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SYSTEMS OF EQUATIONS AND GENERALIZED 
CHARACTERS IN GROUPS 

I. M. ISAACS 

Let F be the free group on ^generators Xi, . . . , Xn and let G be an arbitrary 
group. An element œ G F determines a function x-+œ(x) from n-tuples 
x = (xi, #2, . . . , xn) G Gn into G. In a recent paper [5] Solomon showed that 
if coi, co2, . . . , wm G ^ with m < n, and i£i, . . . , Km are conjugacy classes of 
a finite group G, then the number of x G Gn with co (̂x) G i£* for each i, is 
divisible by |G|. Solomon proved this by constructing a suitable equivalence 
relation on Gn. 

Another recent application of an unusual equivalence relation in group 
theory is in Brauer's paper [1], where he gives an elementary proof of the 
Frobenius theorem on solutions of xk = 1 in a group. 

In this paper Ave define an equivalence relation on Gn which reduces to 
Brauer's when n = 1. This relation is quite similar to Solomon's, and using 
it together with some of Solomon's methods and a crucial lemma from Brauer's 
paper, the following common generalization of Frobenius' and Solomon's 
results is proved. 

THEOREM A. Let G be a finite group and suppose that o>i, co2, . . . , cow G F 
with m < n. Let Kt and Lj be conjugacy classes of G for 1 S i ^ m and 
1 S j S n. Suppose that k\\G\. Then the number of x — (x\, . . . , xn) G Gn 

with œ{(x) G Kt and x/° G Ljfor all i and j is divisible by k. 

Finally, using Brauer's characterization of characters, we prove the following 
result which was conjectured by Solomon and proved by him for "special" co*. 
(See the definition preceding Lemma 4.) 

THEOREM B. Let G, œiy and Kibe as in Theorem A. For 1 ^ j ^ n and t G G, 
let 6j{t) be the number of x = (xi, . . . , xn) G Gnwithxj = t, such that co*(x) G K{ 

for each i. Then 6j is an R-linear combination of characters of G, where R = Z[e], 
e a primitive \G\th root of 1. 

1. In this section, let G be an arbitrary group and fix a subgroup H Ç G. 
For x = (xlt x2, . . . , xn) G Gn set Hx = {h G H\ hxi = hXl for 1 g j ^ » | , 
Thus if n = 1, we have Hx = H. For x G Gn, write (x) = (xi, x2,. . . , xn) C G. 
Define 

Nx= QHX
9. 
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SYSTEMS OF EQUATIONS 1041 

We have then (x> C N(NX) and Nx C Hx Ç ff. Note that ^ and Nx are 
subgroups of G. For x = (xu . . . , xn) and t G G, write x/ = (xrf, x2t, . . . , xw/). 
Now, for x, y G Gw, write x = 3; if there exists t G Nx with y = x/. To empha­
size the dependence on H, we will sometimes write x =# 3/. 

LEMMA 1. The relation = is an equivalence relation on Gn. 

Proof. First we show that if x = y, then Ny 2 ^ - We have y = xs for 
5 G iV*. Let A 6 Nx Q Hx. Then A*»* = hXl° and A G #„. Thus Nx C i ^ . 
Now <y) C ((x), 5) C N(NX). Hence, if g 6 (y), then Hy

g 2 iV/ = iV*. There­
fore Ny=D Hy° 2 Nx. 

Now = is clearly reflexive. H x = y, then 3/ = xs for 5 G iV^ C iV ,̂ and so 
x = 3/s-1 and s - 1 G Ny. Thus 3/ = x. Also 7VX = Ny. 

Finally, if y = xs and z = yt with s £ Nx and t £ Ny = Nx, then s = xs/ 
and 5/ G iV*, so that = is transitive. The proof is complete. 

For co G F, we define the length /(co) to be the sum of the absolute values 
of the exponents in a reduced word defining co. We have for co ^ 1, co = Xco0, 
where X = Xj or X = Xf1 and /(co0) = /(co) — 1. 

LEMMA 2. Let co G F. Then there exist cô  G F for 1 ^ i ^ /(co) awd e* = ± 1 

co(x/) = co(x) IT (teiTiiX\ 
i 

for all x G Gn and t G G. 
Proof. By induction on /(co). The lemma is trivial when /(co) = 0. Suppose 

then that co = Xco0, where X = Xj or Xfl and /(co0) = /(co) — 1. By the 
inductive hypothesis, co* and et can be defined for co0, with 2 ^ i ^ /(co) and 

coo(x/) = coo(x) n (/fir"to). 
Suppose that X = X^. Then 

co(x/) = Xjtccoixt) = Xj/coo(x) Yi (.t*1)031^. 

However, /co0(x) = co0(x)/û,o(a;) and we may take coi = co0 and ei = 1 to prove 
the result in this case. If we have X = Xf1, then 

co(x/) = (x,o-1coo(x0 = r V « o W II (/€Tt(2) = u(x)(rYx) TL (/6T(Z) 

z=2 i=2 

and the result follows if we take coi = co and e\ = — 1 . 

COROLLARY 3. Let co G F and let x = y. Then œ(y) = œ(x)s for some s G Nx. 

Proof. We have y = xt with t G A^. By Lemma 2, we may take 
5 = Hi (*«*)" i(fl°- However, co*(x) G (x) C N(iVx) so that 5 G iV* and the 
result follows. 
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For x = (xi, x2, . . . , xn) G Gn, let x = (xi, xu . . . , Xi). For œ £ F, define 
the degree, d(œ), to be the algebraic sum of the exponents of a reduced word 
for co. If co(x) = 1 for all x G Gn, we shall call co special. Clearly, co is special 
if d(co) = 0. 

LEMMA 4. Le* t e Nx and œ £ F. Then t^x) = /w®. 

Proof. Use induction on /(co). If /(co) = 0, the result is trivial. Assume that 
/(co) > 0 and write co = cooX where X = Xj or Xf1 and /(co0) = /(co) — 1. 
We have M*} = £°o(*)*/6 = t"^)xi% where e = ± 1 . Now 5 = /"o(i) G Nx and 
«̂(ï) = ^oû)^i€

 = sxi\ j t t n u s suffices to show <r̂ e = s*1'. If e = + 1 , this is 
immediate since 5 G Nx C iJ^.. Now s*?'-1 G iV^ and hence 

Thus s*1"1 = s*?'-1 and the lemma follows. 

LEMMA 5. Let co G i7 be special and suppose that x = y. Then co(x) = 00 (y). 

Proof. We have y = xt for t G i\^ and thus 

«(y) = co(x) El (t*i)»iW = u(x)s. 

Since /e* G A^, it follows by Lemma 4 that s = I I (t€i)ui(i). Therefore, 
03(y) = co(x)s by Lemma 2. However, since co is special, we have co(x) = 
co(50 = 1 and thus 5 = 1 and the result follows. 

Now any automorphism a of G permutes the elements of Gn by 

/yd / /y /y \ <T / /y d /y d\ 
*V \JL< 1 , . . . , A,n J \^ 1 , . . . , Jvn J . 

If 0- fixes H and x =Hy, then clearly xa =Hya and thus a permutes the =H 

conjugacy classes. In particular, conjugation by elements of H permutes these 
classes and we shall denote by ~H the equivalence relation on Gn whose 
classes are the unions of sets of =H classes, conjugate under the action of H. 
If there is no danger of ambiguity we shall write ~ instead of ~H. Note that 
x ^ y if and only if there exists t G Nv and h G H with x = (yt)h. 

COROLLARY 6. Let co G F be special and suppose that x ~ y. Then œ(y) = co (x)h 

for some h G H. 

Proof. We have x = z and y = zh for some z £ Gn and h G H. Then 

co (y) = co (s*) = <a(z)h = co(*)*, 

where the last equality follows by Lemma 5. 

LEMMA 7. Assume that H is finite and let x G Gn. Then the class of x under 
~ has cardinality \H\ and is the union of \H:NX\ classes under =. 

Proof. Let ? be a class under = , and let © = {&h\ h G H}. Then the 
^ class containing *€ has cardinality | &\ \^\. Let x G ^ , so that | ^ | = \NX\. 
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Let T = {h G H\ ^h = cê\. We claim t h a t T = Nx and thus \0\ = \H:NX\ 
and the result will follow. 

First , NXQT for if t G Nx then x / = r 1 * ^ = x ^ r 1 ) * ' / = x ^ r 1 ) * 1 / . Now 
5 = (t~l)xH G A^ is independent of j and so xl = xs = x. T h u s c€t = ^ . 

Conversely, suppose t ha t s £ T. Then x s = xt for some / G Nx. T h u s 
x?' -— x * anci we obtain sxi = st~l and is independent of j . T h u s T Ç H"z. 
Fur thermore , ^ _ 1 G r and the equation sx' = ^ _ 1 shows t ha t xj G N(7"). 
T h u s (x) ÇI N ( T ) and hence 

TQ HHX
9 = NX. 

0£\x) 
T h e proof is complete. 

2 . T h e results already accumulated are sufficient to prove the theorems 
when only special co G F are involved. In this section we discuss a slight refine­
ment of Solomon's method of t reat ing the general situation. 

For co G F, we define a row vector [co] over the integers, Z. Set 
[co] = (ri, . . . , rn) where rj is the sum of the exponents of Xj in a reduced 
word for co. In part icular then, the sum of the entries of [co] is d(oo). For any 
group G, co defines a map Gn —» G. Taking G = F and <* = («i, . . . , <xn) G Fn, 
we have co(a) G 7\ I t is clear t ha t [co(a)] is given by [co]ikf, where M = M (a) 
is the n X n matr ix whose ith row is [at]. 

Again let G be an arbi t rary group. Let a = (aiy . . . , an) G Fn and 
x = (xi, . . . , xn) G Gn. We define a - x = (a i (x) , a 2 (x) , . . . , an(x)) G Gn. In 
part icular, \i F = G, this defines a product on . P . If a, /3 G J P , then the i th 
row of M (a • 0) is [at(fi)] = [a*]M(0). I t follows tha t M(a • /3) = M(a)M($). 

L E M M A 8. For a £ F71, co £ F, and x G Gw, we have co(a - x) = (co(a))(x). 

Proof. Let 7r be the homomorphism from F into G with TT(XJ) = Xj, where 
x = (xi, . . . , xn). Then 7r(co) = co(x) for any co G F. Then 

(00(a)) (x) = ir(oo(a)) = co(7r(«i), . . . , ir(an)) = co(«i(x), . . . ,an(x)) = co(a - x). 

COROLLARY 9. For a, ft G F71 and x G Gn, we have a • (ft • x) = (a • /3) • x. 

^4/̂ (7, £Âe product defined on F71 is associative. 

Proof. T h e first s ta tement follows by applying Lemma 8 to at(fi • x) . The 
second follows by taking G = F. 

Let I = (Z i , . . . , Z B ) G P . Then a • 7 = a = J • a for all a G . P . Let 
© C P1 consist of those elements which are invertible in the semigroup P , so 
t h a t © is a group. T h e permuta t ions of Fn given by ft —> a • ft for a G ® are 
called Neilsen transformations (see [4, Chapter 3]) and have been studied 
as pa r t of the theory of free groups. T h e next result is essentially 
[4, Corollary 3.5.1]. 

L E M M A 10. The restriction of the mapping M to @ is a homomorphism of @ 
onto GL(w, Z ) . 
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Proof. We have already seen that M (a • 0) = M (a) M (/3) for all a, p G Fn. 
Since M (I) is the identity in GL(w, Z), it follows that Af maps © into 
GL(w, Z). It suffices to show that a set of generators for GL(n, Z) lies in 
Af (®). For a permutation 7r of {1, 2, . . . , n], leta* = ( X ^ D , . . . , XvM) G .P. 
Clearly, aT G ® and Af (a*) is the permutation matrix associated with w. Let 
/3 = (X1X2, X2, . . . , Xn) and 7 = ( I f 1 , X2> . . . , Xn). Now j8 G © since 
iS-1 = (XtXr 1 , ^2 , . • . , Xw) and T" 1 = 7 so that 7 6 ® . By [2, p. 85], 
Af (/3), Af (7), and the permutation matrices generate GL(w, Z). 

LEMMA 11. Let coi, co2, . . . , cow G f7 with m < n. Then there exists a G ® 
S^C/Ê / t o d(u)i(a)) = 0/or 1 ^ i ^ m. 

Proof. Let 4̂ be the m X n matrix with rows [coj. Since m < n, the columns 
of 4̂ are linearly dependent. Let V be the w-dimensional column space over Z 
so that there exist v G V with 4̂z/ = 0 but v ^ 0. Let F0 = {v G F | ^ = 0} 
so that Vo is a pure submodule of F and thus is a direct summand of V. Let 
Fi be the set of v G V with all entries equal. Then V\ is also a pure submodule 
of F and hence a direct summand. It follows that for some B G GL(w, Z) 
and *>o G Fo, »i G Vi with ^ ^ 0, that Bv1 = v0. Then (AB)vx = Av0 = 0. It 
follows that each row sum in the matrix AB is 0 and the ith row of AB is 
[w<]5. Now B = M (a) for some a G ® and [w*]B = [cof]Af(a) = [w<(a)]. It 
follows that d(œi(a)) = 0. 

3. In this section we prove three consequences of our lemmas, including 
the two theorems stated in the introduction. Let G be a finite group and let 
coi, co2, • • • , um G F, the free group on n generators. Assume either that m < n 
or that all coz- are special. Let K\, K2, . . . , Km be normal subsets of G. We 
shall say that x G Gn is a solution if o;*(x) G i£* for all i, 1 ^ i ^ m. 

LEMMA 12. There exists a G ® SWCÂ tfAa/ if x is a solution and or1 • x ^ # a - 1 • y 
for any subgroup H Ç G, //zen y w a solution. 

Proof. Choose a G ® such that co^a) is special for I ^ i ^ m. (If m < n, 
this can be done by Lemma 11; otherwise, by hypothesis, each wt is special 
and we may take a = I.) For any z G Gn we have (using Lemma 8) 

co*(a) (of1 * 2) = co*(a • (a - 1 • z)) = a>*(7 • 2) = co*(z). 

In particular, coi(a)(a_1 • x) G -K"*. By Corollary 6, 

<*i(y) = otMicri-y) G Kt* = Kt 

for some h £ H. The proof is complete. 

THEOREM 13. Let H C C7 and Ze£ &,,• 6e an integer for 1 ^ j ^ n. Then the 
number of solutions x = (xi, x2, . . . , xw) wiJÂ /Ae additional property that 
Xjki G H for all j , is divisible by \H\. 

Proof. Choose a G ® as in Lemma 12. Suppose that x is a solution with 
x/? G If. Let y = {y G Gn| c r 1 • x ~ H a ~ l -y}. By Corollary 9, it follows 
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that the functions u —> a • u and u —> a~1 • u are inverses on Gn and thus 
15f | = |if | since the ~H class of a - 1 • x contains exactly \H\ elements by 
Lemma 7. By Lemma 12, each y G J/*7 is a solution and the proof will be 
complete when we show that y ft G H for ;y = (ji, . . . , yn) G j ^ 7 . Let 
a = (ai, . . . , an), and let u = a:-1 • x, v = a - 1 • y and w =# w, v = wh with 
h £ H. Then 3^ = c^(fl) = aj(wh) = aj(w)h a n d 3>/-1 = c^(w) = ctj(u)t for 
some t £ Nu by Corollary 3. Now xy = c^(w) G («) Ç N(iVw) and thus 
(3//-1)*; = (x,/)*' 6 tf/^t* C ff. It follows that y / ' G if, and the proof is 
complete. 

THEOREM 14. Let k\\G\ and let Li, L2, . . . ,Lnbe conjugacy classes of G. Then 
the number of solutions (xi, . . . , xn) = x with the additional property that 
x / G Lj is divisible by k. 

Proof. Choose a as in Lemma 12. Let pa\k for prime p. We show that the 
number of x G Gn satisfying the conditions is divisible by pa. Since £a||G|, we 
may choose H C G so that \H\ = pa. Let x be a solution satisfying x / G Ly 
for all j and let J^ = {y G Gw| a"1 • x ~H a - 1 • y}. Then as before, 
| j ^ | = |if | = pa and every y G 5^ is a solution. Our proof will be complete 
if we show for y = (yi, . . . , yn) G j ^ 7 , that 3// G L ; . Suppose that 
a = (ai, . . . , an) and let w = cTl • x, v = or1 • y and w =# w, wh = v for 
h £ H. Then, as in the previous proof, y f~l = xfi with £ G Nu and x;- G N(iVM). 
Consider the group B = (Nu, Xj). By the lemma of Brauer's paper [1] applied 
to B, it follows that x / and (x3t)

v are conjugate in B, where v = \NU\ divides k. 
Thus x* and 3>/ are conjugate in G and the result follows. 

THEOREM 15. Let R = Z[e], w/zere e w a primitive \G\th root of 1. Suppose 
that the Kj are conjugacy classes of G. Let Sf j{g) — {x = (xi, . . . , xn) G Gw| x 
w a solution and x3- = g}. Set 6j(g) = |-5^(g)|. Then Oj is an R-linear combina­
tion of characters of G. 

Proof. By Brauer's theorem on induced characters, every character of G is 
a Z-Linear combination of induced characters of linear characters of subgroups 
of G (see [3, Theorem 40.1]). By Frobenius reciprocity, it suffices to show, 
for H Ç G and X a linear character of if, that 

7^7 E OMMh) G R. 

Fix a particular subgroup if and linear character X and denote the above sum 
by £. Choose a G @ as in Lemma 12 and let ^j(g) = {or1 • x| x G S^j(g)}. 
Then if a = («i, . . . , an), we have g = <Xj(y) for 3/ G ^~j(g)- Since 0;(g) = 
\^j(g)\, we have 

S = TÛT ^ S ^(«i(y)) 
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where £Tj = {JheH^~j(h)- Clearly, y G ^ j if and only if a • y is a solution 
and oijiy) G iT. Suppose that 3; G £Tj and 3/ ^ # 3 . Then a • s is a solution 
and c^(s) = ( ^ - ( j ) ^ for some s £_ Ny and h £ H by Corollary 3. Since 
ctj(y) G H, it follows that a^(s) G jff and s G 3T jt Therefore, J^ - is a union 
of classes under ~H. Let *io be the class of y under =H and let 

in S M^W)-77 |tf,| ** 

If ^ is replaced by ^ for any h £ H, then the value of 77 remains unchanged 
since 

AM?*)) = *M*)*) = M«iW). 
Since the ^ y class ^ * , containing 3/, is the union of |i^:i\^/| such conjugates 
of ^ , by Lemma 7, it follows that 

*7 = 1777 X) ^ M * ) ) -
1̂ 1 zee* 

Thus £ is a sum of quantities of the form 77 and it suffices to show that 77 G R. 
Apply Lemma 2 to otj and pick co* G ^ and e* = ± 1 with aj(yt) = 

«,(?) IT (^»)wi(v). Since ^ = {^| £ G iV,}, we have 

| i V 2 / | *€2Vy 

Now co<(y) G N(iVy) and thus /*(*) = X(II (/«»•)«»•<*>) defines a linear character 
of iVy. It follows that 77 = X(a<;(y)) if JJL = 1 and 77 = 0 otherwise. In any 
case, 77 G -R, and the proof is complete. 
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