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Near-future experiments with Petawatt class lasers are expected to produce a high flux
of gamma-ray photons and electron—positron pairs through strong field quantum elec-
trodynamical processes. Simulations of the expected regime of laser—matter interaction
are computationally intensive due to the disparity of the spatial and temporal scales,
and because quantum and classical descriptions need to be accounted for simultaneously
(classical for collective effects and quantum for nearly instantaneous events of hard pho-
ton emission and pair creation). We study the stochastic cooling of an electron beam in a
strong, constant, uniform magnetic field, both its particle distribution functions and their
energy momenta. We start by obtaining approximate closed-form analytical solutions to
the relevant observables. Then, we apply the quantum-hybrid variational quantum imag-
inary time evolution to the Fokker—Planck equation describing this process and compare
it against theory and results from particle-in-cell simulations and classical partial differ-
ential equation solvers, showing good agreement. This work will be useful as a first step
towards quantum simulation of plasma physics scenarios where diffusion processes are
important, particularly in strong electromagnetic fields.
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1. Introduction

Strong-field quantum electrodynamics (SFQED) studies the interaction between
matter and intense electromagnetic fields. In recent years, there has been a growing
interest in this area due to the availability of high-intensity laser sources, which enable
the exploration of novel physical phenomena, with experiments being planned for the
near future at ELI Extreme Light Infrastructure, Apollon (Papadopoulos, Zou & Le
Blanc 2016), CoReLS (Yoon et al. 2019), FACET-II (Meuren et al. 2020), LUXE
(Abramowicz et al. 2019, 2021), XCELS (Mukhin et al. 2021), ZEUS, NSF-OPAL,
HIBEF, among others. Many of the proposed experimental set-ups feature scattering
of intense, focused laser pulses with either relativistic electron beams or high-energy
photons.
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Some experimental evidence for radiation reaction has been observed (Cole et al.
2018; Poder et al. 2018; Los et al. 2024). However, additional theoretical and numer-
ical studies are needed to understand the effects of ‘non-ideal’ experimental condi-
tions such as laser jitter, probe beam emittance, synchronisation of the collision, etc.
In the future, better control over these parameters will allow precision studies of the
radiation reaction, that is, the recoil on the charged particles that emit high-energy
photons and electron—positron production in the lab, among other processes. These
can then be applied in physics models of plasmas in extreme astrophysical environ-
ments, such as black holes and pulsar magnetospheres (Timokhin 2010; Medin &
Lai 2010; Uzdensky & Rightley 2014; Cruz et al. 2021; Schoeffler et al. 2023).

While current laser technology allows us to test strong-field plasma physics in a
‘semi-classical’ regime, next-gen laser facilities will require exploring the fully non-
perturbative quantum dynamics of fermions, high-energy photons and the laser field.
This regime is expected to require first-principles simulation techniques, thus putting
constraints on the more standard particle-in-cell simulations, even if including Monte
Carlo routines for the quantum processes. It is thus important to begin translating
known simulation methods into the quantum computing framework.

Quantum computing has the potential to handle the complexity of the many-body-
physics dynamics in these extreme plasmas. Recently, the plasma physics community
has started to adapt standard plasma set-ups and theory to the quantum algorithmic
framework (Dodin & Startsev 2021; Amaro & Cruz 2023; Joseph et al. 2023).
More specifically, the intersection between plasma physics, quantum field theory and
quantum computing has only recently started to be explored (Shi, Qin & Fisch 2021).

In this work, we aim to address some of these questions, first by deriving approxi-
mate particle distributions and benchmarking with the particle-in-cell code OSIRIS
(Fonseca et al. 2002) that describes QED effects with a Monte Carlo routine
to simulate quantum events and has already been tested in this regime (Vranic
et al. 2016) and later by applying a hybrid quantum algorithm to the simulation
of a Fokker-Planck equation relevant for SFQED. We choose the simplest pos-
sible field configuration, a strong constant magnetic field background, that could
be generalised in the future. We start with a relativistic electron beam, which
propagates and loses energy to radiation. We follow the evolution of the electron
distribution function over time, accounting for the stochastic nature of the quantum
emission.

While prior work (e.g. Kubo et al. 2021) suggests that hybrid quantum algorithms
could provide sampling efficiency benefits for more complex stochastic differential
equations (SDEs) - such as those with high dimensionality or intricate observables
relevant to finance and physics - even within the NISQ era, this implementation
does not outperform classical methods at this point. As such, our primary aim is not
to claim a quantum advantage, but to present a proof of concept demonstrating that
quantum hardware can, in principle, be used to simulate SDEs with applications to
plasma physics.

This manuscript is structured as follows. In § 2, we describe the set-up of an elec-
tron beam propagating perpendicularly to a strong magnetic field and radiating
energy in the form of photons in the so-called semi-classical regime. We introduce
the Fokker-Planck equation and derive solutions for the evolution of the distribu-
tion function and the first two energy moments, with details in Appendix B. In § 3,
we describe the quantum variational simulation of the Fokker-Planck equation, the
choice of ansatz and the numerical evolution of the parameters using variational
quantum imaginary time evolution (VarQITE). Conclusions are given in § 4.
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2. Fokker-Planck equation for quantum radiation reaction

In this section, we introduce the main parameters for the physical set-up, the
Fokker-Planck equation describing the interaction of electrons with an intense mag-
netic field, and approximate formulae for the first two moments of the electron
distribution functions. The importance of quantum effects of relativistic particles in
strong fields is controlled by the quantum nonlinearity parameters, which for leptons
and photons are given by

V(pu F1)? V (hk, Fr)?

Egmc Xy Egmc

X 2.1

where m is the electron mass, c is the speed of light in vacuum, Eg =m?*c?/(eh) =
1.32x 10"® V m™! and By = Eg/c=4.41 x 10° T represent the critical Schwinger
electric and magnetic fields, e is the elementary electric charge, A is the reduced
Planck constant, F,, is the electromagnetic field tensor, and p,, k, are the lep-
tonic and photonic 4-momenta. In the case of a relativistic electron moving
perpendicularly to a strong, uniform and constant magnetic field, we have

X =y B/Bs. (2.2)

The electron distribution function f =dN/dy, that is, the number of electrons
dN per interval of energy dy, evolves through a Fokker-Planck equation describing
stochastic energy losses

oft,y) 0 19
—=— |- —— (B . 2.3
o7 oy ( f)+2ay(f) (2.3)
This is the partial differential equation that will be simulated through a quantum
algorithm in a later section. The scalar drift and diffusion space-dependent terms
can be approximated in the y < 1 regime as

2amc* 55 amc* b,

A~Z —ay?, B~—"— = 4 2.4
37 X =ay 24ﬁhyx 5V (2.4)

where a=2ak?/(31.), a=e?/(hc) is the fine structure constant and b=

\/ 55ak3/(12+/37.), with Compton time 7, = h/(mc?) and normalised magnetic field

k= B/Bs (Neitz & Di Piazza 2013; Vranic et al. 2016). In general, there are no
closed-form solutions for the electron distribution function valid in all regimes of
quantum nonlinearity x. Further details on the theory of quantum radiation reaction
are presented in Appendix B.

2.1. Evolution of the electron distribution function

In this section, we use the classical approach of simulating the particle motion
coupled with Monte Carlo routines to account for the hard-photon emission and
quantum radiation reaction. As such, it can describe the evolution of the electron
distribution, including the energy loss and quantum stochasticity-induced widening
of the spectrum.

In OSIRIS, the Monte Carlo (MC) subroutine is added to the particle-in-cell
algorithmic loop between the steps of integration of equations of motion (e.g. the
Lorentz force) and the current deposition on the grid. First, the total probability
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FIGURE 1. Evolution of the moments of the distribution function of electrons in a constant
magnetic field. (a) Average energy and (b) spread for zero initial spread o9 = 0 (monoenergetic
beam of electrons). Dashed lines , theory; coloured lines, OSIRIS simulation results.

of the cross-section for the MC process to occur within the simulation time step is
computed for all particles. If this probability is above a random uniformly generated
value in the interval [0, 1], then the process is assumed to have occurred. For the
particles in which this happens, a second random number is generated to sample the
energy of the generated particle from the corresponding differential cross-section.
The new particles with their respective energies will then be responsible for updating
the currents on the grid. The PIC loop then proceeds as usual.

In the y <« 1 regime, an initially narrow distribution with energy y, retains an
approximately Gaussian shape throughout the interaction. Following the approach
of Torgrimsson (2024a,b) and Blackburn (2024), which is based on a perturbative
expansion in x, the mean energy u = (y) = [ yf dy and energy spread o> = [(y —
w)? f dy in a constant magnetic field can be obtained as

1 165 2R.t
LS + X0 log (1 v ) , 2.5)
Yo 1+2Rt/3  83(1+2/3R.1)> 3

02 ol +55R.xot/(244/3)
vé (14+2R.t/3)*

(2.6)

where R.=a by xo is the classical radiation reaction parameter, by=eB/(m w.)
is an adimensional normalised magnetic field and w.=eB/(my,) is the syn-
chrotron frequency. In our simulations, the time is normalised as t — f w., and
the average electron energy and normalised magnetic field are y, = by = 1800.
From (2.6), the maximum energy spread occurs approximately at t ~ 1/(2R.) for
Omax ~ 3%/44/55/64 yy/Xo, which recovers the scaling derived by Vranic ez al. (2016).
To test the validity of these analytical expressions, we run 1-D3V simulations with
an electron beam moving perpendicular to the constant, uniform magnetic field
vector. The time step is dt:0.00la);l, the cell size dx =0.049 c/w., and the
normalising frequencies and external magnetic field values are chosen to enforce
Xxo=1{107%,1072, 107'}.

In figure 1, we show results from OSIRIS MC simulations for different values of
the external magnetic field (different values of initial, average x,), and the moments
from (2.5) and (2.6). The latter expressions capture the simulation results well, with
some loss of accuracy for xo=10"".
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FIGURE 2. Snapshots of the distribution functions, taking the analytical formulas for the mean
energy and energy spread ((2.5) and (2.6)) for xo= {10_2, 10_1}. Dashed lines, Gaussian
approximation; coloured lines, OSTRIS simulation results. For xo = 107!, there is a visible
deviation from the Gaussian approximation.

In figure 2, we show snapshots of Gaussian distribution functions using the param-
eters (i, o) from (2.5) and energy histograms from the OSIRIS MC simulations.
Although for x, = 1072 there is good agreement with simulation results, it is clear
that in the higher xo, = 10~! regime, the validity of the Gaussian functional approx-
imation is lost, even though the moments (u, o) predicted analytically are close to
what was obtained in the simulation. This deviation is due to an increased skew-
ness of the distributions. These results will serve as a ‘ground truth’ for testing the
quantum algorithm presented in the following section.

3. Variational quantum simulation

In this section, we introduce the variational quantum simulation (VQS) method
employed in our study. Quantum computing holds the potential to revolutionise sim-
ulations of complex systems, encompassing both quantum many-body problems and
certain classical physics phenomena. The fundamental unit of quantum computa-
tion is the qubit, which, unlike a classical bit, can exist in a superposition of states
described by |¥) = a(|0) + a;|1), where ay and @, are complex amplitudes satisfying
the normalisation condition |ao|* + |a;|*> = 1 (Nielsen & Chuang 2010). When multi-
ple qubits are combined into a register, their joint state can exhibit entanglement -
a uniquely quantum mechanical correlation that leads to an exponentially large state
space, challenging to simulate efficiently on classical computers. In this work, we
use the big-endian convention - the left-most qubit is the most significant.

Currently, quantum computers are in the noisy intermediate-scale quantum
(NISQ) era (Preskill 2018), characterised by devices that contain a moderate number
of qubits, but are susceptible to errors and decoherence. These limitations restrict
the depth and complexity of quantum circuits that can be reliably executed, posing
significant challenges for implementing algorithms requiring long coherence times
and high gate fidelities.

To address these challenges, variational quantum circuits (VQCs) have emerged as
a promising approach suitable for NISQ devices. VQCs are hybrid quantum-classical
algorithms that employ parametrised quantum circuits optimised using classical opti-
misation routines to minimise a cost function, typically the expectation value of an
observable. This method reduces the required circuit depth by offloading part of the
computational workload to classical processors, making it more practical for current
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quantum hardware. Variational quantum algorithms have found applications across
various fields, including quantum chemistry (Peruzzo et al. 2014), material science
(Liu, Li & Yang 2024), biology (Robert et al. 2021) and others (Farhi, Goldstone &
Gutmann 2014). By carefully designing the variational circuits and selecting appro-
priate ansitze, VQCs leverage the expressive power of quantum systems while
operating within the practical constraints of NISQ devices. Extracting meaningful
information from the exponentially large quantum state space necessitates metic-
ulous selection and measurement of observables, as quantum measurements yield
probabilistic outcomes that collapse the superposed state. The variational approach
thus provides a flexible and adaptive framework for quantum simulation, contribut-
ing significantly to the advancement of quantum computing applications in science
and engineering.

In plasma physics, several phenomena of interest are intrinsically dissipative. Since
dissipation is an irreversible process, this is challenging to model on quantum com-
puters. Engel, Smith & Parker (2019) studied Landau damping on a quantum
framework using a linearised version of the Vlasov equation. Despite the name
‘damping’, the energy of the system is not lost, but rather transferred from the
electric field to the particle distribution function in a reversible/unitary manner.
Vissers & Bouten (2019) studied a ‘quantum stochastic’ process of a laser driven
two-level atom interacting with an electromagnetic field. However, a procedure to
generalise beyond two-level systems is not provided. Kubo et al. (2021) proposed
a partial/stochastic differential equation (PDE/SDE) solver of the Fokker-Planck
equation in the form of an Ité-process in a quantum variational framework. This
approach was then generalised by Alghassi et al. (2022) through the Feynman—Kac
formula, which unifies the heat, Schrodinger, Black—Scholes, Hamilton—Jacobi and
Fokker-Planck equations under this formalism.

The expressibility of variational quantum circuits is one of the most important
figures of merit in the field of VQS. It is defined as the ability of the variational quan-
tum circuit to produce a variety of quantum wavefunctions — the higher this value
is means the larger the fraction of the Hilbert space is that is accessible through the
circuit. This metric has been studied in detail, and heuristics on which architectures
one can reach higher expressibility have been discussed (Sim, Johnson & Aspuru-
Guzik 2019). However, few proofs or universal rules have been derived so far. In
the case of Kubo er al. (2021), the authors suggest using an ansatz with only Ry
and CNOT quantum gates, which permits only real-valued amplitudes of the wave-
function, but it also allows for negative values. Dasgupta & Paine (2022) suggest
an architecture to enforce even-symmetry of the real-valued wavefunction around
the middle of the computational basis representation. Endo ez al. (2020) based the
motivation for using compact variational circuits on the intuition that the dynamics
of the physical system only span low energy states and therefore is limited to a small
portion of the entire Hilbert space.

In this work, we consider wave/distribution functions that are well localised in
space, but can have a mean position/energy that can be off-centred, that is, not
located at the middle of the computational basis |01...1),[10...0). For this, we
use a quantum circuit which simulates the advection equation based on the finite
differences operator as presented by Sato ef al. (2024). This operation can be used
to shift the entire wavefunction, which allows the exploration of a larger space
of states.

In figure 3, we show the hybrid quantum optimisation loop. First, at a time step
t, a quantum wavefunction is produced by the quantum circuit, where some of the
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FIGURE 3. Variational quantum algorithm. From the quantum processing unit (QPU), we
measure a cost function, from which the variational parameters are optimised in the CPU.
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FIGURE 4. (a) Variational ansatz used in this work. Only four qubits are shown for simplicity.
The blue box represents a variational block that can be repeated k times. The red box represents
the enforcing of even-symmetry on the wavefunction. In the last step, the advection operator
is applied to displace the wavefunction from the middle of the grid. (b) Sketch of the typical
evolution of the wavefunction.

quantum unitary operations are parametrised by values 6(¢). Then, a cost func-
tion (C) is measured from the quantum circuit and minimised/updated through
an algorithm run on a classical device. The new parameters are then fed-back to
the quantum circuit to produce the wavefunction for the next time step 9(¢ + dt).
The finite-difference approximation to the Fokker-Planck operator is of the trino-
mial type, where any grid cell at any time step is only influenced by its two close
neighbouring cells. Higher-order finite-difference schemes are possible to apply, but
require more complex algorithms.

3.1. Variational ansatz

In figure 4, we show the ansatz used in this work. In the first variational
block (blue), we produce a real-valued wavefunction using parameters # and gates
CNOT — Ry in a ring structure (the qubit n — 1 connects with the first qubit).
This block can be repeated to increase the expressibility of the ansatz. The sec-
ond block (red) consists of enforcing even-symmetry on the wavefunction; that is,
the amplitudes have a mirror symmetry around half of the computational basis
Yor11 = Y1000, Yoooo = ¥1111- If, instead, we apply an angle —z/2 on the Ry gate act-
ing on the last qubit, then the wavefunction becomes odd instead of even-symmetric.
At t =0, we fit these parameters so that the wavefunction has an approximate
Gaussian shape with a prescribed standard deviation o. In this way, the parameters
0 are implicit functions of o.

In the final step of the quantum circuit, we apply the advection operator e~/
which is a unitary operation, and which translates the entire wavefunction by some
quantity 6,. Sato et al. (2024) provide a quantum circuit for the finite-difference
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FIGURE 5. Evolution of electron distribution functions from OSIRIS simulations for different
initial average xo values and spread op =90. In all cases, the maximum simulation time is
20w L.

version of the first order of 9, ~ (s, — s_)/2, where s, = s is the operator that shifts
the wavefunction one cell to the right (left) with a periodic boundary condition. Here,
we use the second order of this finite-difference operator to enforce higher fidelity
of the translation.

3.2. Variational quantum simulation of the Fokker—Planck equation

In figure 5, we show the complete evolution of the distribution functions for
o =1800, 0o =90 from OSIRIS Monte Carlo simulations, following the same
set-up parameters as Niel er al. (2018), which we take as being the ‘ground-
truth’ benchmark. In these simulations, the electrons can be seen to cool down
quicker for higher yxo, and the distribution functions occupy different fractions of
the energy domain throughout the evolution, thus having different requirements on
the resolution for the energy grid.

The VQS algorithm maps the dynamics of the quantum state, (2.3), to those of
the variational parameters 6(¢) of the ansatz. The mapping is performed using
McLachlan’s variational principle (MVP) (McLachlan 1964; Endo et al. 2020).
Using the same notation as Kubo et al. (2021), the unitary quantum circuit from
figure 4 produces a wavefunction |v{0(z)}). However, diffusive processes generally
do not preserve the L, norm, that is, o, f |v|> dx # 0. Therefore, it is useful to define
an overall variational wavefunction |v{0(¢)}) = «(¢) |[v{0(¢)}), where «(¢) is a (classi-
cal) normalisation parameter. If the temporal resolution is sufficiently high and the
ansatz sufficiently expressive, the MVP method evolves the variational parameters
such that the correct dynamics is enforced through

min
a(1)

d A
3 [PO@ON = LIv{emh), (3.1

where L is a linear operator that generates the evolution of the system. At each time
step, the following matrix equation needs to be solved on a classical computer

M, ;6,=V,, (3.2)

where

My, =Re (3(5{9(t)}| 3|5{9(t)})) . V.=Re (M > ) (3.3)

0 9, 25 LI
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FIGURE 6. Fitting of the initial wavefunction for xo= 1073, n =6 qubits and k =5 layers
of variational parameters. (a) A centred wavefunction is obtained through fitting the varia-
tional parameters. (b) Evolution of the cost function as the optimiser converges on a good
approximation of the target wavefunction.

are quantities that can be obtained efficiently through dedicated quantum circuits.
One advantage of this method, if run on a quantum device, is that one does not
need to have access to the full amplitudes of the wavefunction. Instead, only the
variational parameters need to be tracked and their evolution is obtained through
efficient measurement of a few observables. Whereas the M, ; only depend on the
chosen ansatz, the V; elements depend on both the ansatz and the particular Fokker—
Planck equation operators (in this case, (2.3)). In this work, we classically simulate
the retrieval of these quantities through numerical differentiation and integration of
the wavefunction using Numpy (Harris et al. 2020). A complete example of appli-
cation of analytical solution to the heat equation using this variational method is
presented in Appendix A.

As previously explained, we first optimise the parameters (except for 6,, which
we keep fixed) using a cost function C = ||/ (0) — Yyuree||* (mean-squared error).
We choose a number of iteration steps such that the cost function has decreased
significantly and converged such that the quantum variational ansatz produces the
centred target distribution (see figure 6). After this, we apply the advection step by
changing the parameter 6, to match the initial mean value of the distribution on the
energy grid.

The number of variational parameters depends indirectly on the value of x. A
higher initial x, corresponds to entering deeper into the quantum regime of radiation
reaction, where the resulting electron distribution becomes increasingly asymmetric
and skewed. This symmetry breaking typically requires a larger number of varia-
tional parameters (or circuit layers) to be accurately captured within our ansatz.
Furthermore, for a given fixed simulation time, a higher x will lead to higher energy
loss, and consequently requires a wider grid domain. From empirical parameter
scans for different values of n and k, we find that, in practice, achieving good
fidelity in reproducing the initial symmetric (Gaussian) distribution typically requires
the number of layers k to scale approximately linearly with the number of qubits n,
specifically in the range k ~n to k ~ 2n.

In figure 7, we show the VarQITE simulation of the distribution function for
xo= {1072, 1072}, and results from solving the PDE with a classical algorithm. This
PDE solver employs the same energy-grid discretisation as the VarQITE approach
to provide a reference to which to compare. We use a forward Euler pusher in
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FIGURE 7. Evolution of electron distribution functions for xo = {10~3, 10~2}, for an initial
spread in energy o¢ =90. Full line, OSIRIS simulation; dashed line, PDE solver; circles,

VarQITE. In both cases, n = 6 qubits, while the number of layers is (a) k =5 for xo = 1073
and (b) k = 6 for xo =102
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FIGURE 8. Evolution of the moments of the distribution functions obtained through VarQITE
(circles) and compared against OSIRIS (lines). (a) First moment (mean), (b) second moment
(spread). The number of layers for each case is the same as in figure 7.

time and a finite-difference scheme on the energy-grid, only accounting for nearest
neighbour cells. The discretised versions of the d,(Af) advection and 0.5 9, (Bf)
diffusion operators are then the same between the approaches.

In figure 8, we show the evolution of the first two moments of the distribution
functions. There is a general agreement of the quantum circuit results with the
OSIRIS simulations. There is a small deviation due to finite grid resolution, which
can be resolved by increasing the number of qubits.

In figure 9(a), we show the evolution of all the 27 variational parameters for
the xo = 1073 case. The trajectories are smooth and some parameters have minimal
deviations, which suggests that the ansatz is over-parametrised and can be made
more efficient. Figure 9(b) shows the values of the mean energy computed from the
wavefunction produced by the quantum variational ansatz against the variational
parameter responsible for the translation e %% where a linear scaling between the
two is visible.
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FIGURE 9. (a) Evolution of all variational parameters for o = 1073, highlighting the ‘average
energy’ parameter in red. (b) Linear correlation between average energy from the wavefunction
and the parameter of the wavefunction translation.

3.3. A note on the extraction of moments of the distribution function

The global translation of the wavefunction is correlated with the average energy
through a simple rescaling. Therefore, we would not need to measure the mean
energy of the wavefunction because we could simply read this value from one of the
variational parameters. This is only allowed because of our choice of a translated,
even-symmetric wavefunction and would not be viable if the ansatz allowed for
skewed distributions.

The average and variance of the energy can be measured efficiently (n Z; and n?/2
Z;Z; gates, respectively), with a Pauli-string decomposition of the observables:

n—1

I 1 n 1 n—i—1
P=o@ =11 2;2 Z, (3.4)
n—1 n—1
XA2= <a2+2b12> I +2a b,Zl+2 Z b,‘bj ZiZj, (35)
i=0 i=0 0<i<j<n—1

with a=(1/2)(2" —1),b; =—(1/2) x 2"~! and Z; is the Pauli-Z gate applied
to qubit i. Based on this, £=(0,1,2,3,...) and x2=(0,1,4,9,...) are
diagonal matrices. The commutation relation between the individual terms
can be used to make the measurement more efficient and the results of
(x) = (Y|x|¥), (x*) = (¥|x*|¥) can then be linearly rescaled to be compatible
with the wavefunction domain in energy y.

4. Conclusions

In this work, we present a quantum-hybrid algorithm approach to the quantum
radiation reaction, providing similar results when benchmarked against the particle-
in-cell Monte Carlo (PIC-MC) code OSTIRIS. We have simulated the Fokker-Planck
equation describing the stochastic cooling of an electron population in a strong
magnetic field using the variational quantum imaginary time evolution (VarQITE)
algorithm, showing good agreement with the results from PIC-MC. We have devel-
oped a new variational ansatz that mimics a Gaussian trial-function, capturing the
first and second moments of the distribution functions while requiring fewer param-
eters than more general variational ansétze, by enforcing a parity symmetry on
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the wavefunction in addition to a direct control on its average position through the
advection operator. We have also derived closed-form analytical results for moments
of the energy distribution functions, their entropy and autocorrelation functions.

Future steps will include extending this approach to other Fokker-Planck equa-
tions of interest (for example, the Kompaneets equation or laser cooling of trapped
atoms), to the full Boltzmann equation (non-local operator) and to represent
the quantum system not as a classical distribution function but as a Fock state
(Hidalgo & Draper 2024), where the dynamics would be naturally unitary.
Additionally, using specialised circuits for loading specific distribution functions
as part of the variational ansatz (Gaussian, uniform, Chi-squared) could lead to
a reduced number and more interpretable parameters, which would speed up the
VarQITE algorithm and possibly mitigate the barren plateau problem.

Our work can contribute to further development of both classical diffusive plasma
physics and to simulate the fully quantum nature of plasma interactions, namely the
transition from semi-classical to non-perturbative SFQED regimes.
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The repository includes notebooks explaining the classical PDE solver, the VarQITE
approach, the analytical models and input decks for OSTRIS simulations.

Appendix A. Applying the variational principle to the heat equation

In this appendix, we provide a step-by-step application of McLachlan’s variational
principle (MVP) to the simplest diffusive PDE, the heat equation. Similar to the
classical variational principle used in quantum mechanics to obtain approximate
ground states of a system, the MVP for imaginary or real-time evolution is useful
both numerically and analytically.

The one-dimensional (1-D) homogeneous heat equation

ou =k o u (A1)

with thermal diffusivity coefficient k, admits a kernel solution (when u(r =0, x) =

§(x))

u(t,x)= (A.2)

1 ( x? >
——exp|(—),
vamkt 4kt
from which analytical solutions to more general initial conditions can be constructed.

This suggests using an ansatz

2

V(A,o0)=Aexp (—%) , atv:ﬁH v, (A.3)
o

with Ly the linear operator generating the evolution of the system (in this case, it is
the Laplacian d,,) and variational parameters 6;(t) = (A(¢), o (t)) for the analytical
solution of the MVP. We take the thermal diffusivity to be k=1 for simplicity.
Since this function is L -normalised (that is, f v dx = 1), the normalisation A will be
correlated and a function of the parameter o.

The following derivatives and integrals are used in the calculations:

2 -3 4

jv=A"v, duv=x’c3 v, dv=vE*—0?)o

/ vdx = AV27o, / vidx = A%/7o, (A.4)

/ x*vidx = A%/ma?/2, fx4v2 dx =3A%/no’/4.

From the MVP (3.3), we need to compute the matrix elements f (0kv)(9;v) dx,
which require either the [ v?dx or [ x? v? dx integrals. We obtain

MA,A = \/;0’ MA,U = 0, A — \/;A/z’ Ma,a = 3\/;142/(40—)
For the column vector, we need to compute f (0xv) (I: uV) dx. We obtain

Va=—AJr/Q0), V,=Am/(45?).

We now need to solve the matrix equation M, ;6; = V,. Factors of /7 will cancel
out:

o A/2 A _v Al _[3/Qo) —1/A[-A/Qo)] _[-A/e?
A2 3A%/@o) | |6 |T T |6 |T| —1/A 20/A%|| A%/@0D) |T| 1/ |

(A.5)
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FIGURE 10. Numerical solution of the 1-D heat equation. (a) Snapshots of the distribution
u(t, x) from a PDE solver and numerical evolution of a Gaussian ansatz in the MVP. (b)
Evolution of the variational parameters: colour, numerical MVP; dashed, analytical solution
to the MVP (A.6).

where we explicitly computed the matrix inverse of M, ;. The second equation (for o)
is separable. We can then replace o (¢) in the first equation to obtain the amplitude
A(t). The parameters thus become

o (1) =4/2t + 0}, A(t) = Agoo/\/2t + of, (A.6)

where oy, Ay are the initial spread and amplitude, respectively. This is precisely
the exact analytical solution (A.2). In figure 10, we show a comparison between a
standard PDE solver solution of the heat equation, a numerical solution of the MVP
equations using the ansatz (A.3) (without a quantum circuit), and the analytical
solution (A.6). The numerical grid had 2° cells, the number of time steps was 200
for a maximum simulation time of 40 and a small initial spread of the distribution
function o, =0.01.

Appendix B. The Fokker-Planck equation

B.1. Review of theoretical study of radiation reaction

In this section, we review past works on the radiation reaction, introduce the
main parameters that describe the interaction of electrons with an intense magnetic
field and derive analytical solutions for some observables of interest. In the past
decades, the theoretical modelling of electron radiation losses in intense fields has
been extensively studied. Shen & White (1972) derive the transport partial differen-
tial equation (PDE) for electrons in a constant uniform magnetic field. Analytical
results of multi-photon scattering of electrons in periodic structures (e.g. oriented-
crystals) have been derived by Khokonov (2004) and Bondarenco (2014); however,
without simple explicit closed-form expressions for the observables, nor immediate
application in electron-laser scattering. Lobet ef al. (2016) numerically studied the
coupled dynamics of photons and leptons, including radiation reaction and pair
production in a constant magnetic field. Vranic et al. (2016), Ridgers et al. (2017)
and Niel et al (2018) derive the ordinary differential equations (ODEs) for the
first two momenta of the energy distributions of electrons interacting with a laser
pulse, but do not present their corresponding closed-form explicit solutions. Niel
et al. (2018) show connections between the different regimes of radiation reaction
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and the corresponding particle trajectories and stochastic PDEs. Artemenko et al.
(2019) numerically solved the electron transport PDE for different magnetic field
values using the ‘global constant field approximation’ to map between a constant
magnetic field set-up and a laser pulse with a finite duration envelope. Jirka et al.
(2021) derive the average energy decay in a pulsed plane-wave laser in the highly
‘nonlinear quantum’ high-x regime (the quantum nonlinear parameter, y, is defined
in § 2).

More recently, some papers have contributed with new analytical results for the
study of classical (CRR) and quantum (QRR) radiation reaction regimes. Bilbao &
Silva (2023) derive analytically the evolution of an electron momentum ‘ring distri-
bution’ in a maser set-up, relevant for astrophysical plasma scenarios. The formulae
are derived in the CRR regime using the ‘method of lines’ technique but appear to
hold even for xy ~ 0.1, and suggest that this class of ring distributions is a ‘global
attractor’. Zhang, Zhang & Zhou (2023) derive approximate analytical formulae for
the evolution of a lepton distribution function in a constant magnetic field during
multiphoton scattering in the QRR x < 1 regime. The authors identify and ana-
lytically characterise the ‘quantum peak splitting’, which occurs when an initially
peaked distribution function evolves into a doubly peaked distribution. Bulanov
et al. (2024) derive CRR closed-form expressions for distribution functions for a
set of initial conditions of interest, again using the ‘method of lines’, and find an
equilibrium (time-independent) solution for the QRR Fokker-Planck equation of an
electron beam in an LWFA set-up. Kostyukov et al. (2023) derive short-time evo-
lution expressions for the electron wave packet in a strong EM field, including the
expectation value of the electron spin. The approach relies on Volkov functions
and the Dyson-Schwinger equation, and naturally leads to the damping (radia-
tion reaction) of the wave packet. Torgrimsson (2024a,b) derives explicit analytical
time-dependent electron distribution functions in momentum and spin through
resummation techniques. Following a similar approach, Blackburn (2024) derives
explicit analytical QRR formulae for the final electron mean energy and spread as
functions of initial electron energy, laser a, and pulse duration. These expressions
are derived in the low-x regime, but remain approximately valid for a larger range of
parameters.

B.2. Regimes of radiation reaction

Here, we follow the notation of Vranic et al (2016). When x <1, the
equation for energy loss can be derived from the Landau-Lifshitz equation,
leading to

dy
dt

with ¢,, =2 w.e?b}/(3mc?) a constant defining the effect of classical radiation reac-
tion. In the set-up considered, three physical parameters completely describe the
dynamics: the initial electron energy y,, the external magnetic field B and the
evolution time ¢. The solution for the energy is

Ye() ~yo/(1 + ¢, 1 10). (B.2)

This scaling for the average energy can be corrected in the x <1 regime.
From a distribution point of view, the relativistic Vlasov equation for the elec-
tron distribution function f is modified. The radiation reaction no longer preserves

=—c, v, (B.1)
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phase-space volume, corresponding to the operator on the right-hand side of the

equation
df@, x, p )
¥=a—{+v-vxf+F-fo:C[fe], (B.3)

where C is a collision operator whose form depends on the model/regime of radia-
tion reaction considering Niel et al. (2018). In our simplified set-up, the coordinate
gradient and the force terms vanish, so the only term of interest is the collision
operator.

For higher values of x, the emission of photons becomes stochastic, in general,
leading to a spread in energy. Conceptually, the electrons can be thought of as being
slightly scattered through a cloud of photons of the field, where each photon has an
energy much lower than that of the electron.

There are several approximation methods for the theoretical analysis and numer-
ical sampling of the cross-sections contained in the collision operator C. One of the
most commonly used is the locally constant field approximation (LCFA), which is
exact for a plane wave laser field, and where the electric, magnetic and Poynting
vectors are mutually orthogonal.

Within this approximation, the probability of emission of a photon with x, by
an electron with x per unit time, also known as the nonlinear Compton scattering
(nCYS) differential cross-section/rate, is

N, )= _me’ [1— "NVepio- [ dx] B.4
a de(XaXy _\/gn—hyx < 5+§) 23(X) /X 173(x) (B.4)

with & = x/x,, x =2&/(Bx (1 —&)) and K, is the modified Bessel function of second
kind (Abramowitz & Stegun 1964). This rate in x, can be mapped to a rate in
particle energy d*N,, /dr dy, (v, y,).

In the LCFA approximation, the Lorentz invariant is E> — B> = 0. In the case of a
constant magnetic field, the boosted electromagnetic field in the electron rest frame
is almost a perfect plane wave, with a very slight deviation from this approximation.
The result is that the nCS and the quantum synchrotron emission spectra for ultra-
relativistic leptons are in practice very similar, as can be confirmed by Niel et al.
(2018) and Zhang et al. (2023).

The Fokker-Planck (FP) equation can be seen as an extension of the standard
Vlasov equation to kinetically and stochastically model collisions between plasma
species and laser—plasma interaction. An important application is simulating the
energy loss of an electron beam as it interacts with electromagnetic fields (Neitz &
Di Piazza 2013; Vranic et al. 2016). In this case, the particle distribution evolves

through
o, p) _ 1o
o ap |:—¢41f+ 2 (Blkf)j| (B.5)

with 4, = [ qw(p, )d°q, Br = [ qqiw(p, §)d*q, the drift and diffusion coeffi-
cients, respectively, and w(p, ¢) d*p is the probability per unit time of momentum
change of the electron p — p — ¢, with g the momentum of the photon, and where
Einstein index contraction was assumed.

In the co-linear approximation of radiation emission, y,/x ~ hk/(ymc), this
problem becomes essentially 1-D, with drift and diffusion coefficients

yme [*  d°N, (ymc)? fx , d’°N,
= dx,, B= dy,. B.6
A p /O X Gray, o K aray, Y (B.6)
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In the regime of x « 1, the A and B coefficients have polynomial approximations
(Vranic et al. 2016)

2 am?c? 55 am’ct | .

A~ = ‘ocy?, B~ —— oyt
T XY WA ARt

(B.7)

The Fokker-Planck equation is sparse (only two local, differential operators),
while the Boltzmann equation is non-local and its corresponding Hamiltonian evolu-
tion matrix is dense. Consequently, both numerical (either a PDE solver or Monte
Carlo sampling) and analytical solutions of the latter equation are often more
challenging than for the former.

B.3. Entropy and autocorrelation

Having derived the evolution of the spread (2.6) and assuming a Gaussian
functional form of the distribution function, the Shannon entropy of the electron
beam evolves as S(t) = — f flog(f) dy ~log(o(t)) + ¢’ up to an additive constant
(which we choose such that the simulation and theory curves match at late times).
Since this is a monotone function of the spread, it has the same qualitative behaviour
and peaks at log(on.). From a physics point-of-view, the entropy changes due to a
competition between the drift and diffusion processes. At late times, the entropy
of the electrons decreases, which can be interpreted as a transfer of entropy to the
radiation that is being emitted.

One can also compute an approximate auto-correlation function g(7)
(not to be confused with the gaunt factor) from the classical solution

Ye(t) ~vo/(1 +2R.t/3) as

Oy +1) _ /“’ ! N
(y2(1)) o (1+2R1/3)(1+2R.(t +1)/3)

| Jog(1 +2R.1/3)
2R.7/3

g(n)=

(B.8)

9’

where normalisation g(0) =1 is enforced. This quantifies how correlated two elec-
tron trajectories are on average if measured with a time delay of . Using instead
the second-order expansion for the average energy (that is, the full (2.5)) leads to
a more accurate closed-form solution, albeit with more terms (not shown here).
Considering the stochastic component of the trajectories would require computing
expectation values of nonlinear functions of Wiener processes W(t), W(t 4+ 7). The
solution to the Fokker-Planck equation f (¢, ) does not give us information on the
auto-correlation directly, and a marginal distribution f (¢, y1; t,, ¥») would have to
be obtained.

In figure 11, we show the comparison between these two quantities S(z), g(t)
from OSIRIS simulations computed from distribution histograms and individual
particle trajectories, and the approximate analytical results. Again, for xo=10"!
(blue curve), the r-axis is again multiplied by a factor of 2 to have the same range as
the other curves.

B.4. McLachlan’s variational principle approach

Here, we apply the technique described in Appendix A to the Fokker-Planck
equation. Since the number of particles (L; norm) is conserved and we are mostly
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FIGURE 11. (a) Evolution of the distribution function entropy, (b) auto-correlation function,
where dotted lines represent (B.8) and dashed lines are the result of using (2.5) in g(t). In both
figures, coloured lines represent results from OSIRIS simulations.

interested in the first moments of the distribution function u = [ yf dy, o= [(y —
w)? f dy, we enforce this into the ansatz

(V_M)z - 2 4
v(u, o) = exp| —————), v=Lppv=—0,(ay v)+0.59,,(by" v),

202
(B.9)
with Lyp the linear operator generating the dynamics, and variational parameters
0;(t) = (u(r), o (¢)), for the analytical solution of the MVP. We could have used an
ansatz with the amplitude A(r), which would have led to a 3 x 3 matrix system of
equations.
The following derivatives will be used in the following calculations:

2mo?

v y—pu v (y—p)’—o’
v 02 v o3 ’

(B.10)

From the MVP (3.3), we need to compute the matrix elements [ (8,v)(d;v)dy, which
require either the [(y — w)? v dy or the [(y — p)* v? dy Gaussian integrals. In gen-
eral, the change of variables (y — u)/o — y simplifies the calculations. We obtain

M/L/L = 1/(4\/;03)’ Maa = 3/(8ﬁ03)7 M//.a = MU/L = Oa

where the cross-term is null due to the odd-symmetry of the integrand function. The
diagonal structure of this matrix simplifies the calculations considerably. The inverse
matrix becomes

M =4no’ [(1) 293} ) (B.11)

For the column vector, we obtain

V- a(=2u*+0o?) B 3buRu® +o?)
8ol 8 /o3
3ap 3b(—4u* 4+ 36u%c* + 136%)

V, = -
4./mo? 64./mo?
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FIGURE 12. Numerical simulation of the Fokker—Planck equation with xo = 102 (a) Evolution
of the distribution function f (¢, y). The dashed line represents the result from a standard PDE
solver, while circles represent the numerical integration of the MVP equations. (b) Evolution of
the moments and variational parameters («, o). The coloured lines represent the moments of the
distribution function obtained from the PDE solver, while dashed lines represent the analytical
results of (2.5) and (2.6).

Applying the inverse matrix M, k’jl to the column vector V,, we obtain

[Ia} _ |: —au’+ao?/2 —3buu* +02)/2 }

o —2auo +bM4/(2U) _ b(36'u262 + 1364)/(80') (B.12)

Changing notation 2«,, =a and bu* = B/(m*c?), the underlined terms, which are
leading order assuming u >> o, recover the results of (8) and (14) from Vranic et al.
(2016).

In figure 12, we show a comparison between a PDE solver solution of the Fokker-
Planck equation, a numerical solution of the MVP-VarQITE equations using the
ansatz (B.9) (without a quantum circuit), and the analytical solution (2.5). The
numerical grid had 27 cells, the number of time steps was 900 for a maximum simu-
lation time of 20, x, = 1072 and initial momenta = 1800, o, = 20. We have thus
shown the potential of MVP for retrieving the distribution moments in the quantum
radiation reaction.
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