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Abstract

Two generalized mean value theorems, for functions with values in a linear locally convex
topological space, are proved, as consequences of two theorems for real valued functions of
a real variable.

1. Introduction

The classical mean value theorem of the differential calculus states that for
a real valued function / , defined and continuous on a finite closed interval [a, ft],
where a < b, and which has a derivative on the open interval (a, b), there is a
mean value c, such that a < c < b, and

(0) / ( f t ) - / (a )= / ' ( c ) ( fc -a ) .

In the mathematical literature there appear several valid generalizations of
this theorem to vector valued functions of a real variable; these generalizations
are, roughly speaking, of two sorts:

(a) the equation (0) is replaced by an inequality involving norms {if the vector
valued function is denoted by x(t), then the inequality reads || x(b) — x(a) [j ^
\x'(c)\\ (b-a)},

(b) the equation (0) is replaced by the statement that —-r lies

in the closed convex hull of the range of the derivative.
These two types of generalizations, which are not altogether unrelated,
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have been used, in the literature, in connection with l'H6spital's rule, and with
uniqueness theorems for differential equations.

Instances of (a) are to be found in Aziz and Diaz (1963), and, of (b), in
Wazewski (1953) and pp. 201-202 of Averbuch and Smoljanov (1967).

There is another feature to these generalizations, namely, the occurrence
of an exceptional set E <= (a, b), where the function in question is either not re-
quired to be differentiable, or the values of the derivative are not taken into
account. The classical mean value theorem of the differential calculus is no longer
true even is the exceptional set consists only of one number (consider, for example
|JC| on [ — 1,1]); however, in the generalizations of type (a) and (b), the excep-
tional set can be denumerable, and even certain types of uncountable sets are
permitted.

The present results were obtained in attempting to find out just how general
this exceptional set E could be allowed to be, while still having a valid generali-
zation of the mean value theorem.

The results for vector valued functions, in section 3, are based upon the pre-
liminary results for real valued fnctions (section 2), where the real valued function
/ is assumed to be differentiable outside the exceptional set. In this respect, the
present results are not the most general, since Wazewski (1953) and Mlak (1957)
employed Dini derivates; however, Theorem 3 and Theorem 4 include, as special
cases, Theorem 2 of Mlak (1957), and the mean value theorems in Averbuch
and Smoljanov (1967) and Dieudonne (1960). Other versions of the mean value
theorem were given by McLeod (1964-65); generally speaking, he uses two ex-
ceptional sets M, N. The set M is always a countable set, where the (right or left
hand) derivative need not exist; the set JV is always a set of measure zero, and the
values of x'(t) on N are not taken into account. McLeod's results, when the
values of the function lie in a finite dimensional space, are of particular interest.

The general approach employed, in the proof of Theorem 1, for a real valued
function, uses the completeness of the field of real numbers, in much the same
way as it is used in the "creeping lemma" of Moss and Roberts (1968). In the
present paper, the vector valued case is reduced to the real valued case (as in
Wazewski (1953) and Mlak (1957)) by using the well known fact that a convex
closed set, in a real linear locally convex topological space, is the intersection
of all closed half-spaces containing the convex set.

2. Real valued functions

This section contains two theorems for real valued functions of a real variable.

THEOREM 1. If

( l ) / i s a real valued function defined on a closed, bounded interval [a,b~],
with a <b; and f is continuous at a and b, from the right and from the left,
respectively;
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(2) g is a real valued nondecreasing continuous function on [a, ft];
(3) E is a subset of(a,b) such that, for every e > 0 , there is a sequence

of disjoint, open intervals (ock, ft), k = 1,2, • • •, with ack < ft, and [ak, ft] c [a, ft],
such that

E <= U (a*, ft), and, also, £ I/(ft) -/(a,) I < s;
ki * ik=i

(4) / has a, finite or infinite, derivative for te(a,b) — E; g has a finite
derivative for te(a,b) — E, and there is a real number M such that

f'(t) £ Mg'(t)

for te(a,b) — E;
then one has

(1) f(b) ~f(a) = M+[g(b)— g{d)],

where M+ = max(O, M).

PROOF. Without loss of generality, it can be assumed that g is strictly in-
creasing, and that g'(t) > 0 for te(a,b) — E, by simply replacing the given
g(x) by g(x) + nx, where n > 0 is any fixed, but arbitrary, positive number. The
final conclusion of the theorem, upon completion of the proof, will then read

/(ft) -f(a) < (M+ + n)(g(b) - g(a));

but, since n > 0 is arbitrary, the desired inequality (1) follows from this. The
precise moment in the proof, at which the additional assumptions g'(t)>0,
g'(t) finite, for te(a,b) — E, are needed, will be explicitly indicated below in the
course of the argument.

In trying to follow the argument, the reader may do well to keep in mind
the intuitive idea of the proof, which may be informally described as "creeping
from a to ft, using only the numbers x, with a S x j£ ft, which do not belong
to the set Ur=i(«*,ft)" (the present situation is to be compared with that
in Moss and Roberts (1968), where there is no exceptional set E).

Let £ > 0, and (aA,ft), k = 1,2, •••, be the corresponding sequence of inter-
vals appearing in hypothesis (3). Let S be the set of all numbers t,, with a ^ ^ i ,
satisfying the following two conditions:

(A) the number £ is not in Ur=i(<**,ft);
and,

(B) for all x, with a ^ x :£ £,, and x not in Ut"L i (ak, ft), it is true that

(2) f(x) -f(a) ^ (M+ + e) [g(x) - g{a)\ + 1 [/(ft) -f(ak) \ + e.

Clearly, a itself is in S; since, in the first place, a is not in U"=1(aA,ft), and
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inequality (2) holds for x = a, with the sum S *„<„)/(&) — /(<**) j , in (2),
being, naturally, interpreted as zero.

The whole point of the argument below is to show that the number b, which
is, obviously, not in the (J "= t (a*, Pk), is also in the set S. Once this is done,
the desired conclusion, (1), follows immediately by using the inequality (2), for
x = b, and employing the arbitrariness of e > 0.

The following lemma will be used several times.

LEMMA. If 0,-eS, for some positive integer j , then, also, PjeS.

PROOF. Since 0,-eS, it is true that for any x, with a ^ x ^ a,-, and x not in
Uk°L i (ak, Pk), the inequality (2) is valid. Therefore, since Pi does not belong to
the Uk°°=1(txk,pk), in order to show that PjeS, it only remains to be shown,
in view of the definition of the set S, that inequality (2) holds with x replaced
by Pj.

Obviously, using the inequality (2) for x = a,-, plus the fact that the function
g is nondecreasing on [a, b], it follows that

j) - / ( « ) ^f(Pj) -f(«j) +f(ocj) -f(a)

^ f(Pj) -/(<*,) + (M+ + s) [g(ccj) - g{dj] + S |/(&) -/(a*) |

j) -/(<*;) | + (M+ + e) O(a,) - g(a)} + I
<tk<Xj

g (M+ + e)(g(pj) - ff(fl)) + 2 I/ay -/(ak) | + e.

Hence, besides Pj not! belonging to the U"= i {ak, pk), it is also true that the in-
equality (2) is satisfied for all x, a £ x ^ Pj, and x not in U"=1(a*,A); and
it has been proved that pj-eS. This completes the proof of the lemma.

Let s = sup S. Obviously, s ^ b. It will now be shown that a < s. If a = a,-
for some positive integer;, then, by the lemma, also P}eS, and hence a < Pj ̂  s.
If, on the other hand, a # a,- for every j , then (see hypothesis (1)), by the con-
tinuity of the function / at a, it must be true that, for some positive number
8 < b — a, the inequality

f(x)-f(a)<e

holds, for all x with a g x ^ a + 5, whether x is in Uf= i (ock, Pk) or not (and
hence, a fortiori, inequality (2) also holds for such an x). Two cases arise: either
(A) some tXj e(a,a + 5), or (B) no Xj e(a,a + 5). In case (A), any such a,- must
belong to S, and a < ay- g s. In case (B), the number a + 5/2, say, must belong
to S, and a < a + 3/2 £ s. Thus, a < s, in all cases, as desired.

Next, it will be proved that s is not in U"=, (ak, pk). Suppose, contrary to
what one wishes to prove, that se Uf=1(at,^t); then, a , < s < ^ i , for some
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positive integer i. By the definition of s as the least upper bound of S, there exists
a number £ in S such that a, < £ ^ s. Since a; is not in U" = 1 (a t , f t ) ; and (be-
cause £ is in S), inequality (2) holds for all numbers x, with x not in U ^ ^a*, ft),
such that a ^ x g £ , it follows that inequality (2) holds, a fortiori, for all numbers
x, with x not in U"= j (a t , f t ) , such that a g x ^ a;. Hence, a, e 5 . But, then,
by the lemma, /?,- also belongs to S, which contradicts the definition of s as the
supremum of the set S, because s < ft.

It will now be shown that s e S . Two possibilities arise: either (A) for some
positive integer n, it is true that a < s — 1/n, and no number x, with s — 1/n ^
x < s, belongs to the set S; or (B) for every positive integer n such that a < s— 1/n,
there is a number xn, with s — 1/n gi xn < s, such that xn is in S. If possibility
(̂ 4) holds, in which case s is an "isolated" supremum of the set S, then the very
definition of s, as the supremum of the set S, yields that seS. If possibility
(B) holds, then inequality 2) holds for all x such that a ^ x ^ xn, with x not
in Ur=i(«*,ft); and from this, and lim,,.^*,, = s, plus the continuity of the
functions / and g at s (using the fact that, as was already shown, s is not in
Ujj°=1(at,ft), and thus se(a, b) — £),it follows that inequality (2) holds for all x
such that a ^ x ^ s, with x not in \J^L t (ak, ft). Since it is already known
that s is not in U™= x(a t , f t) , this means that s e S , as was to be shown.

Finally, it will be shown, by contradiction, that, actually, s = b. Suppose,
contrary to what one wishes to prove, that s < b. Since, s is not in Ur= i(«*» ft), /
and g have derivatives at s, and

It is here where the additional assumptions (compare hypothesis (4), and the
remark at the very beginning of this proof) that g' > 0, and g' finite, are first
used. Then, the strict inequality

f'(s)<(M + e)g'(s)

holds; and, from the definition of the derivative, (whether f'(s) is finite or not),
it follows that there is a positive number, S = <5(e), such that, s + 5 ^ b and
for all x with s < x <^ s + d, it is true that

x — s
and, hence,

I x - s )

(3) fix) -f{s) ^ (M + e)(fif(x) - g(s))

whenever s ^ x <L s + 5.

Using (3), and (2) for x = s, one obtains
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f(x) - / ( a ) = fix) -Rs) +/(s) -f{a) 5S (M + 8) [g(x) - g(s)-] +

(4) + (M+ + e)[fif(s) - flr(fl)] + I |/(ft) ~ / K ) | + e ^

£ (M+ + e) \jg(x) - g{dj] + 1 |/(ft) -f{ak) | + e,

for all x such that s g x ^ s + 5, regardless of whether x is, or is not, in
U*°iI(a*>ft)• Further, since seS, it follows that s is not in U™= i(a*,ft),
and that (2) holds for all a ^ x ^ s, with x not in U" = 1 ( a t , f t ) . Consequently,
in view of this, and of the definition of 5 as the supremum of S, it follows that
every number x in the open interval (s, s + S) must belong to (Jt°I t (ak, flk); and,
since, the intervals (ak, pk) are disjoint, there must be an integer j such that
(s, s + 3) c (a,-, /?,). Therefore, a,- ^ s < /?y. But, whether a7- < s or a,- = s, it
then follows, using the fact that a,- is not in U"= i (<xk,ft), plus the inequality
(4) above, that CCJES. Then, from the lemma, ft- also belongs to S; which, since
s < ft, contradicts the definition of s as the supremum of S.

Since s = b, seS, the inequality (2) holds for x = b, and therefore, using
hypothesis (3):

f(b) -fid) S (M+ + e) [gib) - g(ay] + 2e.

Using the arbitrariness of s, inequality (1) follows. The proof of Theorem 1 is
complete.

If hypothesis (3) of Theorem 1 is replaced by the following stronger hypo-
thesis: (3') £ is a subset of (a, b) such that, for every s > 0, there is a sequence
of disjoint, open intervals (<xft, ft), k - 1,2, • • •, with a.k < ft, and [ak, ft] a [a, ft],
such that E c U?Li(a*,ft), and also such that both 2fc°°=1 | /(ft) -f(<xk)\ < s
and Z^igffft) — gi<xk) < e; then the conclusion of Theorem 1 can be improved.
Namely, the following theorem holds:

THEOREM 2. / / hypotheses (1), (2), (3') and (4) hold, then

(5)

PROOF. If M ^ 0 , then (5) is identical with (1). If M<0, consider the aux-
iliary function F, defined by Fix) — fix) — Mgix). Then, Theorem 1, with
the constant M of that theorem taken to be zero, applied to the functions F and g,
gives that

fib) - / ( a ) - M[g(b) - flf(a)] S 0,

and the proof is complete.

REMARK 0. For convenience of exposition and writing, it has been explicitly
supposed, in hypothesis (3) of Theorem 1, that there is, for each £ > 0, an in-
finite sequence of open intervals (a t , f t ) , but, it is clear, from a glance at the
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proof of the theorem, that, by slight modifications of the argument, this infinite
sequence of open intervals can be allowed to be finite, or, if need be, empty.
(A similar remark applies to Theorem 2, and to the later Theorems 3 and 4, but
it will not be insisted upon.)

Consider the very special case in which this sequence of intervals is empty,
the exceptional set E is also empty, and, in hypothesis (4), both / and g have
finite derivatives on (a,b). Then, compare Moss and Roberts (1968), the con-
clusion, (1), of Theorem 1 can be strengthened, so as to coincide with the con-
clusion, (5), of Theorem 2 (that is, the number M+ in (1) can be replaced by just
M). The following simple example shows that this "replacement of M+ by M"
cannot be performed, in general, even when there is just a single "exceptional"
interval ( a ^ i ) for every e > 0. Choose a = 0, b = 2, and let f(x) = 1 - x
for 0 ^ x g 1, while f(x) is defined arbitrarily for 1 < x < 2, but it is required
that /(2) = 0. Further, let g(x) = x for 0 ^ x ^ 2, and M = - 1 . Then,
Theorem 1 is applicable, with but a single interval, (a^jSi) = (1,2), for each
e > 0. However, inequality (1), in the conclusion of Theorem 1, is not true when
M+ is replaced by M.

REMARK 1. I f / and g are continuous throughout the interval \a, b], and
the exceptional set E is at most countable, then hypothesis (3') is satisfied, with
a possibly finite or empty system of intervals (ak,Pk); compare Remark 0. The
proof is as follows.

If E is empty, then the system of intervals may also be taken to be empty
(this is the "empty case" of the proof). Therefore, it will be supposed that E is
not empty.

Let
' l > ' 2 > H i ' "

be a sequence (finite, or infinite) consisting of all the points of E. The sequence
of intervals (ak,pk) appearing in hypothesis (3') of Theorem 2 can be constructed
as follows. Since both/and g are continuous at tt, there exists an interval (a1( J?j),
with a ^ccl<t1<pl g b, such that both

and both a.^^ are not equal to any tk, k = 1,2, •••. Using mathematical induc-
tion, suppose that, for some positive integer n ^ 1, the disjoint open intervals
( a t .A) . for k = 1,2, •••,/!, have been chosen so that a ^cck<pk^ b and

k-l
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k=l k=l

and that t,e UjJ = 1 ( a t , f t ) , at least for i = 1, •••,«; and that both at, ft are not
equal to any fk; k = 1,2, •••. There are two possibilities: either E is, or is not,
contained in Uk = 1(cck, ft). If JB is contained in UH = 1 ( a^f t ) , then the system
of intervals (a*, ft), with fc = 1,2, •--, n , is the sought system of intervals. If E
is not contained in Ul=1(ak,ft), let j be the smallest integer such that tj is
not in U£= 1(a t , f t ) (clearly, j ^ n). Then, by the continuity o f / a n d gr at tj,
there exists an interval (<xn+1,pn+l), with a ^ an+1 < f, < ft+1 ^ b , such that
both

i)-/(«„+1) | < ^ T *

and, also, both an+1, ft+1 are not equal to any tk, k = 1,2, ••-. The sequence
of intervals (a t , f t ) , k = 1,2, •••, constructed in this way, satisfies the require-
ments of hypothesis (3').

REMARK 2. If the function / is absolutely continuous on [a, b~], g{x) = x,
and if £ is a set of measure zero, then (3') is satisfied (with g(x) = x). More
generally, if, for every e > 0, there exists a positive 5 such that, for every system
of open disjoint intervals (ck, dk), k = 1,2, •••, with ck < dk and Z g(dk) - g(ck)<d,
the inequality I \f(dk) -f(ck)\ < e holds (absolute continuity of / with res-
pect to g); arid the set E is of #-measure zero, then hypothesis (3') is satisfied.

3. Vector valued functions

The two theorems in this section can be described as "generalized mean
value theorems of the differential calculus of vector valued functions", in the
following sense: each theorem is concerned with a vector valued function x(t),
defined on a finite, closed, real number interval [a, b]; the hypotheses of each
theorem state that the "small" difference quotients of the function x(t) ("small"
means that these difference quotients are taken over intervals interior to [a, bj)
are "not too far away" from a certain set C; the conclusion of each theorem
asserts that, in these circumstances, the "total", or "large" difference quotient
of the function x(t) ("large", means that this difference quotient is taken over
the whole interval [a, b]) must actually, also, belong to the same set C.

THEOREM 3. If

(1) X is a real linear locally convex topological space;
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(2) x is a function which maps the interval [a,b~\, with a <b, into X,
and x is weakly continuous at a and b, from the right and from the left, res-
pectively;

(3) g is a real valued continuous function on [a, b~\, with a finite derivative,
g'(t) > 0 for a<t<b;

(4) C is a closed, convex set, C c X, and the zero vector OeC;
(5) for every linear continuous functional y, on X to the real numbers,

there exists a set E a (a,b), with the following properties (for brevity, the de-
pendence of E upon y is not indicated explicitly):

(a) the real valued function f(t) = y(x(t)) has a, finite or infinite, deriv-
ative for te(a,b) — E,

(P) for every positive s, there exists a sequence of open disjoint intervals
(<xk,Pk), k = 1,2, •••, with uk<Pk and [ak, /?J c [a, fc], such that

E «= U (ak,pk) and, also, £ \f(pk) -/(«*) | < e,
Jc = l * = 1

(y) for every te(a,b) — E, there exists a sequence of real numbers tk, with
rk -> 0, and a corresponding sequence of vectors zkeC, such that

(6) \g(t + rk) - g(t)

as k -» oo;

then

0(b) ~ g(d)

convex, C is

spaces which contain C. It will now be shown that the vector

PROOF. Since X is locally convex, C is the intersection of all closed half-
x(b) - x{a)

9{b) - g(a)
lies in every closed half-space which contains C; therefore, this vector must also
belong to C.

Let H be a closed half-space, C cz H; then H is known to be the set of all
zeX such that

(7) y{z) < M,

where y is a certain continuous linear functional on X, and M is a real number.
Since the vector OeC, it follows, from (7), that the number 0 5= M. It follows,
using hypothesis 5(y), that, for every te(a,b) — E, {recall tha t / (O = y(x(t))}:

https://doi.org/10.1017/S1446788700020644 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020644


[10] Generalised mean value theorems 299

and, hence, by Theorem 1, applied to the real valued function f(t) = y(x,(t)),
on the interval a ^ t ^ b, it is also true that

(8)

i.e., since y is a linear functional,

/x(fr)-x«Q\
y\g(b)-g(a)) = M>

i.e., by the definition of the closed half space H,

x(b) - x(a)
g{b)-g{a) n'

The proof is complete.

The counterpart of Theorem 2, for vector valued functions, is:

THEOREM 4. If hypotheses (1), (2), (3), of Theorem 3 are satisfied; and if,
further,

(4') C is a closed, convex set, C <=• X;
(5') for every linear continuous functional y, on X to the real numbers,

there exists a set E c (a, b) with the following properties (for brevity, the de-
pendence of E upon y is not indicated explicitly):

(a) the real valued function f(i) = y{x{i)) has a, finite or infinite, deriv-
ative for te{a,b) — E,

(P) for every £ > 0 , there exists a sequence of open disjoint intervals
(a*, (}k), k = \, 2, 3, •••, with a.k<fik, and [at, ft] <= [a, £>], such that
E <= Ur= 1(a*,A), and, also, such that both S ^ | /(ft) -f(ak)\ < £ and

(y)for every te{a,b) — E, there exists a sequence of real numbers xk, with
z t - > 0 , and a corresponding sequence of vectors zkeC, such that (6) holds;

then
x(b) - x(a)

- g{a)
eC.

Theorem 4 can be proved in the same way as Theorem 3, the only difference
being that one uses Theorem 2, instead of Theorem 1, for the proof of (8).

(In comparing Theorems 4 and 3, it should be noticed that hypothesis (4')
is weaker than hypothesis (4), while hypothesis (5') is stronger than hypoth-
esis (5).)

REMARK 3. The condition 5'(/?) is satisfied, if, for example, E is at most
countable, and / i s continuous on [a, ft]. This is a consequence of Remark 1.
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REMARK 4. Condition 5'(/0 is also satisfied, with g(t) = t, i f / is absolutely
continuous on [a, 6], and £ is of measure zero. Condition 5'(/?) is also satisfied
if / is absolutely continuous with respect to g, and the set E is of ^-measure
zero. This is all a consequence of Remark 2.

REMARK 5. If one and the same set E can be chosen for all the functionals y;
for example, if the vector valued function x is weakly differentiate in (a, b) — E,
and 5'(P) and 5'(y) [or 5(/?) and 50)] are satisfied for this particular ("universal",
as far as the functional y is concerned) set E, then, compare hypothesis (1),
the function g need not be differentiable for 1e E, and the conclusion of Theorem
4 [or Theorem 3] still holds.
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