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Introduction. The main object of this paper is to show
that the existence of a particular kind of isomorphism between
the integral group rings of two finite groups implies that the
groups themselves are isomorphic. The proof employs certain
types of linear forms which are first discussed in general.
These linear forms are in some way related to the bilinear forms
used by Weidmann [3] in showing that groups with isomorphic
character rings have the same character table, and a shorter
and, in a sense, more natural proof of this result is included
here as another application of these linear forms.

1. Linear forms on an algebra. Let R be a commutative

ring with unit 41, A an associative algebra over R with unit
e, and A% = HomR(A, R) the R-dual of A as R-module with

the usual A-module structure given by the definition

(a@)(x) = p(xa) for ae A%, pe A%, and xe A. We shall call a
linear form Xe A% regular if {\} is an A-basis for A% and
central if \(xy) = A(yx) for all x,ye A.

LEMMA 1. If \,ve A* are regular then v = a\ where
ae A is invertible; moreover, if X and v are also central
then a belongs to the centre of A.

Proof. One has v = ax for suitable ae A since

* = Ax; then, also, A* = Ay = Aa), and thus )\ = a'a\x for
suitable a'eA which implies e = a'a, i.e. a has a left
inverse. By the same reasoning for )\ = a'v one obtains a
left inverse a'' for a', and it follows that a' = a; hence a
is invertible. Now assume further that X and v are central;
for v this means \(xya) = \(yxa) for all x,ye A, and the
centrality of X implies that \(yxa) = \(xay); from this one
obtains that (ya-ay)\ = 0 and thus ya = ay for all ye A.
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LEMMA 2. If A has a finite basis {x,} and \e¢A%* is
1

such that det()\(x,xk)) is invertible in R then )\ is regular.
e

Proof. From a\ =0 it follows that Eck)\(xixk) = 0 where
a = chxk, and this implies ¢ = 0 for all k, i.e. a =0.
Secondly, for any veA%, the equations v(xi) = ch)\(xixk) can

be solved for ¢, in R, and for a = Xc, x one then has v = a\.

k k k

Let now R = Z, and assume for the algebra A that A is
finitely generated over Z and AC = CQ® ZA is Artinian

semi-simple. Each XeA* has a unique C-linear extension

')\::AC - C, and if a relation v = a\ holds for \,veA% and

some acA then also v = a’)\\J. A linear form \eA* will be
called normal if it is regular, central and its extension X
has positive rational values for the primitive central

idempotents of AC.

LEMMA 3. There exists at most one normal \e A%.

Proof. Let Uy oot be the primitive central
I n

idempotents of A and v and )\ normal linear forms on A.

C)
Then v = a)\ with an invertible central element ae¢ A, and

a=2XZc u with complex coefficients c¢

e clearly all non-zero.

k!
Now, for each i, the correspondence x ~;xu.
i

determines a homomorphism from the centre of A into C,
and since A 1is finitely generated as Z-module the same
holds for the image of its centre under this homomorphism.
Thus x~9xu, maps the centre of A into the ring of

i
algebraic integers, and therefore the coefficients k of a
as well as their inverses are algebraic integers, the latter

-1 -1

since a =Zc u From v(u.) = X(u.a) = x(c.u.) = c.\(u))
k i i ii i i

K
and the given hypothesis on X\ and v it further follows that
the ci are positive rational, hence all ci =1, a=e, and

thus v =\.
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COROLLARY. If A and B are two rings as above, with
normal linear forms )\ and v respectively, and ¢:A > B is
an isomorhpism then \ = wd.

Proof. Consider the linear form p = ved on A. Itis
clearly central, and from ap = (¢(a)v)od one readily obtains
that it is regular. Now, if u1, ey, un are the primitive central

idempotents of A _, and $:A - BC is the C-linear extension

C C

of ¢ then ?5(\11), .. .,?b'(un) are the primitive central

idempotents of B and hence T.i(ui) = 'i";(&?’(ui)) is positive

C)
rational. This shows p is normal, and thus \ = p = vod.

It might be added that the above considerations still hold
if Z 1is replaced by an arbitrary subring of C which is
finitely generated as Z-module.

2. Integral group rings. On the integral group ring Z[G]
of a finite group G one has the linear form \ defined by
)\(Z‘,hss) = he where e is now the unit of G. Since G is a

basis of Z[G] and
1 ifs=t ]
)\(St) = A . -1
0 ifs#t
X\ is regular. Also, for x=2gss and y =Zh s one has
s

\Mxy) =Zg h 4 Zh g 4 = Ayx), i.e. \ 1is central.
s S g s S 4” —
Finally, the primitive central idempotents of C® Z[G] = C[G]

are of the form [1]

seG

where X is an irreducible C-character of G and d the
C-dimension of the representation module associated with .

2
Therefore, \(u) = (d/g)x(e) = d /g whichis positive rational.
Thus \ is normal.
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On Z[G] one has a particular involution J determined by

-1
J(s) =s = for seG, and G is a basis of Z[G] which is
orthonormal in the sense that

1 if s =t
A(sJ(t)) =[
10 if s#t

This condition plays the following interesting role:

LEMMA 4., For any orthonormal basis B of Z[G] which
is closed with respect to multiplication there exists a homomorphism
n:G—> {1, -1} such that B = {n(s)s|seG} .

Proof. Itis immediate that any orthonormal basis of Z[G]
is of the type {n(s)s|seG} where n(s) =1 1. Closure with
respect to multiplication then means that for any s, teG there

exists an xeG for which n(s)sn(t)t = n(x)x, but this implies
that x = st and hence n(s)n(t) = n(x) = n(st), which shows that
n:G = Z is a homomorphism.

We are now ready to obtain our main result.

PROPOSITION 1. Let G and H be two finite groups and
$:Z[G] = Z[H] an involution preserving isomorphism, i.e.
dcJ =Icd for the involutions J and I of Z[G] and Z[H]
respectively. Then, there exists an isomorphism ¢:G - H
and a homomorphism n:G = {1, -1} such that ¢(s) = n(s)?(s)
for all seG.

Proof. (G) is clearly a multiplicatively closed Z-basis
of Z[H]. Now, if X and p are the normal linear forms on
Z|G] and Z[H] respectively then

I

pld(s) I(a(t))) plo(s)d(JI(t))) =

1

(peod) (sJ(t)) A(sJ(t)),

and hence &(G) is an orthonormal basis of Z[H]. It follows
from Lemma 4 that there exists a homomorphism e:H - {1, -1}
such that ¢(G) = {e(s)slseH} . Now, the desired isomorphism ¢

-1
is the inverse of the isomorphism H-—> G givenby s.s¢ (es)s),
and mn 1is given by mn(s) = g(¢(s)), seG.
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We do not know whether all isomorphisms between integral
group rings are involution preserving, or whether the existence
of an isomorphism ¢:Z[G] = Z[H] at least implies the existence
of an involution preserving isomorphism (:Z[G] = Z[H] - questions
obviously related, in the light of the above proposition, to the
unsolved problem whether groups with isomorphic integral group
rings must be isomorphic.

The case in which this is known to be so, i.e. for abelian
groups, is a simple consequence of Proposition 1; in fact, one
has the following, more detailed version of the original result
of Higman's [2]:

COROLLARY: Let ¢:Z[G]—= Z[H] be an isomorphism
where G and H are finite abelian groups. Then there exists
an isomorphism ¢:G - H and a homomorphism 7n:G - {1, -1}
such that ¢(s) = n(s)e(s) for all seG.

Proof. It clearly suffices to show that ¢ is involution
preserving. For this one observes first that the extension

7 C[G] = C[G] of J given by .ﬂf(cx) = cJ(x) for ceC, xe Z[G],

leaves the primitive central idempotents

= X(s_'l)s
s

c
I
o o

of C[G] fixed, and that for abelian G this property completely
characterizes J. It follows from this that the involution

qf{ I.¢ of Z[G], I the '"natural" involution of Z[H], js equal
to J since it clearly has the same property. This, then,
proves that ¢cd = Icd.

3. Character rings and character tables. In this section

we present an alternative, more algebraic approach to the
result of Weidman [3] which is closely parallel to the above
discussion of group rings.

The character ring © (G)of a finite group G, i.e. the
ring of complex-valued functions on G generated by the
C-characters of G, has the irreducible C-characters
Xgr - X, 282 basis, and has the further property that C®Z < (G)

is isomorphic to the ring of all complex-valued functions on G
which are constant on the conjugacy classes and hence is
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semi-simple. Identifying C®ZQ9'(G) with the latter, the functions

of the type

|
o |~

Zi Xi(s) X;

k the number of elements in the conjugacy class of s and g the
order of G, are the primitive (central) idempotents.

Now, on ¥(G) one has the linear form )\:%(G) = Z
defined by

Z gl(s)

1
Me) = —
g s¢G

N is, of course, central, and the orthogonality relations for the
characters x. show that X\ 1is regular. Finally, for an
i

idempotent n as given above one has ')\\I(n) = k/g, and thus X\
is normal.

In addition, one also has an involution J on €(G), given
by taking the usual complex conjugate ¢ for ¢e®(G). The

extension J of J to C®Z‘@(G) defined by }(Cq)) = ¢ J(o),

ceC and ¢ e¥(G), clearly leaves the primitive idempotents
of C @Zﬁ(G) fixed, and the Xx; are orthonormal in the sense

that )\(XiJ(Xk)) = 61 Moreover, the set {Xi} has the property

K
that its additive closure is multiplicatively closed since

- : b . This is al t
XiXk b2 mik’lXI with natural numbers mikl is 1s almos

a characterizing property for {Xi} .

LEMMA 5. For any orthonormal basis ﬂl} of €(G)

whose additive closure is multiplicatively closed there exists
an automorphism 6 of €(G) such that {6(x.)} = {¢.} .
I 1

Proof. Again, one has ¢, = €x., with ¢ = +1, after
_— i i1 —

i
suitable rearrangement of the 9 and hence Q.9 = giekxixk =
KX T =55 Mg 9

(piqpk =z niqu)l with natural numbers nikl’

€€, Zm, On the other hand,
ik i

and hence
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€ e = ) c . _
g kmikl 17 % This implies m., nikl’ and therefore the
multiplication tables for the X4 and for the ¢, are the same; the

i
mapping X;~> ¢, now extends to the desired automorphism 6 of ¥(G).

The character tables of the group G are the matrices

(xik) for which X, = Xi(sk) where the X; runover the

different irreducible C-characters of G and the sk over a

set of representatives for the conjugacy classes of G. Any two
such matrices clearly differ only by permutations of the rows
and columns and are therefore elementarily equivalent.

Now we have, as in [3]:

PROPOSITION 2. Two finite groups which have isomorphic
character rings have the same character tables.

Proof. Let G and H be the groups, ¢:9(G)->¥(H) an
isomorphism, X\ and v the normal linear forms and J and I
the usual involutions on ¥(G) and ©(H) respectively. Then
one obtains, exactly as in the proof of Proposition 1 and its
corollary that

NI D) = v(o(,) b))

for the irreducible characters X; of G, i.e. {¢(Xi)} is an

orthonormal basis of ®©(H). Since the additive closure of
{x.} 1is multiplicatively closed the same holds for {¢(Xi)} ,
i

and thus by Lemma 5 there exists an automorphism 6 of
<(H) such that G(Qi) = ¢(Xi)’ 4'1’ RN t"n the irreducible

C-characters of H in suitable arrangement. Now, let
U =6 1c> ¢ and $ its C-linear extension; for the latter one
~ ~n
- ’ imitive id ¢
has (Xink) gikp(nk) M the primitive idempotents of

(G . - .
C®Z (G), and putting XM with xikeC one has

Kk
T ) =¢b () =v. b ) H is a charact

Xikqj(nk) = Z_,qu (nk =y (). Here (Yik) is a character

table of H since {'LLI (nk)} 'is the set of primitive idempotents

of C®Zf@’(H), and the matrix identity (Xik) = (Yik) then proves

the assertion.

641

https://doi.org/10.4153/CMB-1967-061-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-061-0

REFERENCES

1. C.W. Curtis and I. Reiner, Representation theory of
finite groups and associative algebras. Interscience
Publishers, New York, 1962.

2. G. Higman, The units of group rings. Proc. London
Math. Soc. 46 (1940), 231-248.

3. D.R. Weidman, The character ring of a finite group.
111 . J. Math. 9 (1965), 462-467.

Tulane University
New Orleans and
McMaster University
Hamilton, Ontario

642

https://doi.org/10.4153/CMB-1967-061-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-061-0

