
Proceedings of the Edinburgh Mathematical Society (2012) 55, 497–506
DOI:10.1017/S0013091510001264

ON THE CENTRE OF THE CYCLOTOMIC
HECKE ALGEBRA OF G(m, 1, 2)

KEVIN MCGERTY

Mathematical Institute, University of Oxford, 24–29 St Giles’,
Oxford OX1 3LB, UK (kevin.mcgerty@maths.ox.ac.uk)

(Received 3 October 2010)

Abstract We compute the centre of the cyclotomic Hecke algebra attached to G(m, 1, 2) and show that
if q �= 1, it is equal to the image of the centre of the affine Hecke algebra Haff

2 . We also briefly discuss
what is known about the relation between the centre of an arbitrary cyclotomic Hecke algebra and the
centre of the affine Hecke algebra of type A.
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1. On the centre of Kv
2

1.1. The affine Hecke algebra associated to gln has an interesting family of finite-
dimensional quotients known as cyclotomic Hecke algebras. These may be viewed as
deformations of the complex reflection groups G(m, 1, n) (see [10] for a nice review of
the subject). The study of their representation theory has proved to be a rich subject,
and a natural first question in such a study is to understand the centre. Oddly, although
the decomposition of the category of representations into blocks is now known [9], the
centre itself is not well understood. In this note we describe the centre for the cases of
G(m, 1, 2) and discuss what is known in the general case.

1.2. We consider quotients of the affine Hecke algebra Haff
2 of type A2: this is the

algebra over A = Z[q] generated by T, X±1
1 , X±1

2 , such that

(i) there is an injective algebra map A[X±1
1 , X±1

2 ] → Haff
2 ,

(ii) (T − q)(T + 1) = 0,

(iii) TX1T = qX2.

Let S denote the image of the ring of Laurent polynomials A[X±
1 , X±

2 ] in Haff
2 , and let

W be the two-element group with non-trivial element s which acts on S by interchanging
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X1 and X2. We write the action as f �→ sf . For convenience of notation we set Q = q−1.
Relation (iii) above is then equivalent to

Tf = sfT + Q
f − sf

1 − X1X
−1
2

, f ∈ S. (1.1)

It is easy to check from this that the centre of Haff
2 is SW , the algebra of symmetric

functions in the X±1
i .

1.3. Now let A = Z[q±1, v±1
1 , v±1

2 , . . . , v±1
m ] be a Laurent polynomial ring, and extend

the scalars of Haff
2 to A ⊗A Haff

2 . By abuse of notation we will again denote this algebra
by Haff

2 , and similarly for the subalgebra S.

Definition 1.1. The cyclotomic Hecke algebra Kv
2 of type G(m, 1, 2) is a quotient of

Haff
2 : let

fv = (x − v1)(x − v2) · · · (x − vm)

=
m∑

j=0

(−1)m−jem−jx
j , (1.2)

where the ej are the elementary symmetric functions in the vi. Let Jv be the two-sided
ideal in Haff

2 generated by f1 = fv(X1) and set Kv
2 = Haff

2 /Jv. (Note that our definition
coincides with that in [2] up to rescaling, after v1, v2, . . . , vm have been inverted, except
that the ‘q’ therein is a square root of ours.)

We say that a polynomial p in S is m-restricted (or simply restricted, when the integer
m is understood) if the monomials Xi

1X
j
2 occurring with non-zero coefficient in p all

satisfy 0 � i, j � m − 1. Let Sm denote the space of m-restricted polynomials. It is
known [3, Proposition 3.4] that the image Rm of S in Kv

2 is isomorphic as an A-module
to Sm, and, moreover, Kv

2 = Rm ⊕ RmT as an A-module, i.e. every element of Kv
2 can

be written uniquely in the form f + gT , where f and g are restricted. We refer to this
last fact as the ‘basis theorem’ for Kv

2 .

1.4. We start with a technical lemma. Let D be the difference operator on S given by

D(f) =
f − sf

1 − X1X
−1
2

, f ∈ S,

so that the relation (1.1) becomes Tf = sfT + QD(f). Let Ds be the composition
f �→ s(−D(f)), that is,

Ds(f) =
f − sf

1 − X−1
1 X2

.

Lemma 1.2. The operators D and Ds preserve Sm and thus induce A-linear maps
on Rm. Moreover,

D(f) = Ds(f)

if and only if f = sf .
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Proof. The proof that D and Ds preserve Rm is a direct calculation: observe that if
f = Xi

1X
j
2 , then we have

D(f) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xi
1

j−i−1∑
k=0

Xk
1 Xj−k

2 if j > i,

−Xj
1

i−j−1∑
k=0

Xk
1 Xi−k

2 if j < i.

Thus, as the highest power of X1 and X2 occurring in these expressions is max{i, j}, it
is clear that if p is any m-restricted polynomial, so is D(p). Since sD is the composition
of −D with s, it clearly also preserves restricted polynomials.

Moreover, note that in D(f), where f is the monomial above, X1 never occurs to the
power max{i, j}, whereas X2 does. Thus, for any restricted polynomial p, if D(p) �= 0, it
has a higher power of X2 occurring than occurs as a power of X1. Thus, similarly Ds(p),
if non-zero, has a higher power of X1 occurring than occurs as a power of X2. It follows
that D(p) = Ds(p) if and only if D(p) = 0, and this occurs only if p = sp as claimed. �

Lemma 1.3. Let z ∈ Kv
2 and suppose that z = f + gT , where f, g ∈ Rm. Then z

commutes with T if and only if f, g ∈ RW
m .

Proof. The sufficiency of the condition is clear. To see the necessity, we have

T (f + gT ) = sfT + QD(f) + sgT 2 + QD(g)T

= (sf + Q sg + QD(g))T + QD(f) + q sg

(where we write D for the operator on Rm given by the previous lemma). On the other
hand, we have

(f + gT )T = (f + Qg)T + qg.

Since f and g are restricted, it follows from the basis theorem for cyclotomic Hecke
algebras that we must have

(sf + Q sg + QD(g)) = f + Qg,

and

QD(f) + q sg = qg

Thus, after rearranging, the second of these equations becomes

QD(f) = q(g − sg).

Now note that the right-hand side is an eigenvector for the action of s with eigenvalue
−1, and thus so is the left-hand side, whence we get s(D(f)) = −D(f), or, equivalently,
D(f) = Ds(f). By the previous lemma, this is possible only if f = sf and D(f) = 0. But
then we must also have g − sg = 0, and so f and g are symmetric, as required. �
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1.5. Let Z denote the centre of Kv
2 . From the previous lemma, we see that if z =

f +gT ∈ Z, then f, g ∈ RW
m . Since f ∈ RW

m is already central, we see that Z = Z ∩Rm ⊕
Z ∩ RmT , and we are reduced to calculating when gT is central. For this we introduce
the following operator.

Definition 1.4. Let d : S → S be the linear map given on monomials by

d(Xi
1X

j
2) =

⎧⎪⎨
⎪⎩

Xi
1X

j
2 if i < j,

−Xj
1Xi

2 if i > j,

0 if i = j.

Clearly, d preserves Sm, and so we may transport it to a map on Rm (which we will also
denote by d). Clearly, the kernel ker(d) of its action on Rm is RW

m and since d2 = d,
Rm = RW

m ⊕ d(Rm).

Lemma 1.5. Z ∩ RmT is a free A-module of rank m.

Proof. Suppose that gT ∈ Z ∩ RmT . We must have X1gT = gTX1 and TgT = gT 2,
and these conditions are sufficient. Since T is invertible (indeed T−1 = q−1(T +1−q)), the
second equation is equivalent to Tg = gT . By Lemma 1.3 this implies that g ∈ RW , and
hence the first equation becomes (X1g)T = T (X1g). But then, again using Lemma 1.3,
we see that X1g ∈ RW

m . Let M be the space of such restricted symmetric polynomials:

M = {g ∈ RW
m : X1g ∈ RW

m }.

We have shown that Z ∩RmT = MT . It is now a linear algebra exercise to check that M

is a free A-module of rank m. By the paragraph preceding the lemma, Rm = RW
m ⊕d(Rm)

as an A-module. Thus, if we let φ : RW
m → d(Rm) be the map g �→ d(X1g), we see that

M = ker(φ). Let mij = Xi
1X

j
2 + Xj

1Xi
2 for i < j and mii = Xi

1X
i
2 be the monomial

symmetric functions, and let RW
m−1 be the span of {mij : 0 � i � j < m − 1}. Then we

claim that φ : RW
m−1 → d(Rm) is an isomorphism of A-modules. Indeed, for j < m − 1

we have

φ(mij) =

{
−Xi

1X
j+1
2 if j − i � 1,

−Xi
1X

j+1
2 + Xi+1

1 Xj
2 if j − i > 1.

If we use reverse lexicographical ordering on the bases {mij : 0 � i � j < m − 1} and
{Xi

1X
j
2 : 0 � i < j � m − 1}, then the above equations show that the matrix of φ|RW

m−1

with respect to these ordered bases is triangular with diagonal entries equal to −1; thus,
φ|RW

m−1
is an isomorphism as claimed.

This immediately implies that M is a free A-module of rank m. However, we can be
more precise and even specify a basis of M by considering the images of φ(mi(m−1)),
0 � i � m − 1: set

pi = mi(m−1) − (φRW
m−1

)−1(φ(mi(m−1))).

Then {p0T, p1T, . . . , pm−1T} is an A-basis of Z ∩ RmT . �
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Example 1.6. Let m = 3. In this case we find that the space Z ∩ RW T is spanned
by {p0T, p1T, p2T}, where

p0 = e2 − (e3 − e1(X1 + X2) + X1X2 + X2
1 + X2

2 ),

p1 = (e3 − e1X1X2 + X1X2(X1 + X2)),

p2 = (e3(X1 + X2) − e2X1X2 + X2
1X2

2 ).

⎫⎪⎬
⎪⎭ (1.3)

Thus, we have shown that the centre Z of Kv
2 (with m = 3) is a nine-dimensional free

submodule spanned by RW
3 and {p0T, p1T, p2T} (this is exactly as stated in [2, § 2]).

Remark 1.7. It is easy to check directly that Lemma 1.5 implies that the rank of the
centre is the number of m-multipartitions of 2. This also follows by passing to the field
of fractions of A, and using the result of [3] which shows that in the semisimple case (for
any n) the centre has rank equal to the number of m-multipartitions of n.

2. On the image of Z(Haff
2 )

2.1. Next we do some simple computations. Let

Hk =
k∑

j=0

Xj
1Xk−j

2

be the complete symmetric function in X1 and X2 of degree k, and let I denote the
image of the centre of Haff

2 in Kv
2 . Recall that f1 = fv(X1).

Definition 2.1. Let f2 = Tf1T . Thus, f2 ∈ Jv.

Lemma 2.2.

(i) In Haff
2 , for any k � 2,

TXk
1 T = qXk

2 − Q(X1X2)Hk−2T.

(ii) We have
qfv(X2) = f2 + QzT,

where

z = (−1)m+1em + (X1X2)
( m−2∑

j=0

(−1)jejHm−2−j

)
∈ SW

m .

Proof. The proof of (i) is a direct calculation using (1.1). For (ii) we have, using (i),

qXk
2 = TXk

1 T + Q(X1X2)Hk−2T, k � 2.

Moreover, qX2 = TX1T , and q = T 2 − QT , so that

qfv(X2) = f2 + Q

(
(−1)m+1em + (X1X2)

( m∑
j=2

(−1)m−jem−jHj−2

))
T,

as claimed. �
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Remark 2.3. Note that one has the well-known identity of symmetric functions

n∑
r=o

(−1)ren−rhr = 0

for elementary and complete symmetric functions in the same set of variables. In the
preceding lemma the ej are symmetric functions in the vi, while the Hk are symmetric
in the Xi.

Proposition 2.4. The elements QXk
1 zT lie in I for all k ∈ Z, and, moreover, the

elements {Xk−1
1 z : 0 � k � m − 1} are linearly independent.

Proof. From the previous lemma we have

QXk
1 zT = qXk

1 fv(X2) − Xk
1 f2

= qXk
1 fv(X2) + qXk

2 fv(X1) − (qXk
2 f1 + Xk

1 f2)

∈ qXk
1 fv(X2) + qXk

2 fv(X1) + Jv.

Hence, we see that QXk
1 zT ∈ Kv

2 = Haff
2 /Jv is in the image of the centre of Haff

2 , as
required.

It remains to show that the elements {Xk−1
1 z : 0 � k � m − 1} ⊂ Kv

2 are linearly inde-
pendent. Since A is an integral domain, we see that Xk−1

1 zT ∈ Z, and hence Xk−1
1 z ∈ RW

m

by Lemma 1.3. We have

Xk−1
1 z = (−1)m+1emXk−1

1 − (Xk
1 X2)

( m−2∑
j=0

(−1)j+1ejHm−2−j

)
.

Now consider this expression for Xk−1
1 z as a linear combination of the monomial sym-

metric functions mij lying in Rm. While this may require using the equation fv(X1) = 0
(e.g. for the first term when k = 0), the powers of X2 occurring are already in the
restricted range. Thus, by considering the terms involving Xm−1

2 it is easy to see that
the coefficient of mj(m−1) is 0, unless j = k, in which case it is 1. It follows immediately
that the Xk−1

1 z in the range 0 � k � m − 1 are linearly independent. �

2.2. We can now combine the above results to establish our main theorem.

Theorem 2.5. Let B denote the localization of A where Q = q − 1 is inverted. Then,
over B, the centre of Haff

2 surjects onto the centre of Kv
2 .

Proof. It is clearly sufficient to show that piT lies in I, where pi ∈ RW
m , 0 � i � m−1,

is as in Lemma 1.5. Since we have inverted Q, Proposition 2.4 shows that we have
Xk

1 zT ∈ I for all k ∈ Z. Now by the proof of the previous proposition, we also know
that the coefficient of mj(m−1) in Xk−1

1 z, 0 � k � m − 1, in the basis {mij} of restricted
monomial symmetric functions is δjk, and the same is true, by definition, for the pk.
Since I ⊂ Z, we can write Xk

1 zT as a linear combination of the elements piT ; hence, it
follows immediately that pkT = Xk−1

1 zT , and we are done. �
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Example 2.6. We consider again the case m = 3, keeping the notation of the previous
example. Then z = p1, and it is easy to check that X1p1 = p2, and similarly

X−1
1 p1 = e3X

−1
1 − e1X2 + X2(X1 + X2)

= (e2 − e1X1 + X2
1 ) − e1X2 + X2(X1 + X2)

= e2 − e1(X1 + X2) + (X2
1 + X1X2 + X2

2 )

= p0,

so that Xk−1
1 z = pk for 0 � k � 2.

3. Comments on the general case

3.1. Let Haff
n denote the affine Hecke algebra attached to gln, and let Kv

n denote the
cyclotomic Hecke algebra, the quotient of Haff

n by the two-sided ideal Jv generated by
fv(X1). We wish to consider the following conjecture.

Conjecture 3.1. Let Haff
n be the affine Hecke algebra with coefficients extended to

B, the ring
A = Z[q±1, v±1

1 , . . . , v±1
m ]

with Q = q − 1 inverted. Let ψm : Haff
n → Kv

n be the quotient map. Then

ψm(Z(Haff
n )) = Z(Kv

n).

In fact, it may be easier (and as useful) to show this in the case where Haff
n is defined

over a field F , and the parameter q is not equal to 1.

Remark 3.2. As pointed out in [2], if we specialize to q = 1, i.e. Q = 0, then the
image of the centre of the affine Hecke algebra does not necessarily surject onto the centre
of the specialized Ariki–Koike algebra (for Kv

2 , if we say require X1 to satisfy X3
1 −1 = 0,

then at q = 1 this is just the group algebra of the complex reflection group G(3, 1, 2)
which has a nine-dimensional centre (the specialization of the centre of Kv

2 ), whereas the
images of X1+X2, X1X2 only generate a six-dimensional subalgebra). Of course at q = 1
one should instead consider the degenerate algebra.

While the above conjecture is certainly not new, it does not seem to be explicitly
stated in the literature, and some of existing literature is unclear as to its status: the
counterexample of [2] is quoted in [10] in a fashion which makes it appear it is more
general than [2] intended to imply.∗

We list the following evidence for the conjecture:

(i) Ariki and Koike [3] show that the conjecture holds in the semisimple case (they
also show explicitly the conditions on the parameters under which the Ariki–Koike
algebras is semisimple);

∗ The author thanks Professors Ariki and Mathas for helping him sort out this confusion.
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(ii) the present paper establishes the case n = 2;

(iii) in an orthogonal direction, Francis and Graham [7] have verified the conjecture for
the case of the finite Hecke algebra of type A, i.e. the case m = 1.

Remark 3.3. Unfortunately, the direct approach to the calculation of the centre taken
in this paper seems not to generalize readily. A number of new issues present themselves.
Firstly, the explicit construction of elements in the image of the centre of the affine Hecke
algebra becomes more subtle because of the braid relations, while, secondly, the strategy
to describe the centre relies on relating monomials Xα to monomials Xλ (in the normal
multi-index notation) where λ is dominant, which becomes noticeably more complicated
for n > 2.

3.2. We end with another result which supports the conjecture when we work over F , an
algebraically closed field of characteristic zero. Let Hn be the degenerate, or graded, affine
Hecke algebra of type A. As a vector space it is isomorphic to C[Sn] ⊗ C[r][x1, . . . , xn].
Let T denote the algebraic torus with regular functions O = C[q±1, X±1

1 , . . . , X±1
n ], and

let t ⊕ C denote the vector space with functions Ō = C[r][x1, x2, . . . , xn] and note that
we may use the group structure on T to identify t⊕C with the tangent space of T at any
point.

Now let I be a maximal ideal of the centre Z of Haff
n . Thus, I corresponds to an

Sn-orbit Σ in T. We want to consider the completions Ẑ and Ĥaff
n with respect to I.

Assume that all of the coordinates of the elements of Σ are equal to a power of q. In this
case, by choosing a logarithm of q we may attach to Σ a maximal ideal I of the centre
Z = C[r][x1, . . . , xn]Sn of Hn, and consider the corresponding completions Ĥn and Ẑ. The
algebras Ẑ and Ẑ are then naturally isomorphic and Lusztig [8, § 9.3] has shown that
there is an isomorphism θ : Ĥaff

n → Ĥn of the I-adic completion Ĥaff
n of Haff

n with the
corresponding completion Ĥn of Hn as algebras over Ẑ ∼= Ẑ. Moreover, θ restricts to give
an isomorphism between the (completed) commutative subalgebras Ô and ˆ̄O.

Let Kn be the cyclotomic Hecke algebra over F , where we moreover assume that
vi = qai for some integers ai, 1 � i � m, and that q ∈ F has infinite order. Note that,
while it is known [6] that representation theory of a general cyclotomic quotient can be
reduced to the case where the vi are of this form, the requirement that q must have
infinite order is genuinely restrictive. Recently, Brundan [4] has established the analogue
of Conjecture 3.1 for the degenerate cyclotomic Hecke algebras Kn, where Kn is the
quotient of Hn by the two-sided ideal generated by fr(x1), where fr(t) =

∏m
i=1(t − ai).

Now we may decompose a cyclotomic Hecke algebra according to the spectrum of the
image of Z, which is certainly a central subalgebra (in fact, it follows from the work of Lyle
and Mathas [9] that this decomposition yields the blocks of the cyclotomic algebra, but
we do not need that here). For each such central character with corresponding maximal
ideal I, the above discussion shows that the corresponding summands b and b of the
cyclotomic and degenerate cyclotomic Hecke algebras are isomorphic. Indeed, since they
are finite-dimensional and Lusztig’s isomorphism is a map of Ẑ ∼= Ẑ-algebras, they are
both annihilated by a power of some maximal ideal I (respectively, I) of the centre
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Z (respectively, Z) where I and I are identified under θ. Thus, the ideal Jv,I ⊂ Haff
n

(respectively, Jv,I ⊂ Hn) defining b (respectively, b) contains a sufficiently large power
of I (respectively, I). It follows that if we write IH = IHaff

n and IH = IHn and Î for the
unique maximal ideal of Ẑ, then for large enough N we have

b ∼=
Haff

n

Jv,I

∼=
Haff

n /IN
H

Jv,I/IN
H

∼=
Ĥaff

n /(ÎĤaff
n )N

Jv,I/(ÎĤaff
n )N

and, similarly,

b ∼=
Hn

Jv,I
∼=

Hn/(IH)N

Jv,I/IN
H

∼=
Ĥn/(ÎĤn)N

Jv,I/(ÎĤn)N
.

Now the map induced by θ on the quotients sends Jv,I/IN to Jv,I/IN because fv is sent
to fr so that b ∼= b. Hence, using Brundan’s work we obtain the following result.

Proposition 3.4. Let F be an algebraically closed field of characteristic zero, q ∈ F

of infinite order and Kn a cyclotomic Hecke algebra with vi = qai for some integers ai.
Then the centre of Kn is equal to the image of the centre of Haff

n .

Remark 3.5. It is shown in [1] that the cyclotomic Hecke algebra is semisimple
precisely when the polynomial

P (q, v) =
∏

1�i<j�m

( ∏
−n<a<n

(qavi − vj)
) n∏

k=1

(1 + q + · · · + qk−1)

is non-vanishing. Thus, the cyclotomic Hecke algebra need not be semisimple even when
q is not a root of unity, so this result includes cases which are not covered by the results
of [3]. It should also be noted that Brundan and Kleshchev [5] have recently shown that
if F is any field of characteristic zero and q is not a root of unity, then the cyclotomic
and degenerate cyclotomic Hecke algebras are isomorphic. One can presumably use their
results to extend the above proposition to this more general situation.
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