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A Note on a Unicity Theorem for the Gauss
Maps of Complete Minimal Surfaces in
Euclidean Four-space

Dedicated to Professor Miyuki Koiso on the occation of her sixtieth birthday

Pham Hoang Ha and Yu Kawakami

Abstract. The classical result of Nevanlinna states that two nonconstant meromorphic functions on
the complex plane having the same images for five distinct values must be identically equal to each
other. In this paper, we give a similar uniqueness theorem for the Gauss maps of complete minimal
surfaces in Euclidean four-space.

1 Introduction

The Gauss map of a complete minimal surface in Euclidean space have some prop-
erties similar to the results in value distribution theory of a meromorphic function
on the complex plane C. One of the most notable results in this area is the Fujimoto
theorem [3, Theorem I], which states that the Gauss map of a nonflat complete min-
imal surface in Euclidean 3-space R® can omit at most four values. He also obtained
the sharp estimate [3, Theorem II] for the number of exceptional values of the Gauss
map of a complete minimal surface in Euclidean 4-space R*. Recently, the second
author [11] (for R*) and Aiyama, Akutagawa, Imagawa, and the second author [1] (for
R*) gave geometric interpretations of these results. Moreover, Dethloff and the first
author [7] proved ramification theorems for the Gauss maps of complete minimal
surfaces in R® and R* on annular ends. Their results extended a result of Kao [10].
Another famous result is on uniqueness and value sharing, and is called the unicity
theorem. For meromorphic functions on C, Nevanlinna [14] proved that two mero-
morphic functions on C sharing five distinct values must be identically equal to each
other. Here we say that two meromorphic functions (or maps) f and f share the value
a (ignoring multiplicity) when f~'(«) = f~!(a). Fujimoto [5] obtained the following
analogue of this theorem for the Gauss maps of complete minimal surfaces in R>.

Theorem 1.1 ([5, Theorem1]) Let X:X — R®and X:3 — R? be two nonflat minimal
surfaces and let g:¥ — C := Cu {00} and g% — C be the Gauss maps of X(Z) and
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X(X), respectively. Assume that there exists a conformal diffeomorphism ¥: % — ¥ and
either X(2) or X(X) is complete. If g and g o ¥ share 7 distinct values, then g = go V.

We remark that the second author [12] gave a unified explanation for the unicity
theorems of the Gauss maps of several classes of surfaces in 3-dimensional space forms
including minimal surfaces in R.

The purpose of this paper is to give a similar uniqueness theorem for the Gauss
maps of complete minimal surfaces in R*. The main theorem is stated as follows.

Theorem 1.2 Let X:X — R* and X: S — R* be two nonflat minimal surfaces, and let
G=(g,8)2->CxCandG = (§,8):Z — C x C be the Gauss maps of X(2) and
X(T), respectively. We assume that there exists a conformal diffeomorphism ¥:% — %
and either X(2) or X(Z) is complete.

(i)  Assume that g1, g2, 1, &2 are nonconstant, and for each i (i =1,2), g; and g; o ¥
share p; > 4 distinct values. If g1 # g1 o ¥ and g, # §> o ¥, then we have

1 1
+

>1
P-4 pr-4
In particular, if py > 7 and p, > 7, then either gy = g1 o ¥, or g2 = g o Y, or both
hold.
(ii) Assume that &, gy are nonconstant, and g and g o ¥ share p distinct values. If
g1 # QoY and g, = g, 0 V¥ is constant, then we have p < 5. In particular, if p > 6,
then G=Go V.

(1)

The paper is organized as follows. In Section 2, to reveal the geometric inter-
pretation of Theorem 1.2, we give a unicity theorem for the holomorphic map G =
(g1>--->gn) into

(C)" =Cx---xC
- =
n
on open Riemann surfaces with the conformal metric ds? = TT%, (1 + |g:]*)™|w|?,
where w is a holomorphic 1-form on X and each m; (i = 1,..., n) is a positive integer
(Theorem 2.1). By virtue of the result, Theorem 1.2 deeply depends on the induced
metric from R*. Moreover, we give examples (Example 2.2) that ensure that Theo-
rem 1.2 is optimal. The proof and some remarks of Theorem 1.2 are given at the end of
Section 2. Section 3 provides the proof of Theorem 2.1. The main idea of the proof is
to construct some flat pseudo-metric on X and compare it with the Poincaré metric.

2 Main Results

To elucidate the geometric interpretation of Theorem 1.2, we give the following theo-
rem.

Theorem 2.1 Let % be an open Riemann surface with the conformal metric

as* = T1(1+ |gif)™ P
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and let 3 be another open Riemann surface with the conformal metric
n
ds = T1(1+[gl)™ @l
i=1

where w and @ are holomorphic 1-forms, G and G are holomorphic maps into
(é)n ::6)(...)(6
—_—

n

on X and 3 respectively, and each m; (i =1,...,n) is a positive integer. We assume that
there exists a conformal diffeomorphism ¥: 2 — X, and g, ..., gi, and gi,» ..., g5, (1<
iy < -+ < iy < n) are nonconstant and the others are constant. Foreachi; (1 =1,...,k),

we suppose that g;, and g;, o ¥ share q;, > 4 distinct values and g;, # i, o V. If either
ds* or d$? is complete, then we have

k m;

L >1.

(2.1)
1=1 9i; — 4

We remark that Theorem 2.1also holds for the case where atleastone of my, . .., m,
is positive and the others are zeros. For example, we assume that g := ¢; and g:=gj,
are nonconstant and the others are constant. If m := m;, is a positive integer and the
others are zeros, then the inequality (2.1) coincides with

m
—— 2l qg<m+4,
q-4
where g := g;,. The result corresponds with [12, Theorem 2.9].
Theorem 2.1 is optimal because of the following examples.

Example 2.2  For positive integers my, ..., m, whose the sum M := ¥ m;, of
the subset {i1,..., i} in {1,...,n} is even, we take M/2 distinct points a;, ..., &y
in C\{0, £1}. Let X be either the complex plane punctured at M + 1 distinct points
0,a1,...,&p2,1/a, ..., 1/ @y, or the universal covering of the punctured plane. We
set

dz
M2

ZI—L-:1 (Z_ (X,’)((XiZ—l)
and the map G = (g1, ..., gx) is given by
gy=-=g,=2z (1<ii<---<ix<n),

and the others are constant. In a similar manner, we set
dz

szi{z(z -a;)(aiz - 1))

o(=w)=

and the map G = (g3, ..., g, ) is given by
Tz =G =1z (1<ij<-<ig<n),

and the others are constant. We can easily show that the identity map ¥:X — X isa
conformal diffeomorphism, and the metric ds* = [T%, (1 + |gi[*)™|w|? is complete.
Then for each i;, the maps g;, and g;, (I =1,...,k) share the M + 4 distinct values
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0,00,1, =L, a1,...,&p2, /e, ..., 1 /apyp and g, # gi, o . These show that Theo-
rem 2.1 is optimal.

We will apply Theorem 2.1 to the Gauss maps of complete minimal surfaces in R*.
We first recall some basic facts of minimal surfaces in R*. For more details, we refer
the reader to [2,8,9,15]. Let X = (x!,x2,x% x*):Z — R* be an oriented minimal
surface in R*. By associating a local complex coordinate z = u + \/~1v with each
positive isothermal coordinate system (u,v), 2 is considered as a Riemann surface
whose conformal metric is the induced metric ds* from R*. Then

(2.2) Ag2X =0

holds; that is, each coordinate function x is harmonic. With respect to the local
coordinate z of the surface, (2.2) is given by 90X = 0, where d = (3/du—+/~13/9v)/2,
0 = (9/du ++/~10/9v)/2. Hence, each ¢; = dx'dz (i = 1,2,3,4) is a holomorphic
1-form on X. If we set
sV -1¢y g3+ -1¢y

N A VAT
then w is a holomorphic 1-form, and g and g, are meromorphic functions on X.
Moreover, the holomorphic map G := (g, £): 2 — C x C coincides with the Gauss
map of X(X). We remark that the Gauss map of X(Z) in R* is the map from each
point of 2 to its oriented tangent plane, the set of all oriented (tangent) planes in R*
is naturally identified with the quadric

Q*(C) = {[wlzw2:w3:w4] eP(C); (W) + -+ (wh)? = 0}
in P*(C), and Q*(C) is biholomorphic to the product of the Riemann spheres C x C.
Furthermore the induced metric from R* is given by
(23) ds* = (1+ &) (1 + |g2*) |l
Applying Theorem 2.1 to the induced metric, we obtain Theorem 1.2.

w= ¢~ V-1¢s, g

Proof of Theorem 1.2 We first show case (i). Since m; = m, = 1 from (2.3), we can
prove the inequality (1.1) by Theorem 2.1. Next we show case (ii). By Theorem 2.1, we
obtain 1/(p —4) > 1. Thus, we have p <4 +1=5. [ |

Remark 2.3  Fujimoto [6] obtained the unicity theorem for the Gauss maps G: X —
P"71(C) of complete minimal surfaces in R™ (m > 3). Recently, Park and Ru [16]
showed the result that is an improvement of this theorem. However, these results
do not contain Theorem 1.2, because corresponding hyperplanes in P*(C) are not
necessary located in general position (for more details, see [13, p. 353]).

3 Proof of Theorem 2.1

We first recall the notion of chordal distance between two distinct points in C. For
two distinct points «, € C, we set

“’m . |“_ﬁ|

V1+ a2 /1+ 82
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if « # oo and B # o0, and |a, oo| = |00, &] := 1/4/1 + |a|?. We note that if we take v,
v, € 8% with @ = @(v;) and B = @(v,), we have |a, B| is half of the chordal distance
between v; and v,, where @ denotes the stereographic projection of the 2-sphere S
onto C.

We next review the following three lemmas used in the proof of Theorem 2.1.

Lemma 3.1 ([5, Proposition 2.1]) Let g, and g;, be mutually distinct nonconstant
meromorphic functions on a Riemann surface . Let q;, be a positive integer and
al, .., “tlz,—, € C be distinct. Suppose that q;, > 4 and g;l((xé) = jg‘i:l((xj.) (1<j<qi).

For aly > 0 and e with q;, — 4 > q;,& > 0, we set

qi al “l+e qi l —l+¢
E’l :(H|g,,,oc;|log(7012)) > (H|gll’ ]|10g( 12)) >
j=1 |gir» o] 18> o]
and define
gl 18]
(31) : (‘gtpg11| 61, lel+|gl |21+|,1‘ |2)| |2

outside the set E := Uq 1g,ll(ocl) and dT = 0 on E. Then for a suitably chosen ay, d'r
is continuous on X and has strictly negatwe curvature on the set {dt} #0}.

Lemma 3.2 ([5, Corollary 2.4]) Let g;, and g;, be meromorphic functions on Ag
satisfying the same assumption as in Lemma 3.1. Then for the metric dt* defined by
(3.1), there exists a constant C > 0 such that
2 R? 2

dr; (R2 E |2)2|dz| .
Lemma 3.3 ([4, Lemma 1.6.7]) Let do? be a conformal flat-metric on an open Rie-
mann surface 2. Then, for each point p € X, there exists a local diffeomorphism @ of
a disk AR = {z € G;|z| < R} (0 < R < +00) onto an open neighborhood of p with
®(0) = p such that @ is an isometry; that is, the pull-back ®*(do?) is equal to the
standard Euclidean metric ds% on Ag and that, for a specific point ao with |ao| = 1, the
®-image Iy, of the curve Ly, = {w := a¢s;0 < s < R} is divergent in 2.

Proof of Theorem 2.1 Since the given map ¥ provides a biholomorphic isomor-
phism between X and ¥, we denote the function g;, o ¥ by g;, (I =1,..., k) for brevity.

For each i, we assume that g;, and g;, share the g;, distinct values a!, .. ., “rlz,- . After
1
suitable Mobius transformations for g;, and g;,, we can assume that
1 o_ .k
qi, — - aqik = 0.

Moreover, we assume that either ds* or ds?, say ds?, is complete and g;, # gi, o ¥
for each I (1 <1< k). Thus, for each local complex coordinate z defined on a simply
connected open domain U, we can find a nonzero holomorphic function h, such that

(32) ds® = [P [T+ @)™ P (1 @l 2)™ 2 ldzf.

i=1
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Suppose that each g;, > 4 and

k
mi,

(3.3) <1

1.1 9 ~ 4
Then by (3.3), we can suppose that g;, > m;, + 4 for each i; (I = 1,..., k). Taking
some positive number 7o with

0<yy < Tt ma
qi

foreachi; (I=1,...,k) and

k
oy o e
For a positive number # with 1 < 1, we set

my,

Aj, = G d-qun (I=1,...,k)
By (3.4) we get
k k k -
(3.5) A=) L => <> - =Ag=1
1=

 qi, - i 4 S, -4-qan0

Now we can choose a positive number #(< 7, ) sufficiently near 7, satisfying

mi, mi,n
3.6 Ao = A
( ) 0 < 1<rntl<rllc{ qi, — 4 - qi, 71 qi, — 4- %:’7}

Using (3.5) and (3.6), we have

i

o1 and Moy (I=1,...,k).
1-A

Now we define a new metric

' Z N
(3.7) do* =|h |ﬁ : ( q, (|gz, - txl-llg,-, - oc(|)1 ] ) L aap
Z Igi,—gi,lzlg,,llg,llnq” (1+]alp)rn

on the set &' = Z\E, where
E={peZig(p)=0.g,(p) = 00r g (p)(= § (p)) = o] for some I}.

On the other hand, setting ¢ := 7/2, we can define another pseudo-metric d T%l on
= given by (3.1) for each I, which has strictly negative curvature on X'. Take a point
p € 2. Since the metric do? is flat on =/, by Lemma 3.3, there exists an isometry @ sat-
isfying ®(0) = p from a disk Ag = {z € G;|z| < R} (0 < R < +00) with the standard
metric ds% on an open neighborhood of p in 2/ with the metric do*. We denote the
functions g;, o ® and gj, o ©(= g;, o ¥ o @) by g;, and gj, respectively (I =1,...,k)
in the following. Moreover, for each ij, the pseudo-metric d aizl on Apg has strictly
negative curvature. Since there exists no metric with strictly negative curvature on
C (see [4, Corollary 4.2.4]), we obtain that the radius R is finite. Furthermore, by
Lemma 3.3, we can choose a point ag with |ag| = 1 such that, for the line segment
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Lg, == {w := aps;0 < s < R}, the ®-image T,, tends to the boundary of X’ as s tends
to R. Then I, is divergent in X. Indeed, if not, then I';, must tend to a point p, € E.
Then we consider the following two possible cases:

Casel: g;,(po) (=g, (po)) = ocj» for some /.
Since g} (po) = (gi, — ;) (po) and g}, (po) = (g, — @)’ (po), the function

Ail

| k( (I8 — ]|~ )" )m
|gi,—’g:,|2|g,,||gl,|nq" (L a2y

has a pole of order at least 2474, /(1 - A) at py. Taking a local complex coordinate {
in a neighborhood of py with {(po) = 0, we can write the metric do? as

o® = |¢ /0Nyl d )

ql]

with some positive function w. Since n;,/(1— A) > 1, we have
R= f do>C f |d(|/|(|2’7Ail/(1—A) - too.
1-‘“0 rao

This contradicts that R is finite.

Case 2: g; (p0)g;,(po) = 0 for some 7.
Without loss of generality, we may assume that g; (po) = 0 for some i;. Taking
a local complex coordinate { := g; in a neighborhood of py with {(po) = 0, we can
write the metric do? as
dO’Z _ ‘(|—2/\;I/(1—A)W|d(|2

with some positive function w. Since A;,/(1 - A) > 1, we have

R= f do > czf 1S/ 0D — oo,
T, T,

This also contradicts that R is finite.
Since ®*do? = |dz|*, we get by (3.7)
—~ qi, -1 A
, £ Igi,—gi,\zlg,,IIg,,\H b e )\
|hZ| - H q’l 1 I1\1- ’
(lgi, - @lg, - ol

1=1

By (3.2), we have

©*ds = |l [T+ )™/ (1+ (@] 2) ™2 |dzf?

i=1
. mi i > m; i L

o 180 = B0 2180 NG 1+ g [) e A (14 (g, | 2) /2
<] I ) | 2P

=1

qxl (|gll - “;HEI - (X;DPW

k =~ n\° ag ag e\ M 2

-Gk U('g”’ o) (log( o) osl ) ) 1P

https://doi.org/10.4153/CMB-2017-015-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-015-0

Unicity Theorem for the Gauss Maps 299

where p;, is the function with d7; = 4] |dz|*. Since the function x*° log'~*(al/x)
(0 < x <1) is bounded, we obtain that

—~ —~ T\ A
FEg ﬁ(Igi,,gi,lZIgﬁ,IIgZ,IEi,fi,) '|dz|2
> 4 —~
i\ (U g )M+ 133, ]%)

for some Cy4. By Lemma 3.2, we have

k R i R2 A
2 ! 2 _ 2
ds scsg(r_'z'z) dz| _cs(—Rz_W) dz|

for some constant Cs. Thus, we obtain that

R2 A/2 R(2-8)/2
dgcl/zfi dz] < Co < 400,
frao $<(Gs) LHO(R2-|Z|2) 4zl < Co 1Ay <*°°

because 0 < A < 1. However, it contradicts the assumption that the metric ds* is
complete. ]
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