T*T - TT* e C^ implies that

'A 0 0

e C
1 '

Hence C e Co . Therefore T = N+K , where N = 0 B 0

0 0 -B

~ 0 0 0

is normal and K = e C . Thus TX - XT = NX - XN + KX - XK .0 0 C

0 0 0_

Since KX and XK both lie in C. and TX - XT £ C' , it follows that

NX - XN e Cj , from which it follows by Weiss' result that tr(NX - XN)=0.

Since tr(KX - XK)= 0 , it follows that tr(TX - XT) = 0 as required.

THEOREM 4. Let T e B(H) be suah that T2 and T3 are normal.

If X e C2 and TX - XT e C2 , then tr(TX - XT) = 0 .

Proof. Since T is normal, it follows that T =

A 0 0

0 B C

0 0 -B
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as in the proof of Theorem 3 above, where A, B are normal operators,

C ^ 0 and one - to - one and BC = CB .

Now

'A3

0

0

0

B3

0

0~

B2C

-B3_

But T being normal implies that

B*3 B3 = B3B*3 + B*2B2(? . Hence B*2B2(? = 0 . Since C is one - to -

2 2 2
one, it follows that B* B = 0 . Thus B = 0 and so B = 0 since it

is normal. Therefore T =

0 0

0 0 Let X = IX..Id, j =

o o o_
be the corresponding matrix representation of X . Then

TX - XT =

AX
n

AX12

- X
21A CX 32

~X31A

AY —Y r
13 12°

~X32C

Since TX - XT e CJ it

follows that every entry of this matrix is in C. Therefore tr(TX - XT)=

tr(AX-- - X..A) + tr(CX-J - tr(X7nC) . Since A is normal and *,, e C0J
11 11 OO Oa 11. a

it follows that tr(AX.^ - XnnA) = 0 . Now CX7r> and X7OC both lie in
11 11 tjH Q&

C7 . Thus tr(CX?J = tviX.j:) and so tr(TX - XT) = 0 as required.

Before focusing our attention on the Helton - Howe result, we give

the following related result.

THEOREM 5. Let V e B(H) be an isometry of finite multiplicity.

If X e K(H) and VX - XV e C , then tr(VX - XV) = 0 .

Proof. By the observation in [9lit is sufficient to show that

V*X - XV* e C
1 *

Since 1 - W* is of finite rank, it follows that

W* = 1 + C for some finite rank operator C .

Now V*(VX - XV)V* e C . Thus XV* - V*XVV* e C and so XV* -

V*X(1 + C) e C1 . Therefore V*X - XV* e CJ as required.

Remark. The unilateral shift and unitary operators are important

special cases for which Theorem 5 holds.
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Our first generalization of the Helton - Howe result can be stated

as follows.

THEOREM 6. Let A e B(H) be self - adjoint. If f = p/q is a

rational function with poles off a (A) , and X e K(H) with S = f(A)X -

Xf(A) e. C1 , then tr(q(A)Sq(A)) = 0 .

Proof. We consider the following cases.

Case (i) If f is constant, then the result holds trivially.

Case (ii) If fit) = tn(n > 1) , then

f(A)X - Xf(A) = A( I An-U1< XAk) - ( I A*-1-* XAk) A
k=0 k=0

= AY - YA for some Y e K(H) . Hence the result in

this case follows from the Helton - Howe lemma.

Case (iii). If f is a polynomial, then the result follows from

case (ii) by addition.

Case (iv). If f(t) = p(t)/q(t) , where p3 q are polynomials and

q has no zeros on a(A) , then by the spectral mapping theorem it follows

that q(A) is invertible.

Now P(A)Xq(A) - q(A)XP(A) = q(A) Sq(A) e C^ and so

q(A)Sq(A) = \_P(A) (Xq(A)) - (Xq(A))P(A)l - Lq(A)(XP(A)) - (XP(A))q(A)l.

By case (iii) we obtain that q(A)Sq(A) = (AY - YA) - (AZ - ZA) , where Y

and Z are compact operators. Hence q(A)Sq(A) = A(Y - Z) - (Y - Z)A ,

and so tr(q(A)Sq(A)) = 0 by the Helton - Howe lemma.

Notice that the Helton - Howe lemma becomes a special case of

Theorem 6 upon taking p(t) = t and q(t) = 1 .

We conclude with the following result.

THEOREM 7. Let A e B(H) be self - adjoint. If f is a function

that is analytic on sane neighbourhood of the closed disc

{z : |s|< ||i4||} and X e K(H) with T = f(A)X - Xf(A) e C^ , then

tr T = 0 .

Proof. Without loss of generality, we may assume that \\A\| S 1

and \\X\\ < 1 . Thus f is analytic on the disc D = {z: \z\ < 1 + r]
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" k
for some r > 0 . Let f(z) = ^ a-, z be the power series expansion of

k=0
n ,

f . Let f (z) = £ av z . Then / CisJ > f(z) uniformly on the
n k=0 K n

closed unit disc and so / (A) > f(A) . Therefore

T = lim f (A)X - X lim f (A)
n ->- oo n

 n - > « > n

= lim (fn(A)X - Xfn(A))

= lim (AX - X A) , where {X } is a sequence of compact
n n n

n -»• •»

operators as shown in case (iii) of Theorem 6. In fact it is not hard to

n-1 v i v
see that X = a X + a (AX + XA)+ ...+ a ( I An~ XA ) . For n > m

n l d n k=0

we have

X - X = a
k=0 k=0 K=U

and so | \x - X \\ < (nn-l)\a,,\ + (m+2)\a 0\+. ..+ n \a | . Since f
Yt TTl Tfl~hJ. TTti& Tt

n
is analytic on D , it follows that J l̂ar,l —-"• 0 as n, m — > ».

k=m+l

Therefore {Xn} is a Cauchy sequence of compact operators, hence it is

convergent to some compact operator Y . Now T = AY - YA. Since A is

self - adjoint and Y is compact and T e C , it follows by the Helton -

Howe lemma that tr T = 0 as required.

We would like to remark here that f(A) as described in Theorem 7

is normal operator but it need not be self - adjoint.
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