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Summary

Using the Ewens sampling distribution of selectively neutral alleles in a finite population, it is
possible to develop an exact test of neutrality by finding the probability of each configuration with
the same sample size and observed number of allelic classes. The exact test provides the probability
of obtaining a configuration with the same or smaller probability as the observed configuration
under the null hypothesis. The results from the exact test may be quite different from those from
the Ewens—Watterson test based on the homozygosity in the sample. The advantages and
disadvantages of using an exact test in this and other population genetic contexts are discussed.

1. Introduction

Kimura (1968) proposed the neutral theory of
molecular evolution in part to account for the
extensive variability found in natural populations
with the then recent application of electrophoretic
methods. Soon after, there was a rich development of
the population genetics theory designed to test the
neutral theory using electrophoretic data. One class of
tests was based on the work of Ewens (1972), who
derived the sampling distribution of neutral alleles in
a finite population. Watterson (1977) used Ewens’
theory to propose a test of neutrality based on the
observed homozygosity in the sample, and that test is
now called homozygosity test or the ‘Ewens—
Watterson test’ (Slatkin, 1982; Hartl & Clark, 1989).
In this note I will show that Ewens’ (1972) theory can
also be the basis for an exact test of neutrality and that
the exact test has somewhat different properties than
the homozygosity test. I will also discuss the use of
other exact tests in population genetics. The increased
availability of fast computers and the development of
new algorithms make exact tests much easier to use,
but their use may not always be as appropriate as the
name ‘exact test’ suggests.

2. Fisher’s exact test

The statistical test described below was developed by
analogy with Fisher’s exact test for associations in an
rxc contingency table (Weir, 1990). I will briefly
review Fisher’s exact test for a 2 x 2 labie in order o
make clear the relationship between it and the exact
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test proposed below. For a given set of entries in a
2 x 2 table, the set of 4 numbers {n,,,n,,, 1y, 1,5} 1S the
observed ‘configuration’ of the table. The margi-
nal sums are the numbers in each row
(n, = ny, +ny,,1,. = Ry +1,,) and the numbers in
each column (n, = n,,+n,,,n, = n,,+n,,) and the
total number of observationsisn =n, +n, =n,+n,.
Under the assumption that the entries of the table are
randomly chosen but subject to the constraint that the
marginal sums are fixed, the probability of obtaining
any configuration, say (m,;) is the hypergeometric
distribution

ny n,tnln !

P11 P, 1130) = nlm, 'my, m,, 'y,
Fisher’s exact test gives the probability that a
randomly generated configuration has a probability
under the hypergeometric distribution equal to or less
than the probability of the observed configuration.
In practice, there are two ways to carry out Fisher’s
exact test. The first is to generate all possible
configurations, and then test each one to determine
whether the hypergeometric probability is less than or
equal to that for the observed configuration. The task
can be time-consuming, even for fast computers, but
new algorithms have been developed to make the
process more efficient (e.g. Mehta & Patel, 1983).
The alternative is to generate randomly a large number
of configurations and then count the proportion with
probabilities equal to or less then the probability for
the observed configuration. That is the basis for both
resampling and Markov chain algorithms that can in

principle analyse any table (Guo & Thompson, 1992).
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Table 1. Hlustration of all configurations for n = 16
and k = 7 and the calculations for the exact and
homozygosity tests

J G Pr(c,| k) F
1 (3,3,2,2,2,2,2) 0-00111* 01484t
2 3,3,3,2,2,2,1) 0-00986* 0-1562%
3 3,3,3,3,2,1,1) 0-00986* 016411
4 4,2,2,2,2,2,2) 0-00042* 0-1562%
5 4,3,2,2,2,2,1) 0-01664* 0-1641%
6 4,3,3,2,2,1,1) 0-06658 0-1719%
7 4,3,3,3,1,1,1) 0:01973* 0-1797%
8 4,4,2,2,2,1,1) 0-02497* 0-1797%
9 4,4,3,2,1,1,1) 006658 0-1875t
10 4,4,4,1,1,1,1) 0-00832* 0-2031¢
11 5,2,2,2,2,2,1) 0-00399* 0-1797%
12 5,3,2,2,2,1,1) 0-05326 0-1875¢
13 (5,3,3,2,1,1,1) 0-07101 0-1953F
14 (5,4,2,2,1,1,1) 0-07989 0-2031¢
15 (5,4,3,1,1,1,1) 0-05326 0-2109%
16 (5,5,2,1,1,1,1) 0-03196* 0-2266%
17 6,2,2,2,2,1,1) 0-01664* 02109t
18 6,3,2,2,1,1,1) 0-08877 0-2188%
19 6,3,3,1,1,1,1) 0-02959* 0-2266t
20 6,4,2,1,1,1,1) 0-06658 0-2344%
21 (6,5,1,1,1,1,1) 0-02130* 0-2578%
22 (7,2,2,2,1,1,1) 0-03304 0-2500+
23 7,3,2,1,1,1,1) 0-07609 02578+
24 7,4,1,1,1,1,1) 0-02283* 0-2734%
25 8,2,2,1,1,1,1) 0-04993 0-2969%
26 8,3,1,1,1,1,1) 0-02663* 0-3047%
27 9,2,1,1,1,1,1) 0-03551* 0-3516F
28 (10,1,1,1,1,1,1) 0-01065* 04141

In this table, j is the number of the configuration in the order
generated by the recursive algorithm described in the text.

Pr(c,|k) is the probability of obtaining ¢, according to

Equation (1) in the text and F'is the computed heterozygosity
from Equation (3) in the text. The (hypothetical) observed
configuration, ¢,, (9,2,1,1,1,1,1), is ¢,,. The asterisk (*)
indicates that the Pr(c,[k) < Pr(c,|k) = 003551 and the
dagger (1) indicates that F(c,) < F(c,) = 0-3516. For this c,,
the tail probability from the exact test is P, = 029001 (from
Equation (2) in the text) and the tail probability from the
homozygosity test is P, = 098935 (from Equation (4) in the
text).

3. Ewens sampling distribution

Ewens (1972) showed that in a sample of n copies of
a locus, the observed number of allelic classes, k, is a
sufficient statistic to estimate the parameter 0 = 4Ny,
where N is the number of diploid individuals in a
randomly mating population and g is the rate of
mutation. He showed further that for a given &, the
probability of obtaining a particular configuration of
alleles in the sample depends only on & and ». In this
case, a configuration is the set of numbers of alleles
in each class arranged in non-increasing order.
For a configuration ¢ ={r}(i=1,....k;r,=r,> ...
= r, = 1) the probability of obtaining that con-
figuration is

n!
| SE 12122 Knnax, P oty Kex, V

Prir |k} = 6]
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where «; is the number of values in the set {r;} equal to
i and S,* is the Stirling number of the first kind
(Ewens, 1979, Eq. 3.78). To simplify the notation, 1
will denote Pr{r;| k} by Pr(c|k).

Ewens (1972) derived this distribution under the
assumption that the population followed the
Wright—-Fisher model of reproduction, but later
theory, summarized by Ewens (1979), has shown that
(1) holds under more general assumptions about
reproduction as well, as long as the allelic classes are
selectively equivalent. Besides the assumption of
neutrality, (1) depends on the assumption of the
infinite alleles model of mutation and the assumption
that the population is of constant size.

Given (1) it is easy to describe the exact test. Let C
be the total number of configurations for a given n
and k, and let ¢;,j = 1, ..., C, be the jth configuration.
I will show later how to compute C and assign
numbers to the configurations. For each ¢;, (1) gives
us the probability of obtaining that configuration
Pr(c;| k). Let ¢, be the observed configuration. By
analogy with Fisher’s exact test for an r x ¢ table, we
can find the probability that each configuration, ¢, has
a probability of occurrence equal to or less than
Pr(c,| k). That is, we can define

Py = Xz

[7E] Pr(cjllc) <Pric,)

Pr(c,| k), )

where the subscript E denotes the exact test, which
will later be contrasted with the homozygosity test.

The cumulative probability, P,, provides the basis
for the exact test of the null hypothesis. We could, for
example, choose a significance level y and say that we
will reject the null hypothesis (that the sample was
drawn from a neutral locus following the infinite
alleles mutation model in a population of constant
size) if y/2 < P, < 1—vy/2 (a two-tailed test).

We can compare the performance of the exact test
with the homozygosity test. For each configuration,
we can define the computed homozygosity,

k
F(&)= 3 ri/n?. 3)
i=1
In this notation, the homozygosity test proposed by
Watterson (1977) is based on computing the cumu-
lative probability P,, defined to be

Py = Z

¢;3 Flep<F(cy)

Pr(c;| k). 4

4. Generating configurations

All that is needed to apply either of these tests to data
is a method for generating configurations. As in the
case of Fisher’s exact test, there are two possibilities.
One could use a Monte Carlo method to generate
random configurations that follow (1). Each randomly
generated configuration would be tested to determine
whether it satisfied the necessary criterion (either
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Pr(clk) < P(c,|k)or F(c) < F(c,))and then the results
would be accumulated to find the proportion of all
randomly generated configurations that pass the test.
That is how the homozygosity test has been applied
(Watterson, 1978; Fuerst et al. 1977; Hartl & Clark,
1989, p. 141). The second possibility is to generate all
configurations and compute the sums in (2) and (4).

I have developed a recursive algorithm to count and
generate all configurations for a given n and k. I found
that there were not as many configurations as my
intuition suggested, so it is possible to examine all
configurations even for realistic sample sizes. For
example, with n = 89 and k = 15, as in the data set of
Keith ez al. (1985), there are 3014304 different
configurations. Although that is too many to process
by hand, they can be examined by even a small
computer in a few minutes.

I have written a C program that implements this
algorithm and found that it provides answers in a
reasonable time even for moderately large sample
sizes (n < 100). The algorithm is based on being able
to count and generate all configurations for k = 2.
For k=2, there are [n/2] distinct configurations,
where [.] indicates the largest integer equal to or less
than the quantity enclosed (i.e. [13/2} = [12/2] = 6).
Those configurations can be easily generated:
{{((n+1)/2],{n/2]}...{n—1,1}. Fora givennand k > 2,
the program then generates all configurations per-
missible for each possible value of r, (ie. all
configurations with r, < r,), with the sample size for
those configurations equal ton—r, and k = k—1, and
the process continues until the k£ = 2 case is reached.
The program starts with the most even configuration
and works upwards to larger values of r,. An example
is given in Table 1. I will distribute copies of this
program, which runs under UNIX and on a PC, with-
out cost. Please send inquiries about the program by
electronic mail to me at monty@kaline.berkeley.edu.

There is no reason to think that this algorithm is
optimal, and more efficient ones can probably be
found. This algorithm does work and the program
that implements it provides a strong verification that
it works correctly. In Equation (1), the values of n!
and S,* are the same for every configuration with a
given n and k, so it is not necessary to calculate them.
Instead, the program computes the rest of (1) for each
configuration and sums those values. The results are
then normalized by dividing by this sum, which avoids
the ugly problem of computing the Stirling number.
In numerous tests, I found that the resulting sum was
equal to S,*/n!, which ensures that all configurations
were counted and that the probabilities were correctly
computed.

5. The exact vs. the homozygosity test

The exact test may give quite different results than the
homozygosity test and it is important to understand
why. Consider, for example, the data of Keith ez al.

6
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(1985) for the Xdh locus in a California population of
Drosophila pseudoobscura. Hartl & Clark (1989, p.
141) use this data set as the example of the application
of the homozygosity test. In this data set,
n = 89,k = 15, and the observed configuration is (52,
9,8,4,4,2,2,1,1,1,1,1,1,1,1). My program gave
values of P, = 0-7198 and P, = 0-9910. The value of
P, is consistent with the results from the Monte Carlo
analysis described by Hartl & Clark (1989) and
indicates that the homozygosity in this sample is much
larger than would be expected in a random draw from
the Ewens sampling distribution. Hence, the
homozygosity test allows us to reject the null
hypothesis. The observed configurationis too ‘uneven’
or there are ‘too many rare alleles’. The value of P,
indicates, however, that the observed configuration is
not especially unlikely, so the exact test does not allow
us to reject the null hypothesis. This situation is
similar to the one illustrated in Table 1, for a much
smaller (hypothetical) data set, and we can see why
the tests may give different results. If k > 2, there is
not necessarily a close relationship between the
evenness of the distribution as measured by F or other
criteria and the probability of its occurrence, so the
two tests are focusing attention on different regions of
the sample space. Alternatively, we can view Pr(c|k)
as another test statistic, and one that is not necessarily
highly correlated with F when k > 2.

6. Which test should we believe?

Watterson (1977) suggested the homozygosity test
after he found that the quantity F arose naturally in
the analysis of a model of overdominant selection, in
which all heterozygotes have a fitness of 1 + s relative
to all homozygotes. Overdominance would tend to
create more even configurations (small F) and
underdominance would tend to create more uneven
configurations (large F). In a subsequent paper,
Watterson (1978) showed that the homozygosity test
had somewhat less power when testing for deleterious
mutations but that F was still an appropriate test
statistic. Thus the homozygosity test was designed to
test against specific alternative hypotheses about the
maintenance of genetic diversity. In contrast, the
exact test does not test against a particular alternative
hypothesis and instead uses the probability of each
configuration to indicate which regions of the sample
space allow the rejection of the null hypothesis.

It seems that the choice of which test to believe
cannot be made on purely statistical grounds. Instead,
the inherent biological plausibility of the alternative
models must be taken into account. The highly
symmetric models of selection examined by Watterson
(1977, 1978) are plausible and simple representations
of the biological intuition that, on average,
heterozygotes are superior or that, on average, new
mutants are deleterious. What is less clear is whether
F would remain the appropriate test statistic for less
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symmetric models describing the same selection
processes.

7. Other exact tests in population genetics

Fisher’s exact test and its descendants carry an
unfortunate name. It is difficult not to think that
because a test is exact it is also better. Yet all properly
defined tests are just as exact: the value of P, is exactly
the probability that the observed value of F is less
than or equal to the value for a randomly generated
configuration. The question is whether there are
plausible and interesting alternative models that
suggest useful test statistics. Several exact tests have
been proposed for population genetics. Fisher’s exact
test for an r x ¢ table has long been used to test for
significant nonrandom association (i.e. linkage
disequilibrium) between alleles at different loci (Weir,
1990), and I have argued that the tail probability from
Fisher’s exact test provides a useful way to characterize
the extent of nonrandom association when there are
more than two alleles per locus (Slatkin, 1994). A
slight modification of Fisher’s exact test can be used
to test for significant deviations from Hardy—Weinberg
genotypic proportions (Weir, 1990; Guo &
Thompson, 1992). More recently, Raymond &
Rousset (in prep.) have discussed the use of Fisher’s
exact test for testing for significant differentiation of
local populations. Guo & Thompson (1992) provide
an elegant algorithm based on a Markov chain that
makes it possible to carry out Fisher’s exact test for
arbitrarily large tables, and Raymond & Rousset
(1994) have implemented a variant of that algorithm
in a program package that will perform the exact test
for a variety of problems.

These theoretical developments are important and
their implementation will be useful for population
geneticists. But as the results presented here show, an
exact test may not help identify deviations from the
null hypothesis that are expected under biologically
plausible conditions. For example, the value of
Wright’s inbreeding coefficient, F,, arises naturally in
the analysis of neutral alleles in a self-fertilizing
species. It may well be more appropriate to use F;; as
a test statistic when the interest is determining whether
or not self-fertilization is occurring. A similar remark
applies to F,, as a measure of population
differentiation. It arises naturally in models of
differentiation caused by drift and gene flow and
hence may be an appropriate test statistic when that is
the alternative hypothesis of interest.

The situation is somewhat different for the study of
linkage disequilibrium when there are more than two
alleles per locus. At present there is no theory in which
a particular test statistic arises naturally, and the most
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commonly used test statistics are proportional to the
x° statistic for the r x ¢ table (Weir, 1990). But ¥? just
provides information that is equivalent to that in the
Fisher’s exact test for the same table, so at this point
there seems no way to improve on the exact test for
linkage disequilibrium.

8. Conclusions

My goal in writing this note was not to say that the
exact test for neutrality is necessarily better than the
homozygosity test or other tests of neutrality. Instead
it was to point out that an exact test is computationally
possible and in fact no harder to implement than the
homozygosity test, and that its application raises
important issues about how statistical tests are used in
population genetics.
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