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ABELIAN GROUPS AS INNER MAPPING GROUPS OF LOOPS

AsIF ALl AND JOHN COSSEY

The question of which Abelian groups can be the inner mapping group of a loop
has been considered by Niemenmaa, Kepka and others. We give a construction
which shows that many finite Abelian groups can be the inner mapping group of
a loop.

1. INTRODUCTION

Despite the title, this paper is about groups; and all groups in this paper are
finite. However the question we consider here has its origin in the theory of loops and
our results have applications to loops. We shall be concerned in this paper with finite
groups with the following structure. Suppose that G is a group with a subgroup H and
transversals A and B for H in G which satisfy [A, B] < H. We say that transversals
satisfying this condition are H -connected and if A = B we shall say that A is H -self-
connected. Groups G with this structure arise naturally as the multiplication groups of
loops, with H the inner mapping group of the loop, and have been studied extensively
by Niemenmaa and others. We refer the interested reader to 5, 6, 7, 8] in particular for
the translation of our results to loops. The objects we study in this paper are 4-tuples
(G,H,A,B), where G is a group, H a subgroup of G and A, B transversals for H
in G. Niemenmaa and his collaborators have been interested in particular in groups
satisfying the following hypothesis:

(@) (G,H,A,B) where H is a corefree Abelian subgroup of G, A and B are
H -connected transversals for H in G and G = (A, B).

We shall also say that G satisfies () if G has a subgroup H and transversals
A and B for H in G with (G, H, A, B) satisfying (@). Only a small number of
(G, H, A, B) satisfying (a) are known and the results of Niemenmaa, Kepka and others
are mainly negative. Our main aim in this paper will be to give a method for construct-
ing 4-tuples (G, H, A, B) satisfying () which shows that many Abelian groups occur
as inner mapping groups of loops. We shall also be concerned in this paper with the
structure of G and the way H is embedded in G when H is Abelian.

We shall follow the usage of Doerk and Hawkes [1, Definition A4.19] and define a
homocyclic Abelian group to be the direct product of cyclic groups of the same prime
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power order and we note that a finite Abelian group can be written as the direct product
of homocyclic subgroups, each of different exponent. If J = Zx’:"’ with Zyn cyclic of
order p", we say J is homocyclic of exponent p" and rank k. If J is an Abelian group
and J = J; X .-+ x J, with each J; homocyclic and each J; of different exponent, we
call the J; homocyclic components of J. The results of Niemenmaa and others indicate
that if a homocyclic component of J of maximal p-power exponent is cyclic for some
prime p then there is no (G, H, A, B) satisfying () with H 2 J; a number of special
cases are dealt with in [2, 3, 4, 5, 6, 7, 8]. Our main result is the following.

THEOREM 1. Let J be an Abelian group with no cyclic homocyclic component
and no homocyclic component of odd rank and exponent 2* with a > 1. Then there is
a 4-tuple (G, H, A, A) satisfying (a) with F(G) = H x Z(G) and H 2 J.

The proof of Theorem 1 is constructive. We shall also look for conditions on H
which will ensure that 4-tuples (G, H, A, B) satisfying the hypothesis (a) will exist.
Our aim will be to consider the structure of 4-tuples (G, H, A, B) which satisfy (a) but
are minimal in the sense that if 1 # N is normal in G then the 4-tuple given by the
quotient G/N does not satisfy (o). Note that the properties of H being Abelian and
the transversals A and B being H-connected and generating G are preserved under
quotients; however H being corefree may not be preserved.

THEOREM 2. Suppose that (G, H,A, B) satisfies (o). Suppose further that in
any quotient of G the image of H is not corefree. Then

(i) F(G) is a p-group and H is an elementary Abelian p-group for some
prime p;
(i) Z(G) is cyclic and o(G) is the normal closure of a single element;
(iii) if F(G) is Abelian, then F(G) = H x Z(G) and o(G) = H x 0(Z(G)).

Here o(G) denotes the socle of G, the subgroup generated by all minimal normal
subgroups of G. Note that if F(G) is Abelian, then H x 0(Z(G)) is the normal closure
of a single element. An open question is whether this condition is also sufficient: if G is
a group with F(G) an elementary Abelian p-group for some prime p, G/F(G) Abelian,
Z(G) # 1 and F(G) the normal closure of a single element, can we find H £ F(G)
and transversals A, B for H in G such that (G, H, A, B) satisfies (a). We know of
no counterexample. In some special cases we were able to show that this condition
is sufficient. The ideas involved can be generalised and we used them to produce the
examples in Theorem 1.

As might be expected, in attempting to prove Theorem 1 without any restriction
on the order of J, the primes 2 and to a lesser extent 3 cause problems. For these
primes the general procedures we use to construct examples break down. For the
prime 3 we are able to construct examples using ideas similar to those for the general
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case. We are grateful to Mike Newman for some useful discussions and some computer
calculations which lead to the specific examples for H a homocyclic p-group of rank
2 for p = 3. The computer calculations were for the case of an elementary Abelian
group H of order 9 and they indicate that such examples may be more common than
expected; for the group G of order 108 with H of order 9 constructed, the computer
search found 18 self-connected transversals A which gave a 4-tuple satisfying (). (It
is worth observing that since the 9 non-central transversals can be chosen arbitrarily
there are 92 = 3!® possible transversals, so it is quite rare for a transversal to give a
4-tuple satisfying (a).) For p = 2 we can use our ideas to reduce the case of a general
homocyclic 2-group to constructing examples for H a homocyclic 2-group of arbitrary
exponent and rank 3 but have only been able to produce examples for exponents 2
and 4. A computer calculation on a group of order 247 produces examples (again
we are grateful to Mike Newman for useful discussions and help with the computer
calculations). Further calculations generalise these examples to the exponent 4 case
(we do not include the details here), but we have been unable to extend the examples.

In all the examples (G, H,A,B) we construct in this paper, we use H -self-
connected transversals (A = B); such examples give rise to commutative loops. We
conjecture that in all the cases where we have found H -self-connected transversals there
will also be connected transversals that are not self-connected. This is supported by
some computer experimentation, but we have not established it in general.

2. PRELIMINARIES

Before we begin the proofs of our results, we collect together some technical lemmas
we shall need. Some of them are well known results which are given here for convenience.
Others are presumably also known, but we have not found them in the form we need
and so have included proofs. Throughout, G will denote a group with a subgroup H
with H -connected transversals A and B. We shall denote by coreg(H) the core of H
in G (that is the largest normal subgroup of G contained in H), by Z(G) the centre
of G and by F(G) the Fitting subgroup of G (that is, the largest nilpotent normal
subgroup of G). The first group collects together known results about the structure of
such groups.

LEMMA 1.
(i) ([6, Lemma 2.5.)] If coreg(H) =1, then Ng(H) = H x Z(G).
(ii) ({4, Lemma 2.1.)] If H is Abelian, then H is subnormal in G.
(i) ([7, Theorem 3.4.)] If H is Abelian, then G is soluble.
LEMMA 2.
(i) If H is Abelian, then H < F(G).
(ii) If H is Abelian, G/F(G) is Abelian.
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ProOF: The first claim follows immediately from the fact that H is a nilpotent
subnormal subgroup of G.

The second claim follows from the following easy calculation. Since A and B are
transversals for H in G, if £ and y are elements of G, we can write z = au and
y=>bv,witha€ A, b€ B and u,v € H. But then

(z,y] = [au, bv] = [a, b]*"[u, b]"[a, v]*[u, v].

The result now follows from the fact that [u,v] =1 and [a,b],u,v € H < F(G). 0

Note that Lemma 2 depends only on Lemma 1 (i) and (ii) and then Lemma 1 (iii)
follows from Lemma 2.

LEMMA 3. Suppose that (Go, Ho, Ao, By) and (G1, Hi, A, B1) are 4-tuples sat-
isfying (a). Then (Go x Gy, Ho x Hy, Ay x A1, By x By) satisfies (a).

PROOF: Set G = Gox Gy, H=HyxH,, A= Agx A1 and B = By x B;. Clearly
A and B are transversals for H in G. To see that they are H-connected, just observe
that if ag € Ag, a1 € Ay, b € By and b; € B;, then [aoal,bobll = [ao, bo][al,bl] € H.
Since all of Ag, A1, Bo, B; contain the identity, Ay, A, are subsets of A and By, B;
are subsets-of B. Thus (Ao, Bo) = Go < (4, B) and (A;,B;) = G1 < (4, B) and so
G = (A, B). That H is corefree is clear.

The next result is well known and comes in many forms. We do not know a
reference for it in the form we want and so give a proof. It will play a crucial role in
the proof of Theorem 2.

LEMMA 4. Let F be the field of prime order p and let G be an Abelian p' -group.
Let M be a (finite) FG-module of order p™ and V a subspace of order p™~!. Let
M=M,®- - &M, with each M; irreducible.
(i) If M; = M; for some i # j, then V contains a non-zero submodule of
M. '
(ii) Ifthe Mj; are pairwise non-isomorphic and n > 2, then there is a maximal
subspace U which contains no non-zero submodule of M .

ProoF: Note that since G is a p’-group all FG-modules are completely reducible.

(i) Suppose that L = M; & M; < M with M; = M;. If L <V there is nothing
to prove, so we may assume that L NV has index p in L. it is enough to show
that L NV contains a non-zero submodule of L. If N is a submodule of L with
0 # N # L then N must be irreducible and isomorphic to M;. Suppose that |M;| = pt.
Then L contains p* irreducible submodules and each of these irreducible submodules
is contained in (p* — 1)/(p — 1) subspaces of order p**~!. Since G is Abelian there are
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exactly p* + 1 irreducible submodules of L and no proper subspace of L can contain
more than one irreducible submodule, there are (p* + 1)(p* — 1)/(p — 1) subspaces of
order p?*~! containing an irreducible submodule. But the number of subspaces of order
p*~1is (p* —1)/(p— 1) and the result follows.

(ii) The proof will be by induction on n. Note first that if M is irreducible,
then any subspace of order p”~! will do, and so we may assume that M is reducible.
Suppose then that n = 2. Then M = M; & M; wih M; and M, non-isomorphic and
each of order p. But then if 0 # v € M, and 0 # v € M,, the subspace (u + v) has
order p and is not a submodule (since M; and M, are the only submodules of M).
Thus the result is true for n = 2.

Now suppose the result is true for orders less than p™ and M has order p*,
n > 2. Since M is reducible, we can write M = M; & M, and we may assume
that p® > |M;| = p* > p*. Now choose N; to be a subspace of M; of order pt~!
which contains no non-zero submodule of M;. Choose N, to be a subspace of M, of
order p"~*~! which contains no non-zero submodule of M, (and note that N = 0 if
|M>| = p). Now let u € M;\N; and v € M3\N; and set N = N; & N2 & (u + v).
If N contains a non-zero submodule of M we must have either N N M; or N N M,
contains a non-zero submodule. But NN M; = N; and NN M; = N, and hence N
does not contain a non-zero submodule. Also |N| = p*~1p"~*~1p = p"~! and the result
follows. 0

3. PROOFS

Proor OoF THEOREM 2: Suppose that (G, H, A, B) is a group satisfying (a), so
that H is a corefree Abelian subgroup H, A and B are H-connected transversals A
and B and (A,B) =G.

Since Ng(H) = H x Z(G) < F(G) and H < F(G), we have H < Ng(H) and
then Z(G) # 1. Let Z be a minimal normal subgroup of G contained in Z(G). Then
|Z] = p for some prime p.

Now consider G/Z and suppose that HZ/Z is not normal in G/Z. Then, if K/Z
is the core of HZ/Z in G/Z, we have H* = HK/K Abelian, A* = {aK : a € A} and
B* = {bK : be B}, [A*,B*] < H* and (A*,B*) = G* = G/K and so G* satisfies
(IMG), a contradiction. Thus HZ is a normal subgroup of G. Since (HZ)? < H and
is normalin G we have (HZ)” = 1 and so H is an elementary Abelian p-group. If Z(G)
is not cyclic, then there is a minimal normal subgroup W < Z(G) with ZNW =1.
By the previous argument we must have HW normal in G. Since HZ # HW we have
H < (HZNHW) # HZ and so we must have H = HZ N HW . But then H would
be normal in G, a contradiction. Thus Z(G) is a cyclic p-group.

Now suppose that N is a minimal normal subgroup of G. Then N normalises H
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since H is subnormal (Robinson. [9, 13.3.7]) and so N < H x Z(G). It follows that the
socle o(G) of G is contained in H x Z(G). Since H x Z(G) is a p-group so is o(G)
and hence F(G) is a p-group. But then G/F(G) is an Abelian p’-group, since if a
Sylow p-subgroup P/F(G) of G/F(G) were nontrivial, P would be a normal nilpotent
subgroup of G. Since o(G) is elementary Abelian we have o(G) < H xa(Z(G)). Then
o(G) = o(G)N (H x Z(G)) = (¢(G) NH) x Z(G) and Lemma 4 tells us that o(G)
can not contain two minimal normal subgroups isomorphic as G-modules. It follows
that, as a G/F(G)-module, 6(G) is a quotient of the regular module and hence a one
generator module. In terms of subgroups, this says that ¢(G) is the normal closure of
a single element.

Now suppose that F(G) is Abelian. Then F(G) < Ng(H) and so by Lemma 1(i)
we have F(G) < Ng(H) = HxZ(G) < F(G). Then HxZ(G) = Hxa(Z(G)) = o(G),
since H x Z(G) is a normal subgroup with G/Cg(H % Z(G)) a p'-group. This completes
the proof of the theorem. 0

PROOF OF THEOREM 1: We begin by observing that if the theorem is true for all
homocyclic components of J it will be true for J by Lemma 3. Hence it is enough to
consider J homocyclic (and satisfying the hypotheses of the theorem).

Now consider G(p*,d) = XwrY (the standard wreath product), with X cyclic of
order p" and Y cyclic of order d, p a prime, d > 2 not divisible by p. Set G = G(p"*, d).
Note that the base group of G is its Fitting subgroup and is a d generator homocyclic
group of exponent p™. Suppose X = (z), Y = (y) and F(G) = (zq,...,Tq4-1), With
zy = z;; (where we take i+j modulo d). If we put z = zo...z4_; then (2) = Z(G).
Now set H = (zg,Z1,Z3,...,2Z4-1) (if d =3, take H = (:1:0,:1:1))

A=B={y : 0<ig<p"~1,0<i<d-1,7#1}u{zlyr; : 0<i<p" -1}

We claim that (G, H, A, B) satisfies (a).

It follows immediately from the fact that HZ(G)Y = G that A is a transversal
for H in G. To see that A is H-self-connected, observe that the only non-trivial
commutators in [A, A] are [2yz1,z'y?] = [yz1,97] = z7'zj41 for 2 < j < d—-1. It
now follows that [A, A] < H. Next observe that z € A and so Z(G) < (A) Since
y? = z71(2y?) € (A) for all j # 1 we also have Y < (4). We then get z; € (A)
and since G is generated by Y and z;, G = (A). Since any normal subgroup of G
contained in F(G) must contain an element z{° .. z;" - with i3 # 0 mod p*, H is
corefree. Thus (G, H, A, B) satisfies (a).

We have constructed a 4-tuple(G, H, A, B) satisfying (a) for H an f generator
homocyclic p-group with f +1 > 2 and prime to p. The next step is to consider the
case f +1 divisible by p. For p > 5 we observe that we can write f = kp — 1 for some
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integer k > 1 and then f = (k—1)p+ 2((p—1)/2). By Lemma 3, G(p",p+ l)k_1

x G (p", (p+ 1) /2)2 satisfies (a) with H homocyclic of rank f and exponent p™.

For p=3,if f+1 is divisible by 3 we can write f = 3k + 2 and since for = 3k
G(3",3k + 1) satisfies (o) with H homocyclic of rank 3k and exponent 3", it will be
enough by Lemma 3 to find (G, H, A, B) satisfying (a) with H homocyclic of rank 2
and exponent 3". We construct such a group.

Let F be a homocyclic Abelian group of rank 3 and exponent 3", generated by
{u,v,z}. Let Y = (y) be a cyclic group of order 4 and define an action of Y on F
by uw¥ = v,v¥ = u~l,z¥ = z. Let G be the semidirect product of F and Y and let
H = (v,uz). Then H is homocyclic of rank 2 and exponent 3", Z = (2} = Z(G)
and H x Z = F = F(G). It is easy to check that H is corefree. We now define a
transversal for H in G by A=B = {2'y/w;; : 0<i<3"-1,0<j <3, wip=1w3
= 1,w;1 = w; 2 = vuz}. Since z and vuz arein A we have uz € (A4) and it follows eas-
ily that {4) = G. To show that (G, H, A, A) satisfies (a) it will be enough to show that
(4, A] < H. We claim it is enough to show that [y3,uv] € H. To see this, take z*y7w; ;
and zFylwg,; in A. Then [2'ylw; j, 25y'wii] = [Ywij, v'wrg] = [, weg)[wi g, ¥Y). If
j or I is 0 then both commutators in this product are 1. If {j, !} = {1,2} then
the product is [y?, vuz][vuz,y] = [y?, vullvy, y] = [y? vu](y, vu]~! (or its inverse). But
y? inverts elements of (u,v) and so [y,vu]~! = [y,vu}¥" and hence [y, vu]’ [y2, vu]
= [y3,vy]. If j =, then the commutators are inverses of each other and so their prod-
uct is 1. Finally if one of j,! is 3 and the other is either 1 or 2;say j=3 and [ =1
or [ =2. Since w; 3 =1 and wg,; = wg,2 we have [y3, wi1] = [y3,vuz] = [y3,vu] € H.
Thus in both cases we need to show that [y3,vu] € H. Now [y3,vu] = (vu)_”’3 (vu)
= (v‘lu)—lvu =% € H. Thus (G, H, A, A) satisfies (c).

For p=2,if f4 1 is even and at least 4 (since f > 1) we can write f = 3 + 2k.
Again G(2",2k + 1) satisfies (a) with H homocyclic of rank 2k and exponent 2" and
so it will be enough to find (G, H, A, B) satisfying (a) with H homocyclic of rank 3
and exponent 2". We have only been able to do this by computer search for n = 1,2.
We give the details of the group for n =1 only.

For n =1, let F' be elementary Abelian of order 16 with generators u,v,w, z and
let X = (z) be a cyclic group of order 7. Define an action of z on F by «* = v,
vT = w,w® = uv, 2® = z. It is easy to check that = acts as an automorphism of order
7..Let G be the semidirect product of F and X and then set H = (u,v,wz), so that
H has order 8 and index 14 in G. We take as our transversal A the set {a;z'z’
1=0,1,0<£35<6,a;=1,=0,1,5, a3 =w, az =v, a4 = u, ag = wvw}. It is clear
that G = (A) and that H is corefree. To see that [A, A] < H is a straightforward
though tedious calculation which we suppress.

https://doi.org/10.1017/50004972700034730 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034730

488 A. Ali and J. Cossey 8]
REFERENCES

1] K. Doerk and T.O. Hawkes, Finite soluble groups (de Gruyter, Berlin, New York, 1992).

[2] T. Kepka, ‘On the abelian inner permutation groups of loops’, Comm. Algebra 26 (1998),
857-861.

[3] T. Kepka and M. Niemenmaa, ‘On loops with cyclic inner mapping groups’, Arch. Math.
60 (1993), 233-236.

{4] M. Niemenmaa, ‘On the structure of the inner mapping groups of loops’, Comm. Algebra
24 (1996), 135-142.

[8] M. Niemenmaa, ‘On finite loops whose inner mapping groups are abelian’, Bull. Austral.
Math. Soc. 85 (2002), 477-484.

[6] M. Niemenmaa and T. Kepka, ‘On multiplication groups of loops’, J Algebra 135 (1990),
112-122.

[7] M. Niemenmaa and T. Kepka, ‘On connected transversals to abelian subgroups in finite
groups’, Bull. London Math. Soc. 24 (1992), 343-346.

[8] M. Niemanmaa and T. Kepka, ‘On connected transversals to abelian subgroups’, Bull.
Austral Math. Soc. 49 (1994), 121-128.

[9] D.J.S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics 80
(Springer-Verlag, New York, 1982).

Department of Mathematics Mathematics Department

Quaid_—E-Azam University Mathematical Sciences Institute

Islamabad Australian National University

Pakistan Canberra, ACT 0200

Australia

https://doi.org/10.1017/50004972700034730 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034730

