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Uncertainty principles in holomorphic
function spaces on the unit ball

H. Turgay Kaptanoğlu

Abstract. On all Bergman–Besov Hilbert spaces on the unit disk, we find self-adjoint weighted shift
operators that are differential operators of half-order whose commutators are the identity, thereby
obtaining uncertainty relations in these spaces. We also obtain joint average uncertainty relations for
pairs of commuting tuples of operators on the same spaces defined on the unit ball. We further identify
functions that yield equality in some uncertainty inequalities.

1 Introduction

The uncertainty principle of Heisenberg originates in quantum physics. The fact that
quantum theory is based on operators on Hilbert spaces avails oneself of the consid-
eration of uncertainty principles as inequalities involving Hilbert space operators.

Theorem 1.1. Let L and M be self-adjoint operators on a Hilbert space H with inner
product ⟨⋅ , ⋅⟩H and the associated norm ∥ ⋅ ∥H . Then

∥(L − λI)u∥H∥(M − μI)u∥H ≥
1
2
∣⟨(LM −ML)u, u⟩H ∣(1)

for all λ, μ ∈ R and all u that lie in the domain of both LM and ML. Equality holds if
and only if (L − λI)u = iγ(M − μI)u for some γ ∈ R.

Mathematically, as soon as self-adjoint operators L and M are found on a Hilbert
space H whose commutator [L, M] ∶= LM −ML is a scalar multiple of the identity
operator whence the right side of (1) simplifies (the case of conjugate observables), an
explicit uncertainty principle appears. Theorem 1.1 and its easy proof can be found in
[F, G], coincidentally on pages 27 and 28 in both.

A few remarks are in order. The equality [L, M] = cI for some constant c cannot
be satisfied with both L and M bounded.

Theorem 1.2. If Z is a Banach algebra with unit e and x , y ∈ Z, then x y − yx ≠ e.
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Uncertainty principles in holomorphic function spaces on the unit ball 123

Theorem 1.2 can be found in [R, Theorem 13.6] and its proof does not even use the
completeness of Z. So, as warned in [FS, p. 211], the intersection of the domains of LM
and ML is crucial even when [L, M] = cI on the intersection.

Using the mathematical approach above, uncertainty principles with [L, M] = cI
are obtained in the Segal–Bargmann–Fischer–Fock space of entire functions weighted
with the Gaussian in [CZ] or in its generalizations in [L]. Further, [CZ] poses the
problem of finding uncertainty principles in Hardy and Bergman spaces. Some results
are presented in [So1, So2] on certain, but not all, Bergman and Dirichlet spaces on
the unit disk, but in these sources, one of the operators is always taken as the first-
order derivative, resulting in [L, M] ≠ cI. It is shown in [CD, Theorem 11] that there
are no first-order self-adjoint differential operators on weighted Bergman spaces on
the unit disk whose commutator is a nonzero multiple of the identity.

We find self-adjoint operators L and M with LM −ML = cI on a large family of
weighted symmetric (bosonic) Fock spaces of holomorphic functions on the unit disk
as studied in [Ka] and obtain uncertainty relations from them. This family includes all
Hilbert spaces among Bergman–Besov spaces, Dirichlet spaces, and the Hardy space
H2. The operators L and M are combinations of specific weighted shift operators,
and these shifts are fractional differential operators of order 1/2 and also nothing but
annihilation and creation operators. For contrast, uncertainty relations are obtained
in [UT] in which the operators are annihilation and number operators. We also obtain
joint average uncertainty relations for pairs of commuting tuples of operators in the
same family of Fock spaces on the unit ball in C

n which includes the Drury-Arveson
space. The formulation with tuples of operators seems new.

Our main results are Theorems 4.3 and 5.2.

2 Notation and preliminaries

Let B be the open unit ball in C
n with respect to the usual Hermitian inner product

⟨z, w⟩ = z1w1 +⋯+ znwn , where we conjugate the second variable following the
tradition in mathematics, and the associated norm ∣z∣ =

√
⟨z, z⟩. When n = 1, the ball

is the unit disk D in the complex plane.
In multi-index notation, α = (α1 , . . . , αn) is an n-tuple of nonnegative inte-

gers, ∣α∣ = α1 +⋯+ αn , α! = α1!⋯αn!, 00 = 1, and zα = zα1
1 ⋯zαn

n . We also let
ε j ∶= (0, . . . , 0, 1, 0, . . . , 0), where 1 is in the jth position and the right side of ∶=
defines its left side.

The Pochhammer symbol (p)q is defined by

(p)q =
�(p + q)

�(p)

when p and p + q are off the pole set −N of the gamma function �. This is a shifted
rising factorial since (p)k = p(p + 1)⋯(p + k − 1) for positive integer k. In particular,
(1)k = k! and (p)0 = 1. Stirling formula gives

�(r + p)
�(r + q) ∼ r p−q , (p)r

(q)r
∼ r p−q ,

(r)p

(r)q
∼ r p−q (Re r →∞),(2)
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124 H. T. Kaptanoğlu

where P ∼ Q means that ∣P/Q∣ is bounded above and below by two strictly positive
constants, that is, P = O(Q) and Q = O(P), for all P, Q of interest.

Definition 2.1. A function K(z, w) is called the reproducing kernel of a Hilbert space
H of functions defined on B if K(z, ⋅) ∈ H for each z ∈ B and

u(z) = ⟨u(⋅), K(z, ⋅)⟩H (u ∈ H, z ∈ B).

There is a one-to-one correspondence between reproducing kernel Hilbert spaces
and positive definite kernels. We deal with Hilbert function spaces whose elements
are holomorphic functions on the unit ball, the collection of all of which we denote
by H(B).

We use the term operator to mean a linear transformation whose domain D(T)
and range R(T) are subspaces of a complex Hilbert space H with no requirement on
boundedness.

If C is a densely defined operator on H, denoting its adjoint A ∶= C∗, then by [R,
Theorem 13.9], A is a closed operator. If A is also densely defined, then by [R, Theorem
13.12], A∗∗ = A. Further, by [Kr, Theorem 10.2-1], C ⊂ C∗∗ = A∗, that is, C = A∗ on the
domain of C. If we let L ∶= C + C∗ and M ∶= i(C − C∗), then L and M are self-adjoint
and

[L, M] = 2i[A, C].(3)

Moreover, if λ, μ ∈ R, then L − λI and M − μI are also self-adjoint and

[L − λI, M − μI] = [L, M].(4)

Self-adjointness, (3), and (4) hold on the intersection of the domains of AC and CA,
which is included in the intersection of the domains of C and A.

Two abstract uncertainty principles that follow from Theorem 1.1 and given in [F,
pp. 27–28] are the following.

Corollary 2.2. Let C and A be densely defined operators on a Hilbert space H with
the properties that A = C∗ and [A, C] = I.
(i) ∥(C + A− λI)u∥H∥(C − A− iμI)u∥H ≥ ∥u∥2

H for all λ, μ ∈ R and all u that lie in
the domain of both CA and AC.

(ii) ∥(C + A)u∥2
H + ∥(C − A)u∥2

H ≥ 2∥u∥2
H for all u that lie in the domain of both CA

and AC.

The passage from (i) to (ii) is via the elementary inequality a2 + b2 ≥ 2ab, so we do
not dwell on (ii) anymore. Inequality (1) can be generalized to hold also for complex
λ and μ as explained in [CZ]. However, for equality, λ and μ must be real. This
generalization works for any pairs of operators, and we do not dwell on this anymore
either.

If T = (T1 , . . . , Tn) and S = (S1 , . . . , Sn) are tuples of operators on the same
Hilbert space H, we use the notation T ⋅ S ∶= T1S1 +⋯+ Tn Sn . We define the com-
mutator of the tuples T and S by [T , S] ∶= T ⋅ S − S ⋅ T . With these definitions, if
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Uncertainty principles in holomorphic function spaces on the unit ball 125

τI = (τ1I, . . . , τn I) with τ j ∈ C, j = 1, . . . , n, and σI is similar, then by a straightfor-
ward calculation,

[T − τI, S − σI] = [T , S].(5)

3 Weighted symmetric Fock spaces

In [Ka], large families of weighted symmetric (bosonic) Fock spaces of holomorphic
functions on B are studied following [A]. They are the spaces in which we develop
uncertainty principles. The material in this section is taken from [Ka].

Definition 3.1. Let b ∶= (bk)k be a weight sequence satisfying b0 = 1, bk > 0 for all
k = 0, 1, 2, . . ., and

lim sup
k→∞

b1/k
k ≤ 1.(6)

We define positive-definite kernels by

Kb(z, w) ∶=
∞

∑
k=0

bk⟨z, w⟩k =
∞

∑
k=0

bk ∑
∣α∣=k

∣α∣!
α!

zαwα (z, w ∈ B)(7)

and spaces Fb as the reproducing kernel Hilbert spaces generated by these kernels.

Condition (6) causes the series in (7) to converge absolutely and uniformly for
(z, w) in compact subsets of B ×B, thereby defining Kb as a holomorphic function
of z ∈ B and a conjugate holomorphic function of w ∈ B.

Theorem 3.2. The space Fb consists of all f ∈ H(B) with Taylor expansions

f (z) =
∞

∑
∣α∣=0

fα zα(8)

converging absolutely and uniformly on compact subsets of B for which

∥ f ∥2
b ∶=

∞

∑
∣α∣=0

1
b∣α∣

α!
∣α∣! ∣ fα ∣2 < ∞(9)

and is equipped with the inner product

⟨ f , g⟩b ∶=
∞

∑
∣α∣=0

1
b∣α∣

α!
∣α∣! fα gα .

Further,

Bb ∶= { eb
α(z) ∶=

√
b∣α∣
∣α∣!
α!

zα ∶ α ∈ Nn }(10)

is an orthonormal basis for Fb . Moreover, holomorphic polynomials in the n variables
z1 , . . . , zn are dense in each Fb .
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In particular, for each α ∈ Nn ,

∥zα∥2
b =

1
b∣α∣

α!
∣α∣! .

We now describe a particular family of holomorphic kernels and associated Hilbert
function spaces that include many well-known spaces as special cases. They are
included in the family of Bergman–Besov spaces on B.

Definition 3.3. For q ∈ R and k = 0, 1, 2, . . ., we set

bk(q) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 + n + q)k

k!
, if q > −(1 + n),

k!
(1 − (n + q))k

, if q ≤ −(1 + n),

denote by Kq(z, w) ∶=
∞

∑
k=0

bk(q)⟨z, w⟩k the reproducing kernel with coefficient

sequence (bk(q))k and by Fq the Hilbert space generated by the kernel Kq .

By (2),

bk(q) ∼ kn+q (k →∞)(11)

for any q ∈ R assuring that (6) is satisfied. So an f ∈ H(B) given by (8) belongs to Fq
if and only if

∞

∑
∣α∣=1

1
∣α∣n+q

α!
∣α∣! ∣ fα ∣2 < ∞.(12)

Note that

Kq(z, w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
(1 − ⟨z, w⟩)1+n+q = 2F1(1 + n + q, 1; 1; ⟨z, w⟩), if q > −(1 + n),

2F1(1, 1; 1 − (n + q); ⟨z, w⟩), if q ≤ −(1 + n),

where 2F1 is the Gauss hypergeometric function. In particular,

K−(1+n)(z, w) = 1
⟨z, w⟩ log 1

1 − ⟨z, w⟩ .

Thus Fq is the weighted Bergman space A2
q for q > −1, the Hardy space H2 for q = −1,

the Drury–Arveson space A for q = −n, and the Dirichlet space D for q = −(1 + n).
We simply write A2 for the unweighted Bergman space when q = 0. If q < −(1 + n),
then the functions in Fq are bounded on B. The inner products and hence the norms
of all the spaces in the Fq family can be expressed as integrals on B of either the
functions or their sufficiently high-order derivatives (see [Ka] for details).

4 Uncertainty principles in spaces on the disk

We start with the case of the function spaces on the unit disk, that is, n = 1. Many of
the formulas in Section 3 are simplified mainly because now ∣α∣ = α = k. So the terms
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of the orthonormal basis Bb of Fb are eb
k(z) =

√
bk zk for k = 0, 1, 2, . . .; in particular,

eb
0 = 1. Equivalently,

∥zk∥2
b =

1
bk

(k = 0, 1, 2, . . .).(13)

The homogeneous expansion of a function f ∈ H(D) is now its Taylor expansion
which can also be written in terms of the orthonormal basis of Fb as

f (z) =
∞

∑
k=0

fk zk =
∞

∑
k=0

fk√
bk

eb
k(z) (z ∈ D).(14)

Definition 4.1. We define the operator Cb on Fb by first letting

Cb eb
k ∶=
√

k + 1 eb
k+1

on Bb and then by extending it linearly to its span.

Thus, the operator Cb on Fb is nothing but the weighted shift operator with the
weight sequence (

√
k + 1)k . Such operators are investigated in detail in [Sh]. Since

the weight sequence is unbounded, Cb is unbounded on Fb . However, it is densely
defined since polynomials are dense in every Fb .

By [Sh] or in a similar way to the unweighted shifts on Fb studied in [Ka], the
adjoint Ab ∶= C∗b of Cb is given by

Ab eb
k =
√

k eb
k−1 (k ≥ 1)

and Ab eb
0 = 0. Similarly, Ab is densely defined and unbounded on Fb , and A∗b = Cb .

The choice of the letters C and A is no coincidence, because these operators are exactly
the creation and annihilation operators on many-body quantum systems (see [T, p.
106] or [MR, p. 92]). If f ∈ Fb is given by (14), then

Cb f (z) =
∞

∑
k=0

√
k + 1

√
bk+1

bk
fk zk+1 ,(15)

Ab f (z) =
∞

∑
k=1

√
k
√

bk−1

bk
fk zk−1 .

Continuing,

AbCb eb
k = (k + 1)eb

k and Cb Ab eb
k = keb

k (k ≥ 1).

If f ∈ Fb , then

Cb Ab f (z) =
∞

∑
k=1

k fk zk =∶ N f (z),(16)

AbCb f (z) =
∞

∑
k=0
(k + 1) fk zk = N f (z) + I f (z),
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where N denotes the number operator of physics which is the same as the radial
derivative of mathematics. Thus,

(AbCb − Cb Ab) f = f , that is, [Ab , Cb] = I(17)

on the subspace ofFb that is the intersection of the domains if AbCb and Cb Ab . In fact,
(
√

k + 1)k is the only positive weight sequence with initial term 1 such that this exact
commutation relation holds. This commutation relation is well known, but in general
not in reference to an uncertainty relation (see [T, p. 104]). Here, we use it to formulate
uncertainty relations on spaces not generally considered in quantum physics and also
identify clearly the domains of the operators.

Let us describe the domains of the operators. The domain D(Cb) of Cb is the
subspace of all f ∈ Fb for which also Cb f ∈ Fb . So, by Theorem 3.2, (13), (15), and
(16),

Eb ∶= { f ∈ H(D) ∶
∞

∑
k=1

k
bk
∣ fk ∣2 < ∞} = D(Cb) = D(Ab),(18)

Gb ∶= { f ∈ H(D) ∶
∞

∑
k=1

k2

bk
∣ fk ∣2 < ∞} = D(AbCb) = D(Cb Ab).

It is clear that Gb ⊂ Eb ⊂ Fb and each inclusion is dense since all three sets contain
polynomials. By [R, Theorem 13.9], we conclude the following.

Proposition 4.2. Cb , Ab , AbCb , and Cb Ab are closed operators.

Let Lb = Cb + Ab and Mb = i(Cb − Ab) be the self-adjoint operators as in Sec-
tion 2. Then

Lb f (z) =
√

b1 f0z +
∞

∑
k=1
(
√

k + 1
√

bk+1

bk
z2 +

√
k
√

bk−1

bk
) fk zk−1

= 1√
b1

f1 +
∞

∑
k=1

⎛
⎝
√

k
√

bk

bk−1
fk−1 +

√
k + 1

√
bk

bk+1
fk+1
⎞
⎠

zk ,

where we change variables from k + 1 to k in the first sum and from k − 1 to k in the
second sum to write the second expression. We do not show Mb f (z) since it is so
similar to Lb f (z). Both Lb and Mb are closed operators with domain Eb . By (3) and
(17),

[Lb , Mb] = 2iI(19)

on Gb = D([Lb , Mb]). The uncertainty principle in Fb implied by Corollary 2.2(i) is
the following.

Theorem 4.3. For f ∈ Gb ⊂ Fb and λ, μ ∈ R,

∥(Cb + Ab − λI) f ∥b ∥(Cb − Ab − iμI) f ∥b ≥ ∥ f ∥2
b .

https://doi.org/10.4153/S0008439523000589 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000589
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For λ = μ = 0, equality holds for a function in Gb if and only if it is a complex scalar
multiple of

f b(z) =
∞

∑
l=0
(γ + 1

γ − 1
)

l√ 1 ⋅ 3 ⋅ 5⋯(2l − 1)
2 ⋅ 4 ⋅ 6⋯2l

√
b2 l z2 l

for some γ < 0. For (λ, μ) ≠ (0, 0), Taylor series coefficients of the functions that give
equality can be obtained from a three-term recurrence relation.

Proof By (19) and (4), for λ, μ ∈ R,

2i⟨ f , f ⟩b = ⟨[Lb , Mb] f , f ⟩b = ⟨[Lb − λI, Mb − μI] f , f ⟩b

= ⟨(Lb − λI)(Mb − μI) f , f ⟩b − ⟨(Mb − μI)(Lb − λI) f , f ⟩b

= ⟨(Mb − μI) f , (Lb − λI) f ⟩b − ⟨(Mb − μI) f , (Lb − λI) f ⟩b

= 2i Im⟨(Mb − μI) f , (Lb − λI) f ⟩b .

Hence,

∥ f ∥b ≤ ∣⟨(Mb − μI) f , (Lb − λI) f ⟩b ∣ ≤ ∥(Mb − μI) f ∥b∥(Lb − λI) f ∥b

on Gb , which is the desired uncertainty inequality.
Equality holds in the first inequality if and only if ⟨Mb f , Lb f ⟩b is pure imaginary

with positive imaginary part. Equality holds in the second inequality if and only if
Lb f = βMb f for some β ∈ C. Applying the two conditions together, we deduce that
equality holds in the uncertainty inequality for an f b(z) =

∞

∑
k=0

f b
k zk ∈ Gb if and only

if Lb f b − λ f b = iγ(Mb f b − μ f b) for some γ < 0. Equivalently,

f b
1√
b1
− λ f b

0 +
∞

∑
k=1

⎛
⎝
√

k
√

bk

bk−1
f b

k−1 +
√

k+1
√

bk

bk+1
f b

k+1 − λ f b
k
⎞
⎠

zk(20)

= γ f b
1√
b1
− iγμ f b

0 + γ
∞

∑
k=1

⎛
⎝
√

k+1
√

bk

bk+1
f b

k+1 −
√

k
√

bk

bk−1
f b

k−1 − iμ f b
k
⎞
⎠

zk .

Setting the coefficients of zk on both sides of (20) equal to each other, letting f b
−1 = 0

for convenience, and using γ < 0, we obtain

f b
k+1 =

γ + 1
γ − 1

√
k

k + 1

√
bk+1

bk−1
f b

k−1 −
λ − iγμ

γ − 1
1√

k + 1

√
bk+1

bk
f b

k(21)

for k = 0, 1, 2, . . .. From this three-term recurrence relation, it is possible to determine
the Taylor series coefficients of f b in terms of f b

0 and f b
1 and check for what γ < 0

this f b belongs to Gb . But the computations are cumbersome and we only work out
the details of the representative case λ = μ = 0. As a side note, if γ = 1, then the only
function satisfying (20) is the zero function.

For λ = μ = 0, the constant terms of (20) give

(1 − γ) f b
1 = 0(22)
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and the recurrence relation (21) takes the form

f b
k+1 =

γ + 1
γ − 1

√
k

k + 1

√
bk+1

bk−1
f b

k−1 .(23)

Since γ < 0, (22) gives f b
1 = 0. Then, from (23), f b

3 = f b
5 = ⋯ = 0 as well. Letting now

k = 2l − 1, the coefficients with even indices satisfy

f b
2 l = (

γ + 1
γ − 1

)
l√ 1 ⋅ 3 ⋅ 5⋯(2l − 1)

2 ⋅ 4 ⋅ 6⋯2l
√

b2 l f b
0 (l = 1, 2, . . .).

Denoting the first square root by d2 l and setting d0 = 1, we have

f b(z) = f b
0

∞

∑
l=0
(γ + 1

γ − 1
)

l

d2 l
√

b2 l z2 l = f b
0

∞

∑
l=0

cb
2 l z

2 l .(24)

Simply d2 l ≤ 1/
√

2 and by (18), f b ∈ Gb if and only if

∞

∑
l=1

l 2

b2 l
∣cb

2 l ∣2 =
∞

∑
l=1

l 2∣γ + 1
γ − 1

∣
2 l

d2
2 l < ∞.(25)

Since (d2 l)l is bounded, the finiteness in (25) is implied by the finiteness of

∞

∑
l=1

l 2∣γ + 1
γ − 1

∣
2 l

,

and this holds when ∣γ + 1∣ < ∣γ − 1∣, that is, γ < 0.
Thus, the precise range of values of γ for having a nontrivial f b ∈ Gb given in (24)

for which equality holds in the uncertainty inequality for λ = μ = 0 is γ < 0. ∎

We next specialize to the Fq spaces of Definition 3.3 in which the bk(q) have
specific values for q ∈ R, and use the subscript q as in Cq to denote an operator on
Fq . We have

Cqzk = cq
k+1z

k+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2 + q + k zk+1 , if q > −2,
k + 1√
−q + k

zk+1 , if q ≤ −2,

and

Aqzk = aq
k−1z

k−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k√
1 + q + k

zk−1 = 1√
1 + q + k

(zk)′ , if q > −2,

√
−q + k − 1 zk−1 =

√
−q + k − 1

k
(zk)′ , if q ≤ −2,

where primes denote differentiation. These explicit formulas show that both Cq and
Aq are fractional differential operators of order 1/2 since cq

k ∼ aq
k ∼ k1/2 for each q ∈ R.

For comparison, by (16), Cb Ab and AbCb are differential operators of order 1.
Three values of q give three important spaces; F0 is the Bergman space A2, F−1 is

the Hardy space H2, and F−2 is the Dirichlet space D. There is no distinction between
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the Hardy space and the Drury–Arveson space when n = 1. The precise forms of Cq
and Aq on these spaces can be read off from the above formulas.

Further, for f ∈ Fq ,

Lq f (z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
2 + q

f1 +
∞

∑
k=1
(
√

1 + q + k fk−1 +
k + 1√

2 + q + k
fk+1)zk , if q > −2,

√−q f1 +
∞

∑
k=1
( k√
−1 − q + k

fk−1 +
√
−q + k fk+1)zk , if q ≤ −2,

and Mq f (z) is similar. So Lq and Mq are also fractional differential operators of order
1/2 for each q ∈ R.

The domains of Cq , Aq , Lq , and Mq are all the same,Eq . A comparison of (18), (12),
and (11) reveals that Eq = Fq−1. Similarly, the domain of AqCq , Cq Aq , and [Lq , Mq]
is Gq = Fq−2. So, for example, the domain of C0 acting on the Bergman space A2 is
the Hardy space H2 and the domain of [L0 , M0] again acting on A2 is the Dirichlet
space D.

The formulas are especially simple for the Hardy space H2 = F−1 in which all the
bk(−1) = 1. An f ∈ H(D) belongs to H2 if and only if

∞

∑
k=0
∣ fk ∣2 < ∞. Further, C−1zk =

√
k + 1 zk+1, A−1zk =

√
k zk−1,

L−1 f (z) = f1 +
∞

∑
k=1
(
√

k fk−1 +
√

k + 1 fk+1)zk ,

and M−1 is similar. The functions that give equality in the uncertainty relation for
λ = μ = 0 are complex scalar multiples of

f (−1)(z) =
∞

∑
l=0
(γ + 1

γ − 1
)

l√ 1 ⋅ 3 ⋅ 5⋯(2l − 1)
2 ⋅ 4 ⋅ 6⋯2l

z2 l

with γ < 0.

5 Uncertainty principles in spaces on the ball

We now let n > 1, use the full multivariable orthonormal basis Bb of Fb on B given in
(10), and define creation and annihilation operator tuples.

Definition 5.1. For j = 1, . . . , n, we define the operators Cb j and Ab j on Fb by

Cb j e
b
α ∶=
√

α j + 1 eb
α+ε j

and Ab j e
b
α ∶=
√α j eb

α−ε j
(α j ≥ 1),

and by Ab j eb
α = 0 if α j = 0. We also define the operator tuples Cb ∶= (Cb1 , . . . , Cbn)

and Ab ∶= (Ab1 , . . . , Abn).

The Cb j and Ab j can be called weighted shift operators, but they shift to basis
elements that are not immediate neighbors. They are densely defined operators since
they are defined at least on polynomials and they are unbounded. For example, Cb j is
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unbounded at least on a subsequence ofBb starting with any eb
α and goes by increasing

α j by 1 each time.
As before, Ab j = C∗b j

and Cb j = A∗b j
for j = 1, . . . , n, so they are all closed operators.

Also,

Cb j z
α =
√
∣α∣ + 1

/
001b∣α∣+1

b∣α∣
zα+ε j and Ab j z

α =
α j√
∣α∣

/
001b∣α∣−1

b∣α∣
zα−ε j ,(26)

the latter for α j ≥ 1. Hence,

Cb j Ab j z
α = α jzα and Ab j Cb j z

α = (α j + 1)zα .

Thus,

(Cb ⋅ Ab) f (z) =
∞

∑
∣α∣=1
∣α∣ fα zα = N f (z),(27)

(Ab ⋅ Cb) f (z) =
∞

∑
∣α∣=0
(∣α∣ + n) fα zα = N f (z) + nI f (z),

where N is the number operator as before, resulting in

(Ab ⋅ Cb − Cb ⋅ Ab) f = n f , that is, [Ab , Cb] = nI

on the intersection of the domains of Ab ⋅ Cb and Cb ⋅ Ab .
The domains of Cb j and Ab j are obtained using (26) and (9) as

D(Cb j) = D(Ab j) = { f ∈ H(B) ∶
∞

∑
∣α∣=1

1
b∣α∣

α!
∣α∣! α j ∣ fα ∣2 < ∞}.

Then the domain of the tuples Cb and Ab is

Eb ∶= { f ∈ H(B) ∶
∞

∑
∣α∣=1

1
b∣α∣

α!
∣α∣! ∣α∣ ∣ fα ∣2 < ∞}.

Similarly, the domain of Ab ⋅ Cb and Cb ⋅ Ab is

Gb ∶= { f ∈ H(B) ∶
∞

∑
∣α∣=1

1
b∣α∣

α!
∣α∣! ∣α∣

2∣ fα ∣2 < ∞}.(28)

We define further operator tuples by Lb ∶= Cb + Ab = (Cb1 + Ab1 , . . . , Cbn + Abn)
and by Mb ∶= i(Cb − Ab) similarly. Explicitly,

Lb j f (z) = 1√
b1

fε j +
∞

∑
∣α∣=1

⎛
⎝
√
∣α∣
/
001 b∣α∣

b∣α∣−1
fα−ε j +

α j + 1
√
∣α∣ + 1

/
001 b∣α∣

b∣α∣+1
fα+ε j

⎞
⎠

zα ,

and Mb j f (z) is similar. The Cb j commute with each other and so do the Ab j . Also,
Cb j and Abk commute if j ≠ k. Then the Lb j commute among themselves and so do
the Mb j . Further, D(Lb) = D(Mb) = Eb .

We call Lb and Mb self-adjoint due to L∗b j
= Lb j and M∗b j

= Mb j for each j =
1, . . . , n. Since the sums in Lb and Mb and the products in Lb ⋅Mb and Mb ⋅ Lb are
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applied componentwise, we readily obtain

[Lb , Mb] = 2i[Ab , Cb] = 2inI

onGb = D([Lb , Mb]). We then obtain the following theorem, which introduces a joint
average uncertainty inequality for operator tuples.

Theorem 5.2. For f ∈ Gb ⊂ Fb and λ j , μ j ∈ R, for j = 1, . . . , n,

1
n

n
∑
j=1
∥(Cb j + Ab j − λ jI) f ∥b ∥(Cb j − Ab j − iμ jI) f ∥b ≥ ∥ f ∥2

b .

For n = 2 and λ j = μ j = 0, for j = 1, 2, equality holds for a function in Gb if and only if
it is a linear combination of f b and gb given in (32) and (33) in the proof.

Proof Using (5) with λ and μ in place of τ and σ , for f ∈ Gb ,

2in⟨ f , f ⟩b = ⟨[Lb , Mb] f , f ⟩b = ⟨[Lb − λI, Mb − μI] f , f ⟩b

= ⟨(Lb − λI) ⋅ (Mb − μI) f , f ⟩b − ⟨(Mb − μI) ⋅ (Lb − λI) f , f ⟩b

=
n
∑
j=1
(⟨Mb j f − μ j f , Lb j f − λ j f ⟩b − ⟨Lb j f − λ j f , Mb j f − μ j f ⟩b)

= 2i
n
∑
j=1

Im⟨Mb j f − μ j f , Lb j f − λ j f ⟩b .

Hence, on Gb ,

∥ f ∥2
b ≤

1
n

n
∑
j=1
∣⟨Mb j f − μ j f , Lb j f − λ j f ⟩b ∣ ≤

1
n

n
∑
j=1
∥Mb j f − μ j f ∥b∥Lb j f − λ j f ∥b .

For equality, we only work out the case indicated in the statement of the theorem,
because computations in the general case are too tedious. But we can let n > 1 be
arbitrary in the initial steps. As in the proof of Theorem 4.3, equality holds in the
first inequality if and only if each ⟨Mb j f , Lb j f ⟩b is pure imaginary with positive
imaginary part. Equality holds in the second inequality if and only if Lb j f = β j Mb j f
for some β j ∈ C for each j. The two conditions together imply that equality holds in the

uncertainty inequality for an f b(z) =
∞

∑
∣α∣=0

f b
α zα ∈ Gb if and only if Lb j f b = iγ j Mb j f b

for some γ j < 0. Equivalently,

1√
b1

f b
ε j
+
∞

∑
∣α∣=1

⎛
⎝
√
∣α∣
/
001 b∣α∣

b∣α∣−1
f b

α−ε j
+

α j + 1
√
∣α + 1

/
001 b∣α∣

b∣α∣+1
f b

α+ε j

⎞
⎠

zα(29)

=
γ j√
b1

f b
ε j
+ γ j

∞

∑
∣α∣=1

⎛
⎝

α j + 1
√
∣α + 1

/
001 b∣α∣

b∣α∣+1
f b

α+ε j
−
√
∣α∣
/
001 b∣α∣

b∣α∣−1
f b

α−ε j

⎞
⎠

zα

for each j.
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For each j, the constant terms of (29) give (1 − γ j) f b
ε j
= 0, which yields

f b
ε j
= 0(30)

since γ j < 0. Setting the coefficients of zα on both sides of (29) equal to each other and
using γ j < 0, we obtain

f b
α+ε j

=
γ j + 1
γ j − 1

√
∣α∣
√
∣α∣ + 1

α j + 1

/
001b∣α∣+1

b∣α∣−1
f b

α−ε j
.(31)

From now on, we consider only the case n = 2. So α = (α1 , α2), j = 1, 2, and we
have only ε1 = (1, 0) and ε2 = (0, 1). By (30) and (31), f b

(odd,even) = 0 and f b
(even,odd) = 0.

Further, by (31), every f b
(even,even) depends on f b

(0,0). Similar to the proof of Theorem
4.3, with α = (2l , 2m), we obtain

f b
(2 l ,2m) = (

γ1 + 1
γ1 − 1

)
l

(γ2 + 1
γ2 − 1

)
m√(2l + 2m)!

2l+m l ! m!
√

b2 l+2m f b
(0,0)

for l , m = 0, 1, 2, . . .. Denoting the third factor by p l m , these coefficients define

f b(z1 , z2) =
∞

∑
l ,m=0

(γ1 + 1
γ1 − 1

)
l

(γ2 + 1
γ2 − 1

)
m

p l m
√

b2 l+2m z2 l
1 z2m

2 .(32)

Again, by (31), every f b
(odd,odd) depends on f b

(1,1). With α = (2l + 1, 2m + 1), similar
to above, we obtain

f b
(2 l+1,2m+1) = (

γ1+1
γ1−1

)
l

(γ2+1
γ2−1

)
m √

(2l + 2m + 2)!
1⋅3⋯(2l+1)⋅1⋅3⋯(2m+1)

√
b2 l+2m+2

2b2
f b
(1,1)

for l , m = 0, 1, 2, . . .. Denoting the third factor by q l m , these coefficients define

gb(z1 , z2) =
∞

∑
l ,m=0

(γ1 + 1
γ1 − 1

)
l

(γ2 + 1
γ2 − 1

)
m

q l m

√
b2 l+2m+2

2b2
z2 l+1

1 z2m+1
2 .(33)

We must also check if f b and gb belong to Gb . It is a routine calculation that

α!
∣α∣! p2

l m ≤ 1 and α!
∣α∣! q2

l m ≤ 1.

Using the first, it is straightforward to see that the sum in (28) is

≤ 8
∞

∑
l ,m=1

(γ1 + 1
γ1 − 1

)
2 l

(γ2 + 1
γ2 − 1

)
2m

(l 2 +m2),

which is finite if and only if γ1 < 0 and γ2 < 0. This shows f b ∈ Gb for all γ1 < 0 and
γ2 < 0. Similarly, gb ∈ Gb for all γ1 < 0 and γ2 < 0. ∎
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Specializing to Fq , by Definition 3.3,

Lq j f (z) =
fε j√

1 + n + q
+
∞

∑
∣α∣=1

⎛
⎝
√

n + q + ∣α∣ fα−ε j +
(1 + α j) fα+ε j√
1 + n + q + ∣α∣

⎞
⎠

zα

if q > −(1 + n) and it equals

√
1 − n − q fε j +

∞

∑
∣α∣=1

⎛
⎝

∣α∣ fα−ε j√
−n − q + ∣α∣

+
√

1 − n − q + ∣α∣
1 + α j√
1 + ∣α∣

fα+ε j

⎞
⎠

zα

if q ≤ −(1 + n). The expressions for Cq j f (z), Aq j f (z), and Mq j f (z) are similar. By
(11), domains of operators behave as in n = 1: Eq = Fq−1 and Gq = Fq−2.

For n > 1, there are four important values of q. Still q = 0 and q = −1 give the
Bergman and Hardy spaces A2 and H2. But q = −n gives the Drury–Arveson space A
and q = −(1 + n) gives the Dirichlet spaceD. The formulas are simplest forA since the
Drury–Arveson space is special for multivariable operator theory due to bk(−n) = 1
for all k = 0, 1, 2, . . .. So

L(−n) j f (z) = fε j +
∞

∑
∣α∣=1
(
√
∣α∣ fα−ε j +

1 + α j√
1 + ∣α∣

fα+ε j)zα ,

and with q = −n = −2,

f (−2)(z1 , z2) =
∞

∑
l ,m=0

(γ1 + 1
γ1 − 1

)
l

(γ2 + 1
γ2 − 1

)
m

p l m z2 l
1 z2m

2 ,

which have almost the same forms as the corresponding quantities in the Hardy space
when n = 1.
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