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ON ZERO-TRACE COMMUTATORS

Fuap KITTANEH

We present some results concerning the trace of certain trace class
commutators of operators acting on a separable, complex Hilbert
space. It is shown, among other things, that if X 1is a Hilbert-
Schmidt operator and A 1is an operator such that AX - XA 1is a
trace class operator, then ¢r(AX - XA) = 0 provided one of the

following conditions holds : (a) A is subnormal and A%*4 - A4*
is a trace class operator, (b) A 1is a hyponormal contraction

a2 .
and 1 - AA* 1is a trace class operator, (c) A4 is normal and

2 3
A*4 - AA* is a trace class operator, (d) A and 4 are normal,

It is also shown that if 4 is a self - adjoint operator, if f
is a function that is analytic on some neighbourhood of the closed
disc{z : Izl < ||A||} , and if X is a compact operator such that

f(A)X - Xf(A) is a trace class operator, then ¢r(f(A)X - Xf(A4))=0.

An operator means a bounded linear operator on a separable, complex

Hilbert space H . Let B(H) , K(H) , CZ , and 01 denote

respectively, the algebra of all bounded linear operators acting
on H , the class of compact operators, the Hilbert -~ Schmidt class, and

the trace class operators in B(H) . It is known that K(H) , €, and C,
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are two-sided ideals in B(H) and that if X and Y are in 02 , then

XY e C&.
If T €(, and {ei} is an orthonormal basis of H , then the

trace of T , denoted by tr T = Z(Tei, ei) is independent of the choice
7

of {ei} . If X and Y in B(H) are such that both XY and YX lie

in €, , then tr (XY) = tr (Yx) [7, corollary 3.8].

If H 1is finite dimensional, then every commutator, that is,
operétor of the form AX - XA , has zero trace. In fact by the Shoda -
Albert and Muckenhoupt result [2], an operator on a finite dimensional
Hilbert space is a commutator if and only if it has trace 0. If,

however H 1is infinite dimensional, and AX - X4 is in CZ , then

tr (AX - X4A) may not be zero even though A is a normal operator, For
example, if U is the unilateral shift operator, if A4 = aU + bU* where
lal = |b| #0 , and if X = U , then AX - XA = b(1 - UU*) is a rank one

operator, hence in Cl , but #r (AX - X4) = b . But if A is assumed

to be diagonalizable, and X is in B(H) such that AX - XA ¢ 01 ,

then tr (AX - X4) = 0 (just evaluate the trace using the eigenvectors of
A). Also if X is required to be compact and A is a self - adjoint

operator such that A4AX - X4 ¢ Cl then tr (AX - XA) = 0 , a result which

is due to Helton and Howe [3, Lemma 1.3].

in [8]1, G. wWeiss proved that if N 1is a normal operator, and ¥
is a Hilbert-Schmidt operator such that NX - XV ¢ Cl’ then ¢r(NX - XN)
=0 .

The purpose of this note is to extend the result of Weiss to non-
normal cases, and the result of Helton and Howe to non self-adjoint cases.
For other extensions the reader is refered to [41. 1In [8] the guestion
as to whether Weiss' theorem remains true under the weaker assumption
that X € K(H) was raised. Namely, if N is a normal operator and X

is a compact operator such that NX - XN € C, , must tr(NX - XN} = 0?

1

In [ 9] it was observed that if C& possessed the generalized Fuglede
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property (that is for normal N and X € B(H), NX - XN ¢ C] implies
N*X - XN* € Cl)’ then the answer to this question would be yes.

Motivated by the work in [5] we now present the following general-

jizations of Weiss' result.
THEOREM 1. Let A € B(H) be subnormal with A*4 - AA* € C] . If

X e 02 and AX - XA € Ci s them tr(AX - XA) =0 .

Proof. By assumption there exists a Hilbert space H1 and there

exists a normal operator N on H & HZ such that VN = A R J.
1

0 A

X g
Let Y = . Then Y ¢ 02 as an operator acting on H & H, .

g 0

AX - XA -XR
Now NY - YN = . N Dbeing normal implies that
0 0

A*A - AA* = RR* ¢ Cl . Thus R € 02 and so XR € Cﬁ . Hence
NY - YN € C] . Weiss' result now implies that ¢r(NY - YN) = 0 . But

tr(NY - YN) = tr(AX - XA) . Therefore tr(AX - XA) = 0 as required.
COROLLARY. Let A e B(H) be a subnormal and rationally cyeclic
operator. If X e C, and AX - XA € cy then tr(AX - X4) =0 .

Proof. The conclusion follows from Theorem 1 and the fact that if

A is a rationally cyclic hyponormal operator, then A*A - AA* ¢ Cl [71.

If A € B(H) is a hyponormal contraction, and if 1 - A4* € C& ,
then I - A*A € CZ . In fact it follows from the hypothesis that
1-A4*20, 1- A*% 20, and ((1 - A*A)f,f) < ((1 - AA*)f,f) for
any vector f ¢ H [5, Lemma 1].

THEOREM 2. Let A e B(H) be a hyponormal contraction with
1-44*e€C,. If XeC, ad AX - XA € C then tr(AX - XA) = 0 .

1 2 1°
A (1-44%)%"
Proof. 1et U = on H@®H ., Then U is
2
(1-A%4)72 -A%*
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- %
X 0 AX - XA ~X(1-AA%*)?
unitary [2]. Let Y = . Then UY - YU =
%
-0 0 (1 - A*)%x 0
Since 1 - AA* € CJ , it follows that 1 - 4*4 ¢ Cl . Thus both

(1 - AA*)% and (1 - A*A)% lie in 02 . But X ¢ 6'2 implies that

E
(1 - AA*);EX € Cl and (1 - A*)%*X ¢ CJ . Since AX - XA € CJ , it follows
that UY - YU ¢ Cl . Now Weiss' result implies that ¢r(UY - YU) =0

since U is unitary and Y € C But tr(UY - YU) = tr(AX - X4A) and

5 -
so the proof is complete.

THEOREM 3. et T e B(H) be such that T° is normal and

T*T - TT* e C, . If Xe C, and TX - XT ¢ C then tr(TX - XT =0 .

1 2 1°

Proof. since T2 is normal, it follows by Radjavi's and Rosenthal's

A 0 0
structure theorem [6] that 7= | 0 B (|, where A,B are normal
0 0 -B

operators, ( = 0 and one - to - one, BC =(CB , and o(B) is contained

in the closed upper half - plane. Now T3*T - TT* € 01 implies that

4 0 0
CZ € C’1 . Hence C( € 6'2 . Therefore 7T = N+K , where N = {0 B 0
0 0 -B
Fo o o0
is normal and X = 0 0 Cscg.Thus TX - X' = NX - XN + KX - XK .
o 0 0
Since XX and XK both lie in CJ and TX - XT € Cl , it follows that

NX - XN € Cl , from which it follows by Weiss' result that ¢r(NX - XN)=0.
Since tr(KX - XK)= 0 , it follows that ¢r(TX - XT) = 0 as required.

THEOREM 4. Let T e B(H) be such that T2 and T° are normal.
If XeCz and TX—XTeCJ,then tr(TX - XT) = 0 ,

4 0 0
Proof. since TZ is normal, it follows that T = 0 B C
0 0 -B
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as in the proof of Theorem 3 above, where A, B are normal operators,

C20 and one - to - one and BC = (B .

A3 0 0
Now T3 = |0 B3 B2c|. But T3 being normal implies that
0 0 -BY
3*3 Bg = BSB"3 + B*ZBZCZ . Hence B*ZBng =0 . Since ( is one - to -

one, it follows that 3*2 32 = 0 . Thus BZ =0 and so B =0 since it

is normal. Therefore T = = [Xij](i’ J=1,2,3)

> o
S

S a ©
B
®
e
5

be the corresponding matrix representation of X ., Then

AX_ . - X, A AX AX13_X c

11 11 12 12

TX - XT = . Since TX - XT € C, , it

CX31 - XZJA CX32 CX53—X220 1

_ngA 0 —X32C
follows that every entry of this matrix is in C]' Therefore tr(TX - XT)=
tr(AXIJ - XJZA) + tr(CX32) - tr(XSZCU . Since A is normal and Xll € Cé,
it follows that tr(AXlZ - XJJA) =0 . Now CXSZ and stc both lie in
C} . Thus tr(Cng) = tr(X3209 and so tr(TX - XT) = 0 as required.

Before focusing our attention on the Helton - Howe result, we give
the following related result.

THEOREM 5. Let V € B(H) be an isometry of finite multiplicity.
If X e K(H) and VX - XV € ;s then tr(VX - XV) =0 .

Proof. By the observation in [9]it is sufficient to show that
VX - XV* ¢ C} . Since 1 - VV* is of finite rank, it follows that

VW* =1 + C for some finite rank operator C .
Now V*(VX - XV)V* € 01 . Thus XV* - VVV* ¢ Cl and so XV* -

VAX(1 + C) € 01 .  Therefore V*X - XV* ¢ CJ as required.

Remark. The unilateral shift and unitary operators are important

special cases for which Theorem 5 holds.
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Our first generalization of the Helton - Howe result can be stated

as follows.

THEOREM 6. Let A € B(H) be self - adjoint. If f=p/q is a
rational function with poles off o(4) , and X ¢ K(H) with S = flA)X -
Xf(A) € ¢, , then tr(q(A)Sq(a)) =0 .

Proof. wWe consider the following cases.

Case (i) If f is constant, then the result holds trivially.

Case (ii) If f(t) = £'(n = 1) , then

n-1 n~1
FX - xfa) = ac 5 AR xR 0y R xR 4
k=0 k=0
= AY - YA for some Y ¢ K(H) . Hence the result in

this case follows from the Helton - Howe lemma.

Case (iii). If f 1is a polynomial, then the result follows from

case (ii) by addition.

Case (iv). If f(t) = p(t)/q(t) , where p, q are polynomials and
q has no zeros on a(4) , then by the spectral mapping theorem it follows
that ¢(4) is invertible.
Now P(A)Xq(A) - q(A)XP(A) = q(4) Sq(4) € ¢, and so

q(A)Sq(A) = [P(A)(Xq(A)) - (Xq(A))P(A)] - [q(A)(XP(A)) - (XP(A))q(A)].

By case (iii) we obtain that ¢(A4)Sq(A) = (AY - YA) - (AZ - ZA) , where Y
and Z are compact operators. Hence q(A)Sq(4) = A(Y - Z) - (Y - Z)A ,
and so tr(q(4)Sq(4)) = 0 by the Helton - Howe lemma.

Notice that the Helton - Howe lemma becomes a special case of

Theorem 6 upon taking p(t) =t and q(t) = 1.

We conclude with the following result.

THEOREM 7. Let 4 € B(H) be self - adjoint. If f 1is a function
that is analytic on same neighbourhood of the closed disc
{z : |zls ||4A]|} end X € K(H) with T = f(A)X - Xf(A) € C, , then

1 E
tr T =0 .
Proof. without loss of generality, we may assume that ||A4]] < 2
and ||X!| €1 . Thus f is analytic on the disc D = {z: |z]| < 1 + »r}
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o
for some r > 0 . Let f(z) = z a zk be the power series expansion of
k=0

n
f . Let fh(z) = kzo a, zk . Then fh(z) > f(z) uniformly on the

closed unit disc and so f%(A) > f(4) . Therefore

T =1lim f (A)X - X 1lim fh(A)

n >« n > o
= lin  (f (A)X - Xf_(4))
Nn > o 7 7

lim (AXn - XnA) , where {Xn} is a sequence of compact
n > e

operators as shown in case (iii) of Theorem 6. In fact it is not hard to

"l k-1 k
see that X = a X + a (AX + XA)+ ...+ a ( } A xA") . For m>m
n 2 n 2o

1
we have
m m+1 n-1
X -X =a (] ARy & a ol ] Am+1_kXAk)+...+an( iAo 7l
k=0 k=0 k=0
and so ||Xﬁ - Xﬁ|| < 0”+1)|%ﬂ+1| + ﬁm+2)|am+2|+...+ n Ianl . Since f
n
is analytic on D , it follows that Z klakl —> 0 as n, m —> =,
k=m+1

Therefore {Xn} is a Cauchy sequence of compact operators, hence it is
convergent to some compact operator Y . Now T = AY - YA. Since 4 is

self - adjoint and Y 1is compact and T € C, , it follows by the Helton -

1

Howe lemma that ¢r T = 0 as required.

We would like to remark here that f(4) as described in Theorem 7

is normal operator but it need not be self - adjoint.
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