ON A CERTAIN SET OF LINEAR INEQUALITIES

J.G. Kalbfleisch and R.G. Stanton

(received April 20, 1967)

1. Introduction. In this paper we shall discuss the following set
of n+1 linear inequalities:

n
+ >
Yo v, > (0)
n + + o2 > (7
Yo Yy Y2 Z Y
n
- +
(n 1)y1 oy, 3Y3 > (2,)
L et
n
Zyn-2 * Yn 1 * nyn - (n— 1)
n
Yn—i + yn 4 (n)

Fwelet Y=(y,), C =((:)), and Z=(z,)(i=0,1,...,n) be
1 n 1 1

(n+1)-dimensional column vectors, and define the n+1 by n+1
tridiagonal matrix Dn(tb) by

& 1 0 0 0 o 0 0]
n 2 0 0 0 0 0
0 n-1¢6 3 0 0 0 0
0 0 n-2 ¢ 4 0 0 0
D (§) = | ereneieiii e ,
0 0 0 0 0 n-1 0
0 0 0 0 0 2 ¢ =n
0 0 0 0 O 0 1 9|

the set of inequalities (1) may be written
(2) A Y=C +2
n
where An = Dn(i) and z, >0(i=0,1,...,n). In sections 2 and 3, we
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consider real solutions of (2), and give expressions for the solution Y
corresponding to a specified vector Z of slack variables. The
inequalities (1) arise in connection with a current investigation of some
covering properties of groups [4], where it is necessary to find all
solutions of (1) in non-negative integers Y with Zyi specified. In

section 4, we give an efficient algorithm for obtaining such solutions.

2. Some properties of the matrix An.

We begin by considering the set of n+1 linear equations
(3) D ()X = 0

n

where X = (xi) (i=0,1,...,n) is a column vector. (3) may be written
4 +1 -1 + + (i = -
(4) (n 1)xi_1 q)xi (1+1)Xi+1 0, 0 < i< 0,
with boundary conditions
(5) xi=0ifi<0 or i>n.
Multiplying (4) by ¢! and summing over all i gives

(6) nt G(t) - t2G'(8) + & G(t) +G' () = 0

where G(t) = in t'. The solution of (6) with G(0) = %, =1 is

n-¢ o
M G=@+n 2 -y o=z xR ez
i=0 r=0
It follows that
(8) w = ozt (N (a2
i £=0 r i-r )

The boundary conditions (5) are satisfied if and only if n+¢ is an even
integer and -n < ¢ < n; thus (3) has a nontrivial solution X if and only
if

(9) ¢=¢j=n-2j (j=0,1,...,n).
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The solution vector Xj = (xij) corresponding to 4)), is given by

1 .
- r n-j
(10) X0 = z (1) O,

2.
i-r
We may now determine the eigenvalues and eigenvectors of An;
for the equations An X =\X may be written Dn (¢)X =0 with

¢ =1-x. Thus An has eigenvalues
(11) )\j:1-¢j=1-n+2j (G=0,1,...,n)

and the eigenvector corresponding to )\j is X =(x..). It also follows that
J 1]
det An = w)\j, which is zero for n odd, and equal to

(- 1)n/2(n+1)(n— 1)2 (n- 3)2 . 32 .1.2 for n even. Det An may
also be obtained simply by direct expansion and recursion. In fact, the
determinant of D () was evaluated by J.J. Sylvester [5] as early as
1854.

Let X = (xolxil...lxn) be the n+1 by n+1 modal matrix
whose columns are the eigenvectors XO, X1, ..., X . The matrix X
n
was computed for small values of n, and it was noted that each row of
X 1is orthogonal to all but one of the columns of X . Consequently the
following lemma was obtained.

n
LEMMA. Let S..= Z x. x ., where x,  is defined by (10). Then
— i g TieTa] ij —_—

(12) S.=0 if j#n-i; S, _i=(-1)1 2",

ij i,n

Proof: Put Hj(u) = s u. Then, using the generating function

i Y

G(t)= = x,. t = (1+) (1-t)"7?
j Y

corresponding to ¢j we get
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o

J
H(u) =2 2 x,, x . =2 x . (1+u) (1-u
ik ik “kj K kj
J n-) _
- (1_u)n o+ 'i+u) A - 1+u) :21'1 (_u)nj
-u 1-u

By comparing coefficients of powers of u we obtain (12).

th
Thus the i row of X is orthogonal to every column of X

th
except the (n-1) (i=0,1,...,n), and

-1 -n

n
(13) X =2 (an’x | x e 1) X))

n-1 n—2|_Xn—3|

Let A be the diagonal matrix with diagonal entries ) ,)\1, ..oy X , SO
n

that An X =XA. Then if n is even,
(14) A =XA X

We are indebted to Professor D.A. Sprott for pointing out a
connection with probability theory. If n is even, -:;D (0) is the matrix
n

of transition probabilities for the Ehrenfest Model. A discussion of some
of the properties of this matrix appears in [1] and [3]. The arguments
given here are somewhat simpler than theirs because the Lemma makes

-1
the derivation of X almost trivial.

3. Real Solutions of A Y =C + Z. If n is even, A is
n n n

nonsingular, and there will be a unique solution Y of (2) corresponding
to each vector Z. Since Cn = X , the eigenvector corresponding to
n

A =n+1, we have
n

(15) vy=a Ycizy=-L c +a 'z,
n n n+i n n

If the slack variables z, are all non-negative, Y is a solution of (1).
i

If n is odd, say n=2k+1, A is singular and the situation is
n

slightly more complicated. Since XO, Xi’ ..., X , are linearly
n

independent, everyvector Y may be expressed as a linear combination
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of them. If Y=Za‘j Xj is a solution,
A Y=2a A X =Za. \.X.=C +2Z.
n J n ) J J ] n

Since Cr1 = Xn and )‘k =0, Z must lie in the subspace spanned by

X,X,..., X X

0 1 VLI NVERRRY Xn. But, by the Lemma,

Xk+1,axai =0 itk

and therefore the slack variables z must satisfy
o

(16) 0.

Za Xk+1, o -

If Z is any vector satisfying (16), then Z =X bj Xj with bk =0, and

corresponding to Z are solutions

b
1 i
= = b2
(17) Y =—5C + = Xj+th
jEk 7]

where t is an arbitrary real number. Let A% be the diagonal matrix

with diagonal entries )\0, )\1, ”")\k-i' 1, )\k+1’ ...,)\n, aind let B be

the column vector (bj). Then Z = XB, and thus B=X Z. We may

now rewrite (17) in the form

(18) v =—c +xaxtxtziex .

If all the slack variables z are non-negative, Y is a solution of (1).
o

A convenient algorithm for numerical computation of real solutions
Y of the equations AY =B, where Y and B are column vectors and
A is an arbitrary nonsingular tridiagonal matrix, is described by
Henrici [2, page 350]. This algorithm depends upon a rather interesting
factorization of a tridiagonal matrix into two '"bidiagonal' matrices.

4. Solutions of (1) in non-negative integers. The inequalities (1)
arise in connection with a covering problem [4] where y represents
o

the number of elements of a certain type in a covering set. Consequently
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the y's and z 's must be non-negative integers. The problem is to
] o

construct a covering set with as few members as possible - that is,
with Zy as small as possible. Adding the equations (2) gives
o

(n+1)Zy =2" + =2
o o

so that Ty > Zn/(n+1). This is not, however, a sufficient condition
a

for the existence of a solution of (1). Furthermore not every solution
Y corresponds to a covering set. Thus it is often necessary to
consider several totals Zya, beginning with the least integer greater

n
than or equal to 2" /(n+1). It is, however, necessary to consider only
solutions with Yo = 1 since any covering set will be isomorphic to one

with Vo © 1.

In this section we give an efficient algorithm for finding all solutions
of (1) with Yo 7 1 and Xy < m. The latter condition is equivalent to
s

insisting that the total slack Zz be atmost T = 20 m(n+1). The
[03

algorithm is easily programmed for a computer, and may be generalized
to yield the non-negative integer solutions of many sets of linear
inequalities whose matrices of coefficients are tridiagonal.

The algorithm is represented pictorially by the directed graph in
Figure 1. Vertices represent operations, and edges indicate the order
in which they are performed. First, we give the operations corresponding
to the vertices and the rules for moving from one to another. Then we
shall explain the algorithm and give an example.

S (start) : Put y_1=0, y0=1, ZO:T’ k = 0. Goto A.

n
: = - - - . 0, ;
A: Calculate R (k) + Z " Yy (n-k +1)yk_1 I R < goto C

k k

if Rk_>_0, go to B.

n
B: Calculate Vs = [Rk/(k+1)], z), = (k+1)yk+1 + Ve + (n-k+1)yk_1— (k)

=T-2z,-z2_-...-2, . , HE >
and Ziq T z,-2, 2z, It Zk<0 go to C; if zk_O and

k<n-1, goto Gj; if >0 and k=n-1, goto F.

i
C: Select the largest j < k for which zj #0 and goto D. If Zj =0

for all j<k, goto E.
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D: Decrease zj by 1 and put Zj+1 =T - ZyT By eee zj. Put
k=j and goto A.
E: Algorithm terminates.

F: Put z =y +y -1. Y is a solution with slack Z. Goto C.
n n-1 n

G: Increase k by 1 and go to A.
The algorithm examines all possible slack vectors Z with

Zzas T. We begin with Z = (T, 0, 0, ..., 0), and change Z in such

a way that
HZH=Z(T+1)n+z(T+1)n'1+...+z (T +1) + z
0 1 n-1 n

is steadily decreasing. Suppose that after a number of steps we reach
A with Z = (zo, z , 2z ,0,...,0), and have solved the first k

PERERT
equations of (2) for Yor Yyr oo Vi The kth equation (numbering from 0) is
n
(k+1)yk+1 ty t (n-k +1)yk_1 = (k) tz,

and we wish to solve this for Vit Since z contains all the available

slack, (k +1)yk_}_1 cannot be larger than Rk . Thus if Rk is negative,
we cannot solve for Yiesr” and must alter the values of Zi g Bpopr e
(step C). I sz 0, we must choose Yiqq S© that ||Z]|| will be as

large as possible (step B). This means that we want as much slack as
th

possible in the k equation, and so Vet must be chosen as large

as possible. We must now recalculate z , which becomes the actual

k

th
slack in the k equation, and place all remaining slack at Zi gyt

If the new value of Z, is negative, we have reached a contradiction

and must go to C where the values of z will be altered.

k-1 %k-27 "

If zkz 0 and k=n-1, we have a solution Y (step F). The actual slack

in the n equation will be Y, + Y- 1, and the solution has total

1

slack T - z + v, + Y- 1. To obtain other solutions we go to C

1
-1’ "n-2""""
we replace k by k +1 (step G), and then return to A to solve the next
equation for the next Y wvalue.

where z_ z are changed. Finally, if z) >0 and k<n-1,
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When we arrive at C from A,B, or F, we must alter the first
k slack variables z_ ,z,,..., z in such a way that ||Z|| decreases,

0" 1 k-1
but does so as little as possible. This is accomplished by decreasing by
one the last nonzero z . Thus in step C we select the largest j <k

J
with z. # 0. If no such j exists (as must eventually happen) the algorithm
J
terminates at E. Otherwise (step D) we decrease zj by one, put all

remaining slack at z, and returnto A. Since z_, z , have

jH’ 0" %1 B
not been changed, yo, Yi’ e, Yj also remain fixed, and we begin our

calculations with Yj+1 - that is, with k = j in step A.

As an example, we take n =5, Zyas 7, and total allowable slack

T = 10. The first column of Table 1 names the step, and the remaining
columns give the values of Kk, Rk, j» Z, and Y at that step. Opposite

a step we have entered only the values which are calculated at that step,

and other variable values remain unchanged from the preceding step.

The first few iterations are rather uninteresting and no solutions are
obtained. We omit them, and begin at A with ZO =2, z1 =8, YO =1, y)l =2,

and k = 1. We give several steps during which a solution Y =(41,2,2,0,1,1),

Z=(2,6,0,0,1,1) is obtained (F). If the algorithm is continued to completion,

a total of seventeen solutions of (1) with Vo = 1 and Zy < 7 are obtained,
s

two with Ty =6, and fifteen with Zy = 7. The computations required
o o

only a few seconds on the IBM 7040 computer.
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0

o

[¢]
e}

>HausoQREErQEPQErPQEPOO> QW

k Rk Jj 2o 2y Z, Zy Z, Zg Yo Yy Y, V3 Y4 Vs
1 2 8 1 2
6
8 0 3
2
-1
1
1 7 1
5
6 2 2
2
2
0 2 0
3
6
0 2 1
4
6
1 1 1
1
4
4 0 2
4
-4 6 0
1
1 5 3
3
Table 1
D
v
A C
s o0—> > 0o—>—OEKE
0—<—0"—> 0
G B F
Figure 1
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