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A Note on a Unicity Theorem for the Gauss
Maps of Complete Minimal Surfaces in
Euclidean Four-space
Dedicated to Professor Miyuki Koiso on the occation of her sixtieth birthday

Pham Hoang Ha and Yu Kawakami

Abstract. _e classical result ofNevanlinna states that two nonconstant meromorphic functions on
the complex plane having the same images for ûve distinct values must be identically equal to each
other. In this paper, we give a similar uniqueness theorem for the Gauss maps of completeminimal
surfaces in Euclidean four-space.

1 Introduction

_e Gauss map of a complete minimal surface in Euclidean space have some prop-
erties similar to the results in value distribution theory of a meromorphic function
on the complex plane C. One of themost notable results in this area is the Fujimoto
theorem [3,_eorem I], which states that the Gauss map of a non�at completemin-
imal surface in Euclidean 3-space R3 can omit at most four values. He also obtained
the sharp estimate [3,_eorem II] for the number of exceptional values of the Gauss
map of a complete minimal surface in Euclidean 4-space R4. Recently, the second
author [11] (for R3) and Aiyama, Akutagawa, Imagawa, and the second author [1] (for
R4) gave geometric interpretations of these results. Moreover, Dethloò and the ûrst
author [7] proved ramiûcation theorems for the Gauss maps of complete minimal
surfaces in R3 and R4 on annular ends. _eir results extended a result of Kao [10].
Another famous result is on uniqueness and value sharing, and is called the unicity

theorem. For meromorphic functions on C, Nevanlinna [14] proved that two mero-
morphic functions on C sharing ûve distinct values must be identically equal to each
other. Herewe say that twomeromorphic functions (ormaps) f and f̂ share the value
α (ignoringmultiplicity)when f −1(α) = f̂ −1(α). Fujimoto [5] obtained the following
analogue of this theorem for the Gauss maps of completeminimal surfaces in R3.

_eorem 1.1 ([5,_eorem I]) Let X∶Σ → R3 and X̂∶ Σ̂ → R3 be two non�at minimal
surfaces and let g∶Σ → C ∶= C ∪ {∞} and ĝ∶ Σ̂ → C be the Gauss maps of X(Σ) and

Received by the editors December 5, 2016; revised February 25, 2017.
Published electronically April 13, 2017.
Author Y. K. is supported by the Grant-in-Aid for Scientiûc Research (C), No. 15K04840, Japan

Society for the Promotion of Science.
AMS subject classiûcation: 53A10, 30D35, 53C42.
Keywords: minimal surface, Gauss map, unicity theorem.

https://doi.org/10.4153/CMB-2017-015-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-015-0


Unicity _eorem for the Gauss Maps 293

X̂(Σ̂), respectively. Assume that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂ and
either X(Σ) or X̂(Σ̂) is complete. If g and ĝ ○Ψ share 7 distinct values, then g ≡ ĝ ○Ψ.

We remark that the second author [12] gave a uniûed explanation for the unicity
theoremsof theGaussmapsof several classesof surfaces in 3-dimensional space forms
including minimal surfaces in R3.

_e purpose of this paper is to give a similar uniqueness theorem for the Gauss
maps of completeminimal surfaces in R4. _emain theorem is stated as follows.

_eorem 1.2 Let X∶Σ → R4 and X̂∶ Σ̂ → R4 be two non�at minimal surfaces, and let
G = (g1 , g2)∶Σ → C ×C and Ĝ = (ĝ1 , ĝ2)∶ Σ̂ → C ×C be the Gauss maps of X(Σ) and
X̂(Σ̂), respectively. We assume that there exists a conformal diòeomorphism Ψ∶Σ → Σ̂
and either X(Σ) or X̂(Σ̂) is complete.
(i) Assume that g1 , g2 , ĝ1 , ĝ2 are nonconstant, and for each i (i = 1, 2), g i and ĝ i ○Ψ

share p i > 4 distinct values. If g1 /≡ ĝ1 ○Ψ and g2 /≡ ĝ2 ○Ψ, then we have

(1.1) 1
p1 − 4

+ 1
p2 − 4

≥ 1.

In particular, if p1 ≥ 7 and p2 ≥ 7, then either g1 ≡ ĝ1 ○Ψ, or g2 ≡ ĝ2 ○Ψ, or both
hold.

(ii) Assume that g1 , ĝ1 are nonconstant, and g1 and ĝ1 ○ Ψ share p distinct values. If
g1 /≡ ĝ1 ○Ψ and g2 ≡ ĝ2 ○Ψ is constant, then we have p ≤ 5. In particular, if p ≥ 6,
then G ≡ Ĝ ○Ψ.

_e paper is organized as follows. In Section 2, to reveal the geometric inter-
pretation of _eorem 1.2, we give a unicity theorem for the holomorphic map G =
(g1 , . . . , gn) into

(C)n ∶= C × ⋅ ⋅ ⋅ ×C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

on open Riemann surfaces with the conformal metric ds2 = ∏n
i=1(1 + ∣g i ∣2)m i ∣ω∣2,

where ω is a holomorphic 1-form on Σ and each m i (i = 1, . . . , n) is a positive integer
(_eorem 2.1). By virtue of the result, _eorem 1.2 deeply depends on the induced
metric from R4. Moreover, we give examples (Example 2.2) that ensure that _eo-
rem 1.2 is optimal. _e proof and some remarks of_eorem 1.2 are given at the end of
Section 2. Section 3 provides the proof of_eorem 2.1. _emain idea of the proof is
to construct some �at pseudo-metric on Σ and compare it with the Poincarémetric.

2 Main Results

To elucidate the geometric interpretation of_eorem 1.2, we give the following theo-
rem.

_eorem 2.1 Let Σ be an open Riemann surface with the conformal metric

ds2 =
n
∏
i=1

(1 + ∣g i ∣2)m i ∣ω∣2
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and let Σ̂ be another open Riemann surface with the conformal metric

d ŝ2 =
n
∏
i=1

(1 + ∣ĝ i ∣2)m i ∣ω̂∣2 ,

where ω and ω̂ are holomorphic 1-forms, G and Ĝ are holomorphicmaps into

(C)n ∶= C × ⋅ ⋅ ⋅ ×C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

on Σ and Σ̂ respectively, and each m i (i = 1, . . . , n) is a positive integer. We assume that
there exists a conformal diòeomorphismΨ∶Σ → Σ̂, and g i1 , . . . , g ik and ĝ i1 , . . . , ĝ ik (1 ≤
i1 < ⋅ ⋅ ⋅ < ik ≤ n) are nonconstant and the others are constant. For each i l (l = 1, . . . , k),
we suppose that g i l and ĝ i l ○ Ψ share q i l > 4 distinct values and g i l /≡ ĝ i l ○ Ψ. If either
ds2 or d ŝ2 is complete, then we have

(2.1)
k

∑
l=1

m i l

q i l − 4
≥ 1.

We remark that_eorem 2.1 also holds for the casewhere at least one ofm1 , . . . ,mn
is positive and the others are zeros. For example, we assume that g ∶= g i1 and ĝ ∶= ĝ i1
are nonconstant and the others are constant. If m ∶= m i1 is a positive integer and the
others are zeros, then the inequality (2.1) coincides with

m
q − 4

≥ 1⇐⇒ q ≤ m + 4,

where q ∶= q i1 . _e result corresponds with [12,_eorem 2.9].
_eorem 2.1 is optimal because of the following examples.

Example 2.2 For positive integers m1 , . . . ,mn whose the sum M ∶= ∑k
l=1 m i l of

the subset {i1 , . . . , ik} in {1, . . . , n} is even, we takeM/2 distinct points α1 , . . . , αM/2
in C/{0,±1}. Let Σ be either the complex plane punctured at M + 1 distinct points
0, α1 , . . . , αM/2 , 1/α1 , . . . , 1/αM/2 or the universal covering of the punctured plane. We
set

ω = dz

z∏M/2
i=1 (z − α i)(α iz − 1)

,

and themap G = (g1 , . . . , gn) is given by

g i1 = ⋅ ⋅ ⋅ = g ik = z (1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n),
and the others are constant. In a similar manner, we set

ω̂(= ω) = dz

z∏M/2
i=1 (z − α i)(α iz − 1)

,

and themap Ĝ = (ĝ1 , . . . , ĝn) is given by

ĝ i1 = ⋅ ⋅ ⋅ = ĝ ik = 1/z (1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n),
and the others are constant. We can easily show that the identity map Ψ∶Σ → Σ is a
conformal diòeomorphism, and the metric ds2 = ∏n

i=1(1 + ∣g i ∣2)m i ∣ω∣2 is complete.
_en for each i l , the maps g i l and ĝ i l (l = 1, . . . , k) share the M + 4 distinct values
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0,∞, 1,−1, α1 , . . . , αM/2 , 1/α1 , . . . , 1/αM/2 and g i l /≡ ĝ i l ○ Ψ. _ese show that _eo-
rem 2.1 is optimal.

We will apply_eorem 2.1 to the Gauss maps of completeminimal surfaces in R4.
We ûrst recall some basic facts ofminimal surfaces in R4. For more details, we refer
the reader to [2, 8, 9, 15]. Let X = (x 1 , x2 , x3 , x4)∶Σ → R4 be an oriented minimal
surface in R4. By associating a local complex coordinate z = u +

√
−1v with each

positive isothermal coordinate system (u, v), Σ is considered as a Riemann surface
whose conformal metric is the inducedmetric ds2 from R4. _en
(2.2) △d s2X = 0
holds; that is, each coordinate function x i is harmonic. With respect to the local
coordinate z of the surface, (2.2) is given by ∂∂X = 0,where ∂ = (∂/∂u−

√
−1∂/∂v)/2,

∂̄ = (∂/∂u +
√
−1∂/∂v)/2. Hence, each ϕ i ∶= ∂x idz (i = 1, 2, 3, 4) is a holomorphic

1-form on Σ. If we set

ω = ϕ1 −
√
−1ϕ2 , g1 =

ϕ3 +
√
−1ϕ4

ϕ1 −
√
−1ϕ2

, g2 =
−ϕ3 +

√
−1ϕ4

ϕ1 −
√
−1ϕ2

,

then ω is a holomorphic 1-form, and g1 and g2 are meromorphic functions on Σ.
Moreover, the holomorphic map G ∶= (g1 , g2)∶Σ → C × C coincides with the Gauss
map of X(Σ). We remark that the Gauss map of X(Σ) in R4 is the map from each
point of Σ to its oriented tangent plane, the set of all oriented (tangent) planes in R4

is naturally identiûed with the quadric

Q2(C) = {[w1 ∶w2 ∶w3 ∶w4] ∈ P3(C) ; (w1)2 + ⋅ ⋅ ⋅ + (w4)2 = 0}

in P3(C), andQ2(C) is biholomorphic to the product of the Riemann spheres C×C.
Furthermore the inducedmetric from R4 is given by
(2.3) ds2 = (1 + ∣g1∣2)(1 + ∣g2∣2)∣ω∣2 .
Applying _eorem 2.1 to the inducedmetric, we obtain _eorem 1.2.

Proof of_eorem 1.2 We ûrst show case (i). Since m1 = m2 = 1 from (2.3), we can
prove the inequality (1.1) by _eorem 2.1. Next we show case (ii). By _eorem 2.1, we
obtain 1/(p − 4) ≥ 1. _us, we have p ≤ 4 + 1 = 5.

Remark 2.3 Fujimoto [6] obtained the unicity theorem for theGauss maps G∶Σ →
Pm−1(C) of complete minimal surfaces in Rm (m ≥ 3). Recently, Park and Ru [16]
showed the result that is an improvement of this theorem. However, these results
do not contain _eorem 1.2, because corresponding hyperplanes in P3(C) are not
necessary located in general position (for more details, see [13, p. 353]).

3 Proof of Theorem 2.1

We ûrst recall the notion of chordal distance between two distinct points in C. For
two distinct points α, β ∈ C, we set

∣α, β∣ ∶= ∣α − β∣√
1 + ∣α∣2

√
1 + ∣β∣2
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if α /= ∞ and β /= ∞, and ∣α,∞∣ = ∣∞, α∣ ∶= 1/
√

1 + ∣α∣2. We note that if we take v1,
v2 ∈ S2 with α = ϖ(v1) and β = ϖ(v2), we have ∣α, β∣ is half of the chordal distance
between v1 and v2, where ϖ denotes the stereographic projection of the 2-sphere S2

onto C.
We next review the following three lemmas used in the proof of_eorem 2.1.

Lemma 3.1 ([5, Proposition 2.1]) Let g i l and ĝ i l be mutually distinct nonconstant
meromorphic functions on a Riemann surface Σ. Let q i l be a positive integer and
α l

1 , . . . , α l
q i l

∈ C be distinct. Suppose that q i l > 4 and g−1
i l (α

l
j) = ĝ −1

i l (α l
j) (1 ≤ j ≤ q i l ).

For a l
0 > 0 and ε with q i l − 4 > q i l ε > 0, we set

ξ i l ∶= (
q i l

∏
j=1

∣g i l , α
l
j ∣ log (

a l
0

∣g i l , α l
j ∣2

))
−1+ε

, ξ̂ i l ∶= (
q i l

∏
j=1

∣ĝ i l , α
l
j ∣ log (

a l
0

∣ĝ i l , α l
j ∣2

))
−1+ε

,

and deûne

(3.1) dτ2
i l ∶= ( ∣g i l , ĝ i l ∣2ξ i l ξ̂ i l

∣g′i l ∣
1 + ∣g i l ∣2

∣ĝ ′i l ∣
1 + ∣ĝ i l ∣2

) ∣dz∣2

outside the set E ∶= ⋃q
j=1 g

−1
i l (α

l
j) and dτ2

i l = 0 on E. _en for a suitably chosen a0, dτ2
i l

is continuous on Σ and has strictly negative curvature on the set {dτ2
i l /= 0}.

Lemma 3.2 ([5, Corollary 2.4]) Let g i l and ĝ i l be meromorphic functions on △R
satisfying the same assumption as in Lemma 3.1. _en for the metric dτ2 deûned by
(3.1), there exists a constant C > 0 such that

dτ2
i l ≤ C

R2

(R2 − ∣z∣2)2 ∣dz∣
2 .

Lemma 3.3 ([4, Lemma 1.6.7]) Let dσ 2 be a conformal �at-metric on an open Rie-
mann surface Σ. _en, for each point p ∈ Σ, there exists a local diòeomorphism Φ of
a disk ∆R = {z ∈ C; ∣z∣ < R} (0 < R ≤ +∞) onto an open neighborhood of p with
Φ(0) = p such that Φ is an isometry; that is, the pull-back Φ∗(dσ 2) is equal to the
standard Euclidean metric ds2E on ∆R and that, for a speciûc point a0 with ∣a0∣ = 1, the
Φ-image Γa0 of the curve La0 = {w ∶= a0s; 0 < s < R} is divergent in Σ.

Proof of_eorem 2.1 Since the given map Ψ provides a biholomorphic isomor-
phism between Σ and Σ̂,we denote the function ĝ i l ○Ψ by ĝ i l (l = 1, . . . , k) for brevity.
For each i l , we assume that g i l and ĝ i l share the q i l distinct values α l

1 , . . . , α l
q i l

. A�er
suitableMöbius transformations for g i l and ĝ i l , we can assume that

α1
q i1

= ⋅ ⋅ ⋅ = αk
q ik

=∞.

Moreover, we assume that either ds2 or d ŝ2, say ds2, is complete and g i l /≡ ĝ i l ○ Ψ
for each l (1 ≤ l ≤ k). _us, for each local complex coordinate z deûned on a simply
connected open domainU ,we can ûnd a nonzero holomorphic function hz such that

(3.2) ds2 = ∣hz ∣2
n

∏
i=1

(1 + ∣g i ∣2)m i/2(1 + ∣ĝ i ∣ 2)m i/2∣dz∣2 .
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Suppose that each q i l > 4 and

(3.3)
k

∑
l=1

m i l

q i l − 4
< 1.

_en by (3.3), we can suppose that q i l > m i l + 4 for each i l (l = 1, . . . , k). Taking
some positive number η0 with

0 < η0 <
q i l − 4 −m i l

q i l

for each i l (l = 1, . . . , k) and

(3.4) Λ0 ∶=
k

∑
l=1

m i l

q i l − 4 − q i l η0
= 1.

For a positive number η with η < η0, we set

λ i l ∶=
m i l

q i l − 4 − q i l η
(l = 1, . . . , k).

By (3.4) we get

(3.5) Λ ∶=
k

∑
l=1

λ i l =
k

∑
l=1

m i l

q i l − 4 − q i l η
<

k

∑
l=1

m i l

q i l − 4 − q i l η0
= Λ0 = 1.

Now we can choose a positive number η(< η0) suõciently near η0 satisfying

(3.6) Λ0 − Λ < min
1≤t≤k

{ m i t

q i t − 4 − q i tη
, m i tη
q i t − 4 − q i tη

} .

Using (3.5) and (3.6), we have

λ i l

1 − Λ
> 1 and

ηλ i l

1 − Λ
> 1 (l = 1, . . . , k).

Now we deûne a new metric

(3.7) dσ 2 = ∣hz ∣
4

1−Λ

k

∏
l=1

(
∏q i l −1

j=1 (∣g i l − α l
j ∣∣ĝ i l − α l

j ∣)1−η

∣g i l − ĝ i l ∣ 2∣g′i l ∣∣ĝ
′
i l ∣∏

q i l−1

j=1 (1 + ∣α l
j ∣2)1−η )

2λil
1−Λ

∣dz∣2

on the set Σ′ = Σ/E, where

E = { p ∈ Σ; g′i l (p) = 0, ĝ′i l (p) = 0 or g i l (p)(= ĝ i l (p)) = α l
j for some l} .

On the other hand, setting ε ∶= η/2, we can deûne another pseudo-metric dτ2
i l on

Σ given by (3.1) for each l , which has strictly negative curvature on Σ′. Take a point
p ∈ Σ′. Since themetric dσ 2 is �at on Σ′, by Lemma 3.3, there exists an isometryΦ sat-
isfying Φ(0) = p from a disk△R = {z ∈ C; ∣z∣ < R} (0 < R ≤ +∞) with the standard
metric ds2E on an open neighborhood of p in Σ′ with themetric dσ 2. We denote the
functions g i l ○Φ and ĝ i l ○Φ(= ĝ i l ○ Ψ ○Φ) by g i l and ĝ i l respectively (l = 1, . . . , k)
in the following. Moreover, for each i l , the pseudo-metric dσ 2

i l on △R has strictly
negative curvature. Since there exists no metric with strictly negative curvature on
C (see [4, Corollary 4.2.4]), we obtain that the radius R is ûnite. Furthermore, by
Lemma 3.3, we can choose a point a0 with ∣a0∣ = 1 such that, for the line segment
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La0 ∶= {w ∶= a0s; 0 < s < R}, the Φ-image Γa0 tends to the boundary of Σ′ as s tends
to R. _en Γa0 is divergent in Σ. Indeed, if not, then Γa0 must tend to a point p0 ∈ E.
_en we consider the following two possible cases:

Case 1: g i l (p0)(= ĝ i l (p0)) = α l
j for some l .

Since g′i l (p0) = (g i l − α l
j)′(p0) and ĝ ′i l (p0) = (ĝ i l − α l

j)′(p0), the function

∣hz ∣
2

1−Λ

k

∏
l=1

(
∏q i l −1

j=1 (∣g i l − α l
j ∣∣ĝ i l − α l

j ∣)1−η

∣g i l − ĝ i l ∣ 2∣g′i l ∣∣ĝ
′
i l ∣∏

q i l−1

j=1 (1 + ∣α l
j ∣2)1−η )

λil
1−Λ

has a pole of order at least 2ηλ i l /(1 − Λ) at p0. Taking a local complex coordinate ζ
in a neighborhood of p0 with ζ(p0) = 0, we can write themetric dσ 2 as

dσ 2 = ∣ζ ∣−4ηλ i l /(1−Λ)w∣dζ ∣2

with some positive function w. Since ηλ i l /(1 − Λ) > 1, we have

R = ∫
Γa0
dσ > C1 ∫

Γa0
∣dζ ∣/∣ζ ∣2ηλ i l /(1−Λ) = +∞.

_is contradicts that R is ûnite.

Case 2: g′i l (p0)ĝ
′
i l (p0) = 0 for some i l .

Without loss of generality, we may assume that g′i l (p0) = 0 for some i l . Taking
a local complex coordinate ζ ∶= g′i l in a neighborhood of p0 with ζ(p0) = 0, we can
write themetric dσ 2 as

dσ 2 = ∣ζ ∣−2λ i l /(1−Λ)w∣dζ ∣2

with some positive function w. Since λ i l /(1 − Λ) > 1, we have

R = ∫
Γa0
dσ > C2 ∫

Γa0
∣dζ ∣/∣ζ ∣λ i l /(1−Λ) = +∞.

_is also contradicts that R is ûnite.
Since Φ∗dσ 2 = ∣dz∣2, we get by (3.7)

∣hz ∣2 =
k

∏
l=1

⎛
⎝
∣g i l − ĝ i l ∣2∣g′i l ∣∣ĝ

′
i l ∣∏

q i l −1
j=1 (1 + ∣α l

j ∣2)1−η

∏q i l −1
j=1 (∣g i l − α l

j ∣∣ĝ i l − α l
j ∣)1−η

⎞
⎠

λ i l

.

By (3.2), we have

Φ∗ds = ∣hz ∣2
n

∏
i=1

(1 + ∣g i ∣2)m i/2(1 + ∣ĝ i ∣ 2)m i/2∣dz∣2

≤ C3

k

∏
l=1

⎛
⎜⎜⎜⎜
⎝

∣g i l − ĝ i l ∣ 2∣g′i l ∣∣ĝ
′
i l ∣(1 + ∣g i l ∣2)m i l /2λ i l (1 + ∣ĝ i l ∣ 2)m i l /2λ i l

×∏q i l −1
j=1 (1 + ∣α l

j ∣2)1−η

∏q i l −1
j=1 (∣g i l − α l

j ∣∣ĝ i l − α l
j ∣)1−η

⎞
⎟⎟⎟⎟
⎠

λ i l

∣dz∣2

= C3

k

∏
l=1

( µ2
i l

q i l

∏
j=1

( ∣g i l , α
l
j ∣∣ĝ i l , α

l
j ∣)

ε
( log( a l

0

∣g i l , α l
j ∣
) log( a l

0

∣ĝ i l , α l
j ∣
))

1−ε
)

λ i l

∣dz∣2 ,
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where µ i l is the function with dτ2
i l = µ2

i l ∣dz∣
2. Since the function x ε log1−ε(a l

0/x)
(0 < x ≤ 1) is bounded, we obtain that

ds2 ≤ C4

k

∏
l=1

(
∣g i l , ĝ i l ∣ 2∣g′i l ∣∣ĝ

′
i l ∣ξ i l ξ̂ i l

(1 + ∣g i l ∣2)(1 + ∣ĝ i l ∣ 2)
)

λ i l

∣dz∣2

for some C4. By Lemma 3.2, we have

ds2 ≤ C5
k

∏
l=1

( R
R2 − ∣z∣2 )

λ i l ∣dz∣2 = C5(
R2

R2 − ∣z∣2 )
Λ
∣dz∣2

for some constant C5. _us, we obtain that

∫
Γa0
ds ≤ (C5)1/2 ∫

La0

( R2

R2 − ∣z∣2 )
Λ/2

∣dz∣ < C6
R(2−Λ)/2

1 − (Λ/2) < +∞,

because 0 < Λ < 1. However, it contradicts the assumption that the metric ds2 is
complete.
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