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The investigation of s-arc-transitivity can be dated back to 1947. Tutte [7] studied
cubic graphs and showed that a cubic graph can be at most 5-arc-transitive. A more
general result for s-arc-transitivity of graphs was obtained by Weiss [8] and it turns
out that finite undirected graphs of valency at least 3 that are not cycles can be at most
7-arc-transitive. In stark contrast with the situation in undirected graphs, Praeger [6]
showed that for each s and d, there are infinitely many finite s-arc-transitive digraphs
of valency d that are not (s + 1)-arc-transitive.

However, once we add the condition of primitivity, the situation is quite different.
Given the lack of evidence of the existence of vertex-primitive 2-arc-transitive
digraphs, Praeger [6] asked if there exists any vertex-primitive 2-arc-transitive
digraph. This question was answered in [2, 4] by constructing infinite families
of G-vertex-primitive (G, 2)-arc-transitive digraphs such that G has AS and SD
type, respectively. In [4], Giudici and Xia then asked for the upper bound on s
for a G-vertex-primitive (G, s)-arc-transitive digraph that is not a directed cycle. A
reasonable conjecture is that s � 2. At the same time, Giudici and Xia [4] showed that
to answer that question, it suffices for us to consider the case when G is almost simple.

Various attempts have been made to analyse the s-arc-transitivity of different almost
simple groups. For instance, Giudici et al. [3] showed that s � 2 when the socle of G
is a projective special linear group, Pan et al. [5] proved that s � 2 when the socle of
G is an alternating group except for one subcase and Chen et al. [1] addressed the case
when the socle of G is a Suzuki group or a small Ree group, when it turns out that the
upper bound on s is 1. The result from [1] is part of Chapter 4.

In this thesis, we investigate the upper bound on s for G-vertex-primitive
(G, s)-arc-transitive digraphs for almost simple groups G with Soc(G) = PSp2n(q)′,
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PSUn(q) (for certain cases), Sz(q), Ree(q), 2F4(q), 3D4(q) and G2(q). It turns out that
such an upper bound is s � 2 for all the groups mentioned above, giving some evidence
to the conjecture that s � 2.
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