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R. K. BROWN 

1. Introduction. Consider the differential equation 

(1.1) W"{z) + p(z)W(z) = 0 

where 

(1.2) z*p(z) = P0 + P1Z + ...+ pnz
n + . . . 

is regular in \z\ < R. 
The indicial equation associated with (1.1) is of the form 

X2 - X + po = 0. 

We shall denote the two roots of this equation by a and ft, where 9?{a} > \. 
Corresponding to the root a there exists a unique solution of (1.1) of the 
following form 

oo 

(1.3) Wa(z) = za £ anz\ a0 = 1. 

In those cases for which 0 < 9?{/3} < \ there exists a unique second solution 
of (1.1) of the form 

oo 

(1.4) Wfi(z) = / £ bnz
n,b0= 1. 

In 1955 Robertson (5) obtained conditions on p{z) in (1.1) sufficient to 
ensure the uni valence in \z\ < 1 of the function F(z) = [Wa(z)]1/a, where 
that branch of F(z) is chosen for which Ff (0) = 1. In this same paper Robert­
son posed the problem of obtaining similar conditions for the univalence of 
the functions [W^0s)]1//3, where 0 < 9î{/3} < J. It is towards the solution of 
this problem that we direct our attention in §§ 3 and 4 of this paper. In § 3 
we also obtain bounds on the radii of zero-free regions of the regular singular 
point z = 0. 

Section 2 contains all pertinent definitions as well as the statement of a 
known theorem to which we shall refer in § 3. 

In § 5 we employ some of the results of § 3 to obtain two theorems con­
cerning the univalence of normalized Bessel functions and their products. 

2. Preliminaries. We state in this section several definitions and a theorem 
of which we shall have need in the succeeding sections. 
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DEFINITION 2.1. A function f(z) = L^ iX*:* , regular in \z\ < R, is said to 
be univalently star-like in \z\ < R if for every r in the range 0 < r < R 

(a) 9Î {-J^Y"} > °> ° < 6 < 2v> 

f(re"J 
DEFINITION 2.2 A function f{z) = £n=iœ0n2ni ai ^ 0, regular in \z\ < R, is 

said to be spiral-like in \z\ < R if for some real a, |a| < x/2, 

or all \z\ < R. It was shown by Spacek (6) that this condition is sufficient for 
the univalence of f(z) in \z\ < R. 

Following the usage of Hille (3) we make the following 

DEFINITION 2.3. Given a particular zero z = c of a particular solution W(z) 
of (1.1) then we call G a zero-free region about c provided that G is a region 
containing c in which W{z) does not vanish again. 

THEOREM 2.4. (Beesack (1).) Let p(z) be analytic in a region D, and let 
the line z = a + reie, 0 < r < R, lie in the region D. Set 

e2i6p(a + reie) = q^r; 6) + iq2(r; 6). 

Let Q(r) be continuous in 0 < r < R, and suppose the differential equation 

y" + Q(r)y = 0 

has a real solution y(r) which does not vanish on 0 < r < R. If there exist real 
numbers X > 0, /*, (X2 + /x2 ^ 0), such that 

(2.5) \qi(r; 0) + / ^ ( r ; 0) < \Q(r), 0 < r < R, 

then any non-trivial solution w(z) of w"' (z) + p(z)w{z) = 0 having w(a) = 0 
has no other zeros on the open line segment (a, a + Reie) unless qz(r\ 0) = 0. 
Even if q^i?', 0) = 0, the conclusion holds provided that X 9e 0. Moreover, if strict 
inequality holds in (2.5) for a single point, then w(z) has no zeros on the half-
closed segment (a, a + Rei6]. 

3. Univalence of [Wp(z)]l/^ P real. Let 

(3.1) z2p*(z) = p*o+p*z + ...+p*nZn+ . . . , pt < i , 

be regular in \z\ < R and real on the real axis. Consider the differential 
equation 

(3.2) W"(z) + | c | 
5 |{ ' 

. * / s PO 

P W - ? J 
+ %W{z) = 0 

https://doi.org/10.4153/CJM-1962-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-006-4


UNIVALENT SOLUTIONS OF W " + pW = 0 71 

where C is any non-negative constant. Let us denote the roots of the associated 
indicial equation by a* and /?* where a* > §. Corresponding to the root a* 
there exists a unique solution of (3.2) of the form 

oo 

(3.3) Wa*(z) = za £ a*n(C)zn, aï> = 1, 

and whenever 0 < /3* < J there corresponds to the root 0* a unique second 
solution of the form 

(3.4) W>(s) = / * £ &t(C)2
K, rt = 1. 

rc=0 

We are now prepared to prove the following lemma. 

LEMMA 3.5. Let y{p), yf(p) = dy(p)/dp be real functions, continuous in the 
real variable p for 0 < p < R. Let Wk{z), k = «*,#*, represent one of the 
solutions (3.3) or (3.4) of equation (3.2). Then 

(3.6) f " {C[p2p*(P) -p*] + p*). 2 -^1 <ZP 

< Jnb(p)Np-L^y-*(p)Jn 

whenever 0 < fi < f2 < minfe, i?), where pk is the smallest positive zero of the 
function Wk{p). Equality holds in (3.6) when, and only when, y {p) = AWk(p), 
where A is an arbitrary real constant. For the case k = a* if y(p) = 0(p8), 
yf(p) = Oip8'1), ô > J, for small p then the inequality (3.6) is valid even when 
fi = 0, (5). 

Proof. The proof follows immediately from the expansion and integration 
by parts of the integrand in the inequality 

a *«-fiM*>°-
0 < rx < r2 < min(p/c, R). 

We shall need the following lemma for the proof of Theorem 3.8. 

LEMMA 3.7. Let p(z), Wa(z), Wp(z), p*(z), Wa*(z) and Wp*(z) be defined as 
in (1.2), (1.3), (1.4), (3.1), (3.3), and (3.4) respectively. Let 

mM*)I < C[\z\2p\\z\) - p%] + pi C> 0, 
for all \z\ < R. Then neither Wa(z) nor W$(z) can have more than one zero on 
any ray arg z = constant, 0 < \z\ < min(p, R) where p = max(p«*, p^*) and 
pa*, p#* are respectively the smallest positive zeros of the functions Wa*(p) and 

Proof. This lemma is a particular case of Theorem 2.4. 

With the aid of Lemmas 3.5 and 3.7 we now prove the following theorem. 
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THEOREM 3.8. Let 0 < £*0 < \ and define p(z), Wp(z), p*(z), and Wp*(z) 
as in (1.2), (1.4), (3.1), and (3.4) respectively. Let po = p*Q and 

(3.9) m**P(*)\ < C[\z\*p*(\z\) - p%\ + pi C> 0, 

for all 0 < \z\ < R. Then Wp(z) has no zeros in the annulus 0 < \z\ < min (p^*, R) 
where p^* is the smallest positive zero of the function Wp*(p). This theorem 
remains valid if we replace Wp(z) by Wa(z), Wfi*(z) by Wa*(z)} and p#* by 
pa*, where pa* is the smallest positive zero of the function Wa*(p)-

Proof. If we multiply (1.1) by W(z)dz and integrate from Z\ to z2 in 
0 < \z\ < Rwe obtain the Green's transform of (1.1) in the form 

(3.10) W(z)W'(z) \ - \ \W(z)\2dz + f " p(z)\W(z)\*dz = 0. 

It is readily seen that (3.10) is valid for either of the solutions (1.3) or 
(1.4) of (1.1). 

Let us suppose that z\ and z2 lie on the same ray 6 = constant, 0 < r < min 
(jap*, R). Furthermore, let z2 be a zero of W$(z). Then it follows from Lemma 
3.7 that there are no other zeros of Wp(z) on the open segment 6 = constant, 
0 < r < \z2\. 

If we multiply (3.10) by eie and choose our path of integration to be the 
line segment joining z\ = rieid to z2 = r2e

ie we obtain the equality 

(3.11) eiifW^r^)W^r1e
ie) = f ' eu9p(rete)\Wp\

2dr - (** \Wft*dr. 

From (3.11) it follows that 

Next we apply Lemma 3.5 to (Si{W^{z)} and 3{ W/sOs)} and add the resulting 
inequalities to obtain the following inequality. 

(3.13) \wfa)\ - ^ ( 1 ^ 

> r\C[Wp\\z\)-p%]+p%}^dr- fr2m2dr. 

If we now subtract (3.12) from (3.13) we obtain 

(3.14) &f&£ \zim*(\Zl\) _ JzjWfaoY] 
W>(M) l Wfax) J J 

> fVrwya*!) - P*] + P* - nMz)]} &$dr. 
•/ ri r 

Now from (3.9) the right member of (3.14) is positive, and from the con­
dition po = p*o we obtain the limiting relation 
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(3.15) lim M ^ M = lim J^A = f. 

Therefore, inasmuch as | W^Os)! ~~* 0 a s * —> 0 it follows that the left member 
of the inequality (3.14) approaches zero as z approaches zero along the ray 
6 = constant. However, the right member of (3.14) is positive and increasing 
as T\ approaches zero. This contradiction leads to the conclusion that Zi 
cannot be a zero of Wp(z) and, therefore, to the proof of Theorem 3.8. 

The proof of Theorem 3.8 for Wa(z) is identical to the above proof and is 
valid even when p0 9^ p*o as long as condition (3.9) is satisfied. 

It is of interest to note that the condition (3.9) of Theorem 3.8 may be 
replaced by the somewhat weaker condition 

(3.16) m*2p(*)} ^ C[\z\'p*Qz\) - p%] + p% (C > 0) 

with strict inequality holding for at least one point on every ray 6 = con­
stant, 0 < \z\ < e, for every 0 < e < R. 

The following corollary follows readily from Theorem 3.8. 

COROLLARY. 3.17 The conclusions of Theorem 3.8 remain valid when 
z2p(z) = C[z2p*(z) — p*o] + p*o provided that (3.9) is valid only for all 
0 < |z| < R, arg z ^ 0. 

Proof. The proof is identical to that of Theorem 3.8 on every ray except 
6 = 0 in which case the right member of (3.14) is zero. However, since 
Wp(z) = Wp*(z) for all z we have W&{r) = W$*{f) and the conclusion of 
Theorem 3.8 is, therefore, valid on 6 = 0 also. 

Theorem 3.8 and Corollary 3.17 give us criteria for the determination of 
the radii of zero-free regions of the solutions (1.3) and (1.4) of (1.1) in the 
neighbourhood of the regular singular point z = 0. For further results of 
this nature see (1) and (3). 

THEOREM 3.18. Define p(z), Wp(z), p*(z), and Wp*(z) as in (1.2), (1.4), 
(3.1), and (3.4) respectively and let p0 = p*o, 0 < p0 < \. If for all 0 < \z\ < R 

(3.19) 3i{*V(s)} < Ci\z\2p*(\z\) -p*]+p*t C > 0 , 

then 

\Wfi(z)\ 'J*Wfa)\ _ \z\W'fi*(\z\)l 
.\wfi(z) ) w>(M) J 

is a non-decreasing function of r = \z\ on every ray 6 — constant for all 
0 < r < min(p^*, R), where p^* is the smallest positive zero of the function 
T ^ * ( P ) . 

Proof. As in the proof of Theorem 3.8 we first obtain the Green's transform 
of (1.1) in the form (3.10). We then multiply equation (3.10) by z2 = r^e10, 
replace z by reie, and integrate along the segment joining z\ = rieid to 
z2 = r2e

ie, (zi'Z2 ^ 0). 
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This yields the equation 

ZtWp(Zi)W},(.Zi) - 3 2 I ^ ( 2 l W ( Z l ) 

= r2 f
 2 \W'»\2dr - (" rt. e^pire^W^dr. 

J ri J ri 

Since by Theorem 3.8 W${z) ^ 0 in 0 < \z\ < minQfy*, R) we may take 
the real part of both members of this equation and write the result in the 
following form 

(3 20) \w'(*')\* J**wfa*)\ MM}* JzWfajX 
|z2| ' I Wf>{zi) J |si| \ Wf,(zi) ) 

= r'lWtfdr- rmz'pW^dr. 
J n J n r 

Now if we apply Lemma 3.5 to ^ft{W0(z)} and ^{W^(z)} and add the 
resulting inequalities, we obtain 

(3.21) \" \Wtfdr - \" \C[\z\2p*(\z\) - p\] + p*\ &fy-dr 
•/ n «/ ri r 

\Wfi(z2)\* \z2\W^(\z2\) _ l ^ ( g l ) l 2 W\W^{\z,\) 

* \z2\ ' Wp*(\z2\) \M ' W>(|*i|) 

where 0 < r\ < min(jô^*, R). 
Thus it follows from (3.19), (3.20), and (3.21) that 

\WaM\2 \Jz2W^z2)\ \z2\W^(\z2\)~\ 
\z2\ 'L I Wfi(z2) ) Wfi*(\**\) J 

^ lIEkMl! [JziEKzù\ _ l*iiw>(l*il)1 
^ W "L^l WeM ) W>(|*i|) y 

This proves Theorem 3.18. 

COROLLARY 3.22. The conclusions of Theorem 3.18 remain valid if z2p(z) 
= C[z2p*(z) — p*o] + £*o provided that inequality (3.19) is valid for all 
0 < \z\ < R for which arg z ^ 0. 

Proof. The proof follows immediately from Corollary 3.17 and the method 
of proof in Theorem 3.18. 

We are now prepared to give sufficient conditions for the univalence of 
[Weiz)]1* when 0 < 0 < \. 

THEOREM 3.23. Let 0 < po < J and define p(z), Wp(z), p*(z), and Wp*(z) 
as in (1.2), (1.4), (3.1), and (3.4) respectively. Let p0 = p*0 and 

(3.24) $R{*2/>(*)} < C[\z\2p*(\z\) - p*0] + p% C> 0, 

for all 0 < \z\ < R. Then 
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(3.25) J^\>mkm 
for ail \z\ < min(pp*, R), and [Wp(z)Y^ is univalently star-like in the circle 
\z\ < min(p/3*, R) where p^*, pp* are the smallest positive zeros of the functions 
W/9*(p) and W'p*(p) respectively. 

If, in addition y 

(3.26) M{z*p*(z)} < | s | y (|s|) 

for all 0 < \z\ < R for which arg s ^ O then 

for all \z\ < minify*, R), and the radius of univalence is sharp whenever p$*<R. 

Proof. Since po = p*o we obtain (3.25) directly from (3.15) and Theorem 
3.18. To establish the univalence of [Wp(z)]l/P in \z\ < min(p/s*, R) we first 
set F(z) = [WMY'^ 0 < P < i Then since 

4i?}=Mf;l1} 
it follows from (3.25) and definition 2.1 that F(z) is univalently star-like for 
all \z\ < min(p^*, R). 

If we know in addition that (3.26) is valid then we may apply Corollary 3.22 
and (3.15) to obtain (3.27). 

The sharpness of the radius of univalence when p$* < R follows by taking 
z2p(z) = C[z2p*(z) - £%] + p*o subject to condition (3.26) and noting that 
the derivative of [Wp*(z)Y/fi* vanishes for z = p#*. 

This completes the proof of Theorem 3.23. 
We note here that Theorem 3.23 is the analogue of Robertson's Main 

Theorem (5) for the solution (1.4) of (1.1) in the case where 0 < po < J. 

4. Univalence of [Wp(z)]1/I3, p complex. We shall now consider the case 
where P is complex and 0 < 9î{/3} < ^ . In this case the method of proof 
employed in Theorem 3.23 is not applicable since the critical inequalities 

(4.1) K\z2p{z)} < C[\z\*p*(\z\) - p*o] + pt, \z\ <R, 

(4.2) ^^rt^^TW 
are always incompatible throughout some neighbourhood of the origin. This 
follows from the fact that if P = Pi + ip2 and r -» 0 then (4.1) and (4.2) 
approach the limiting inequalities 

(4.3) fr - Pi + Pi < P* - p*2 

(4.4) p1 > p*, 0 < (ft, p*) < h 
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which are clearly incompatible unless /52 = 0 and (3i = fi*. Indeed, this was 
the reason for the restriction p0 = p*o in Theorem 3.23. This incompatibility 
of (4.1) and (4.2) in the neighbourhood of the origin prevents us from obtaining 
the zero-free regions of the origin as we did in Theorem 3.8. We can, however, 
find functions p(z) which satisfy (4.2) and also (4.1) for all 0 < r± < \z\ < R. 
Thus our theorem for the case where 0 is complex takes the following form. 

THEOREM 4.5. Let the expressions p(z), Wp(z), p*{z), pp*, and Wp*(z) be 
defined as in Theorem 3.23 and let 

(4.6) nMz)} < q | s |V( | s | ) ~P*] + pl 

C> 0, 0 < n < |z| < min (p̂ *, R). 

If there exists a p, Y\ < p < min(p^*, R), such that 

x \Wp(z) ) Wp*(p) 

for all \z\ = p, and if 

(4.8) Wp(z) ^ 0, 0 < \z\ < p, 

then it follows that [Wfi(z)]1^ is univalent and spiral-like in \z\ < min(p^*, R). 

Proof. If, as in the proof of Theorem 3.8, we assume that Wp(r2e
id) = 0, 

where p < r2 < minQfy*, R) then using Lemma 3.7 we obtain inequality (3.14) 
for z = rieid, p < ri < r2. Then allowing z\ —> peid along the ray arg z\ = 6 we 
see as in Theorem 3.8 that the left member of (3.14) becomes non-positive 
while the right member remains positive by (4.6). Thus Wp(z) has no zeros 
in the annulus p < \z\ < min(j5^*, R). Now by applying the method of proof 
of Theorem 3.18 to W$(z) in the annulus p < |z| < min(p^*, R) we readily 
obtain the proof that 

(4.9) inaai y/:W',(z)\ \z\Wh(}z\± 
** W„{z) ) W3*(\z\) J 

is a non-decreasing function of r = \z\ on every ray in the annulus. Then 
since %t{zW'p(z)/Wp(z)} is harmonic in \z\ < minify*, R) and by (4.7) positive 
on \z\ = p it must be positive for \z\ < p. This result along with (4.7) and 
the monotonicity of (4.9) along any ray proves that 

for all \z\ < min(p/3*, R). 
We now set F(z) = [W$(z)]llP, where that branch of the function is chosen 

for which F'(0) = 1. Then 

*te }̂ - «i®} 
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and the uni valence of [Wp(z)]lfP in \z\ < min(p^*, R) follows immediately 
from (4.10) and Definition 2.2. 

As mentioned previously, since 0 < 9?{/3} < | , we cannot allow r\ to be 
zero in Theorem 4.5. However, if we replace Wp(z), Wp*(z)> and p#* by 
Wa(z), Wa*(z), and pa* respectively then we may set ri = 0 and Theorem 
4.5 yields the result on the uni valence of [^ a(s)]1 / a in the Main Theorem 
of (5). Thus our Theorem 4.5 is in a sense a generalization of Robertson's 
Main Theorem and is applicable to either of the solutions (1.3) or (1.4) of (1.1). 

It would be very desirable to replace condition (4.6) of Theorem 4.5 by a 
condition which would imply (4.8). This would give us a theorem of the 
type of Theorem 3.8 for complex /3. So far as the author is aware no such 
result appears in the literature. 

5. Applications. In (4) it was proved that for all v > —1 the normalized 
Bessel functions zl~vJv(z) are univalent in \z\ < p*v, where p*„ is the smallest 
positive zero of the function pJ' v{p) + (1 — v)Jv(p). In Theorem 3 of (2) it was 
shown that for all v > 0 these functions are not only univalent but are also 
star-like in \z\ < p*v. With the aid of Theorem 3.18 we shall now prove the 
following theorem which extends the range of v in Theorem 3 of (2) to include 
all v > - i 

THEOREM 5.1. For all — \ < v < 0 the normalized Bessel functions zl~vJv(z) 
are star-like in the circle \z\ < p*„, where p*„ is the smallest positive zero of the 
function 

PJ'v{p) + (1 - v)Jv{p). 

This result is sharp. 

Proof. As in (2) we consider the differential equation 

(5.2) W"(z) + [l - \2 [f - yjW(z) = 0, 0 < v2 < \ 

and its solution 

(5.3) Wv{z) = 2*T(v + l)zuUv(z) 

corresponding to — \ < v < 0. 
Now we set z2p(z) = z2p*(z) = z2 — (v2 — J). With this définition of 

z2p(z) we see that $t{z2p(z)} < \z\2p*(\z\) when and only when r2 cos 26 < r2, 
(z = reie). Thus, except for the ray 9 = 7r, we may apply Corollary 3.17 to 
prove that Wv(z) has no zeros on any ray 6 = constant (6 ^ T), 0 < r < min 
(p„, R) where p„ is the smallest positive zero of the function Wv(p). However, 
since Jv{— z) = (— l)Jy(z), it follows immediately from (5.3) that Wv(z) 
has no zeros on the ray 6 = w, 0 < r < min(p„, R). Thus, as in the proof of 
Corollary 3.22 we obtain the inequality 

{0A) J t W,( 2 ) / > W,(\z\) 
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for all \z\ < pv and hence also for all \z\ less than the smallest positive zero 
of the function pl~vJv(p). If we now set F(z) = zl~vJv{z) it follows directly 
from (5.3) and (5.4) that 

(5.5) *{^} > 0 
for all ]z| < p*„. This proves Theorem 5.1. 

The sharpness of the radius of uni valence follows from the fact that 
F'(j>\) = 0. 

With the aid of Theorem 5.1 we are now able to prove the following theorem. 

THEOREM 5.5. For all — \ < v < 3/2 the product of Bessel junctions 
Jv{z)J\-v(z) is univalently star-like in the circle \z\ < p„ where pv = min(p*„, 

PV. ) . 

Proof. Since Jv{z)J\-,{z) — z + X«=2C°cM2" no further normalization is 
necessary. If we set F(z) = J,{z)J\-,{z) we find that 

zF'jz) _ zJ'Xz) zJ[-r(z) 

^ 

F(z) J,(z) ' J i_ , ( s ) 

and, therefore, it follows from (5) and Theorem 5.1 t h a t 

izF'(z)\ \z\J',(\z\l \z\J^,(\z\) 

FizTf* M\z\) i " " / ^ | s | ) _ > U 

for all \z\ < min(p*„, p*i-„) when — \ < v < 3/2. This proves Theorem 5.5. 
For v = \ the result is sharp since then p*„ = p*i_^ and F'(pv) — 0. 
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