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PROPER HOLOMORPHIC SELF-MAPS

OF QUASI-CIRCULAR DOMAINS IN C2

B. COUPET, Y. PAN and A. SUKHOV

Abstract. In this paper, we prove that every proper holomorphic self-map of
a smoothly bounded pseudoconvex circular or Hartogs domain of finite type in
C

2 is biholomorphic.

§1. Introduction

In this paper, we study proper holomorphic maps between domains of

finite type. A domain Ω is said to be quasi-circular if there exist integers p, q

(p+ q ≥ 1) such that whenever (z,w) ∈ Ω, (eipθz, eiqθw) ∈ Ω for θ ∈ [0, 2π].

We observe that when p = q = 1, Ω is circular; when p = 0 or q = 0, Ω is

Hartogs. The following is the main result that we shall prove in this paper.

Theorem 1. Let Ω be a smoothly bounded pseudoconvex quasi-circular

domain of finite type in C2. Then every proper holomorphic self-map of Ω

is a biholomorphism.

As a consequence for classical domains, we have

Corollary. Let Ω be a smoothly bounded pseudoconvex circular or

Hartogs domain of finite type in C2. Then every proper holomorphic self-

map of Ω is a biholomorphism.

Since the first result of Alexander [1] on the unit ball, it has been an

open question whether every proper holomorphic self-map of a smoothly

bounded domain in Cn is a biholomorphism. This problem still remains

open in general. However, some positive results have been proved in the case

of strictly pseudoconvex domains by Pinchuk [13], and in the case of pseu-

doconvex domains with real-analytic boundary by Bedford [2], Bedford-Bell

[3]. Also, for domains with various symmetries, see [4, 9, 10, 12]. A recent pa-

per of Berteloot [6] solves the problem for complete Reinhardt domains with
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C2 smooth boundary by studying the Lie algebra of holomorphic tangent

vector fields of the boundary. In a recent paper [9], we studied the struc-

ture of the branch locus of proper holomorphic maps between domains of

finite type. As a consequence, it was proved that every proper holomorphic

self-map of a smoothly bounded pseudoconvex complete circular domain in

C2 is a biholomorphism. In this paper we continue to use the main result

of [9] on the branch locus to study the case of quasi-circular domains of

finite type. Using the method of this paper, we also generalize the result of

[9] by dropping the assumption of completeness. In fact, we shall prove a

more general result. The paper is organized as follows. In Section 1, some

basic facts concerning self-maps are collected. In the case of Hartogs, The-

orem 1 is proved in Section 2 using a result concerning fixed points of an

analytic function. The remaining case is proved in Section 3 by reducing to

one variable and two-variable complex dynamics situation.

Acknowledgements. The authors are very grateful for the referee’s

comments and suggestions which improves the paper greatly.

§2. Basic facts

To proceed with the proof of the theorem, we need some basic facts.

Let F : Ω → D be a proper holomorphic map between smoothly bounded

pseudoconvex domains of finite type. It is well known that F extends

smoothly up to the boundary of Ω. The branch locus of F is defined to

be VF = {z ∈ Ω : detF ′ = 0}. It is well-known that the automorphism

group action Aut(Ω) × Ω −→ Ω, (F, z) 7→ F (z) extends smoothly to Ω.

Thus we can assume that Aut(Ω) acts smoothly on Ω and in particular on

∂Ω. We say that a subgroup G of Aut(Ω) acts transversally at a boundary

point p of Ω if the image of the tangent mapping (Ψp)
∗ : TeG −→ Tp(∂Ω)

associated to the mapping Ψp : G −→ ∂Ω, F 7→ F (p) is not contained in

the holomorphic tangent space Hp(∂Ω). We will denote by T the Lie group

of the unit circle. If T is a subgroup of Aut(Ω) and acts transversally near

a point p ∈ ∂Ω, we will simply say that Ω admits a transversal T-action at

p.

We recall the main result of [9] concerning the branch locus of proper

holomorphic maps.

Theorem 2. Let F : Ω → D be a proper holomorphic map between

bounded pseudoconvex domains of finite type in C2. Suppose that Ω admits
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a T-action which is transversal at p. Then for any irreducible component

V of the branch locus VF with p ∈ ∂V = V ∩ Ω, ∂V is a finite union of

T-orbits.

Although this result was not explicitly stated in [9], the proof there

would apply for a T-action which is locally transversal. It is this form that

we shall apply in this paper.

We recall certain general facts about boundary behavior of proper holo-

morphic mappings. Let F : D1 −→ D2 be a proper holomorphic mapping

between two smoothly bounded pseudoconvex domains in C2. We suppose

that F is smooth up to the boundary. Let rj be the defining function of Dj .

Following [2], we consider the Levi-determinant Λ∂Dj
of Dj defined as [2].

One has then

Λ∂D2
(F (p))|Jf (p)|2 = Λ∂D1

(p)

for any p ∈ ∂D1.

For any boundary point p ∈ ∂Dj we consider also the order of vanishing

of Λ∂Dj
at p denoted by τ∂Dj

(p), which is defined as follows: we choose

smooth real coordinates x = (x1, x2, x3) on ∂Dj such that p corresponds to

x = 0 , and the formal power series Λ∂Dj
(x) =

∑∞
j=0

∑

|α|=j aαx
α, where

α = (α1, α2, α3) is a multi-index and |α| = α1 + α2 + α3. We set τ∂Dj
(p) =

min{|α| : aα 6= 0} (of course, this definition does not depend on the choice

of coordinates). The following properties of τ are well known (see [2, 3]):

(1) τ∂Dj
(p) is an upper-semicontinuous function on ∂Dj .

(2) τ∂D2
(F (p)) ≤ τ∂D1

(p) and the equality holds if and only if VF does

not contain p, i.e. F is a diffeomorphism on the boundary near p . The

following lemma proves to be very useful.

Lemma 1. Let F : Ω → Ω be a proper holomorphic map between

smoothly bounded pseudoconvex domains of finite type in Cn. Then if VF 6=
∅, there exists an irreducible component Ln of VF n such that Li 6= Lj , i 6= j,

and

Ln+1 ⊂ F−1(Ln)

for n = 1, 2, 3 . . ., where Fn denotes the n-th iteration of F .

Proof. We claim that there exists a sequence (Ln) of complex varieties

such that Ln ⊂ VF n , Ln+1 ⊂ F−1(Ln).

We will construct the family (Ln) by induction. For every n we have

VF n+1 = VF n ∪ F−1(VF n). Fix any irreducible component L1 in VF . Then
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F−1(L1) is contained in VF 2 and contains an irreducible component L2.

Assume that the components L1, . . . , Ln are defined. Then F−1(Ln) is

contained in F−1(VF n) ⊂ VF n+1 . So there exists an irreducible compo-

nent Ln+1 such that Ln+1 ⊂ F−1(Ln). Note that since every restriction

F : Ln+1 −→ Ln is proper and F (Ln+1) ⊂ Ln, we have F (Ln+1) = Ln. We

note that the varieties (Ln) are distinct. Indeed, suppose by contradiction

that m is the first integer such that there exists p with Lm = Lm+p. If

m ≥ 2, we have F (Lm) = F (Lm+p) and so Lm−1 = Lm+p−1. This con-

tradicts the definition of m. So m = 1. Let p be the integer such that

L1 = L1+p. Since we have F p(L1+p) = L1, it follows that F p(L1) = L1.

Since L1 ⊂ VF p , letting Q ∈ L1 ∩ Ω, we see

· · · < τ∂Ω(F kp(Q)) < τ∂Ω(F (k−1)p(Q)) < · · · < τ∂Ω(F p(Q)) < τ∂Ω(Q) <∞,

which is obviously a contradiction.

We need a simple result from one complex variable dynamics on fixed

points, which is key to the study of the case of Hartogs domains.

Lemma 2. Let f be an analytic function in a neighborhood U of z0 with

f(z0) = z0. Suppose that fn(V ) is uniformly bounded for a neighborhood

V ⊂⊂ U . Then there exists no sequence zn in V converging to z0 such that

f(zn+1) = zn for all n.

Proof. We consider the Taylor series of f :

f(z) = z0 + λ(z − z0) + · · ·

where λ = f ′(z0), the multiplier of f at z0.

If λ = 0–superattracting, by [8], there is a conformal map ζ = φ(z) of a

neighborhood of z0 onto a neighborhood of 0 which conjugates f to ζp for

a positive integer p > 1, that is

g(ζ) = φ ◦ f ◦ φ−1(ζ) = ζp.

Letting ζn = φ(zn), it follows that ζn 6= ζm, n 6= m, and ζn → 0. We see

g(ζn+1) = ζn, therefore ζp
n+1 = ζn. This implies ζn+1 = ζ

1/pn

1 , a contradic-

tion to ζn → 0.
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If 0 < |λ| < 1-attracting, and not superattracting, by [8], there is a

conformal map ζ = φ(z) of a neighborhood of z0 onto a neighborhood of 0

which conjugates f to λζ, that is

g(ζ) = φ ◦ f ◦ φ−1(ζ) = λζ.

Letting ζn = φ(zn), it follows that ζn 6= ζm, n 6= m, and ζn → 0. As

before, g(ζn+1) = ζn, which implies λζn+1 = ζn, and ζn+1 = (1/λ)nζ1,

which converges to ∞, a contradiction.

The case that |λ| > 1 does not happen by the assumption that fn(V )

is uniformly bounded.

The remaining case is when |λ| = 1. By the same assumption, and

by [8] there is a conformal map ζ = φ(z) of a neighborhood of z0 onto a

neighborhood of 0 which conjugates f to λζ, that is

g(ζ) = φ ◦ f ◦ φ−1(ζ) = λζ.

As before, this also leads to a contradiction.

The following fact is well-known for biholomorphic maps, and its proof

for proper maps is included. This lemma is very important for incomplete

Hartogs and quasi-circular domains. Denote by A(r,R) = {r < |z| < R} an

annulus in the complex plane.

Lemma 3. If f(z) : A(r1, R1) → A(r2, R2) is a proper holomorphic

map with multiplicity m, then we have

R2

r2
=

(R1

r1

)m

.

Proof. It is well-known that f extends continuously to the boundary.

Consider φ(z) = ln |f(z)|. Then φ(z) is harmonic, continuous up to the

boundary. A simple topological argument shows that

lim
|z|→r1

φ(z) = a

where a = ln r2 or lnR2, and

lim
|z|→R

φ(z) = {ln r2, lnR2} \ {a}.
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Suppose f maps |z| = r1 to |z| = r2. Then we have φ(z) = ln r2 when |z| =

r1; φ(z) = lnR2 when |z| = R1. Therefore φ solves the Dirichlet problem.

However c(ln |z|− ln r1)+ln r2 also solves the same Dirichlet problem where

c =
ln R2

r2

ln R1

r1

.

By the uniqueness, it follows that c(ln |z| − ln r1) + ln r2 = ln |f(z)|, which

gives |f(z)| = |z|c. Since f is a proper holomorphic map with multiplicity

m, we have c = m, which proves the lemma.

Suppose that f maps |z| = r1 to |z| = R2. We only need to consider

1/f . The same proof then applies.

Lemma 4. Let F : Ω → D be a proper holomorphic map between

smoothly bounded pseudoconvex domains of finite type in Cn. Suppose that

E is a totally real manifold of dimension n in the boundary of Ω on which

τ is constant. Then we have V F ∩E = ∅.

Proof. If not so, we let p ∈ V F ∩ E. It follows that τ(F (p)) < τ(p),

and choosing q in E not in V F near p (we can do so, since ∂V F is smooth

at most points [12]), we have τ(F (p)) < τ(p) = τ(q) = τ(F (q)), which

contradicts the fact that τ is upper semicontinuous.

§3. The case of Hartogs

In this section, we shall prove Theorem 1 in case of Hartogs in two

cases. When the Hartogs domain is complete, we shall make use of the base

domain; when the domain is not complete, we shall exploit the incomplete-

ness.

Case 1. Complete Hartogs domains

A domain Ω is said to be a complete Hartogs domain if whenever

(z,w) ∈ Ω, (z, λw) ∈ Ω for |λ| < 1. The base of a complete Hartogs domain

Ω is defined as

E = Ω ∩ {w = 0}.

Lemma 5. Let Ω be a smoothly bounded pseudoconvex complete Har-

togs domain of finite type in C2. Then there exists a neighborhood U of

∂Ω ∩E so that ∂Ω ∩U is strictly pseudoconvex at every point except possi-

bly at points of ∂Ω ∩ E.
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Proof. Let ρ(z,w) be a defining function of Ω. Let (z0, 0) ∈ ∂E. We see

that ∇ρ(z0, 0) 6= 0, and the complex z plane is transversal to ∂Ω at (z0, 0).

Then we may assume ρz(z0, 0) 6= 0. Define

r(z,w) =

∫ 2π

0
ρ(z, eiθw)dθ.

Then r is a defining function of Ω, but r(z,w) = r(z, |w|). By the linear

change of coordinates, (z,w) → (z − z0, w), we have, rz(0, 0) 6= 0,

r(z,w) = <z + φ(=z, |w|).

Since Ω is of finite type, we have

φ(=z, |w|) = c|w|2k + 0(|=z| + |=zw| + |w|2k).

It is easy to see that ∂Ω is strictly pseudoconvex when w 6= 0 and small.

Lemma 6. Let F : Ω → D be a proper holomorphic map between pseu-

doconvex domains of finite type in C2. If Ω is complete Hartogs, then there

exist z1, z2, . . . , zn ∈ E such that the branch locus of F satisfies

VF ⊂
n
⋃

i=1

{z = zi} ∪ {w = 0}.

Proof. First we remark that the T-action on Ω is transversal whenever

(z,w) 6∈ ∂Ω∩E. Let V be an irreducible component of VF , and let p ∈ ∂V ,

p = (z0, w0). If p 6∈ ∂Ω ∩ E, By Theorem 2, V = {z = z0}. If p ∈ ∂Ω ∩ E,

it follows V = {w = 0} ∩ Ω. Now it suffices to prove that VF has finitely

many irreducible components. If not so, we have

VF ⊂
∞
⋃

i=1

{z = zi} ∪ {w = 0}.

Then zj must converges to the boundary of E. By Lemma 5, there exists

an neighborhood U of ∂Ω∩E such that ∂Ω is strictly pseudoconvex except

possibly at ∂Ω∩E; therefore ∂Ω∩{z = zi}∩U must be strictly pseudoconvex

points for i large, which contradicts the fact that branch locus never hits

strictly pseudoconvex points.
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Now we are ready to prove Theorem 1. Assume F = (f, g). By Lemma 1,

we have Ln ⊂ VF n . By Lemma 6, we have Ln = {z = zn}∩Ω, for some zn ∈
E. We claim first the sequence {zn} must stay away from the boundary of E

since by Lemma 2, ∂Ω∩U \∂E is strictly pseudoconvex and the branch locus

does not hit strictly pseudoconvex points. Without loss of generality, we may

assume that {zn} converges to z0 ∈ E. Since Ln+1 ⊂ F−1(Ln), F (Ln+1) =

Ln, which implies f(zn+1, w) = zn. It follows that ∂f
∂w (z,w), being analytic

in z in E has infinitely many zeros {zn} accumulating at an interior point z0
in E, therefore is identically zero. This implies that f(z,w) is independent

of w. Furthermore, we have F = (f(z), g(z,w)), f(z0) = z0 and g(z0, w) :

L0 → L0 is a proper self map, where of course L0 = {z = z0} ∩ Ω. It is

easy to see that f maps E into E, and f fixes z0 such that f(zn+1) = zn
with zn → z0. This is impossible by Lemma 2 and completes the proof of

Theorem 1 in the case of complete Hartogs domains.

Case 2. Incomplete Hartogs domains

Lemma 7. Let F : Ω → D be a proper holomorphic map between pseu-

doconvex domains of finite type in C2. If Ω is incomplete Hartogs, then

there exist z1, z2, . . . , zn, . . . such that the branch locus of F satisfies

VF ⊂
∞
⋃

i=1

{z = zi} ∩ Ω .

Proof. In fact, let V be an irreducible component of VF . If there exists

a point p = (z0, w0) in V ∩∂Ω so that the T-action is transversal at p, then

by Theorem 2, V = {z = z0} ∩ Ω. Now we assume that the T-action is

transversal at no points of V ∩ ∂Ω. Choose a smooth arc Γ in V ∩ ∂Ω so

that τ∂Ω(p) is constant for p ∈ Γ. This is possible since Ω is of finite type.

Considering E = Γ × T, this is a totally real manifold of dimension 2 for

which τ∂Ω is constant. By Lemma 4, we have V ∩E = ∅, which is obviously

a contradiction.

Now we are ready to prove Theorem 1 when Ω is incomplete. We first

claim that w 6= 0 on Ω. Indeed, this follows from pseudoconvexity and the

continuity principle.

Assume VF 6= ∅. By Lemma 1, there exists Ln ⊂ VF n such that

F (Ln+1) = Ln, and by Lemma 7, there exists zn such that

Ln = {z = zn} ∩ Ω.
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By the claim, there exist Rn, rn, Rn > rn > 0, such that

Ln = {(zn, w) : rn < |w| < Rn},

i.e., Ln is an annulus in the w plane. Since Ω is bounded, we may assume

that Rn → R, rn → r. Since w 6= 0 on Ω, we have r > 0. On the other

hand, g(zn+1, w) is a proper holomorphic map from rn+1 < |w| < Rn+1 to

rn < |w| < Rn; and without loss of generality, we may assume that g(zn, w)

has the same multiplicity m for any n, by Lemma 3, we have

Rn+1

rn+1
=

(Rn

rn

)m
,

which implies that
Rn+1

rn+1
=

(R1

r1

)nm
.

Letting n → ∞, we see the left hand side goes to R/r, while the right

hand side goes to infinity, arriving at a contradiction, and the proof of the

theorem is complete.

§4. Basins of attraction of quasi-homogeneous maps

If F : C2 → C2 is a holomorphic map such that F (0) = 0 and the

eigenvalues of F ′(0) are smaller than one in modulus, we may associate

with the basin of attraction at the origin, ΩF , which is defined by

ΩF = {z ∈ C2| lim
k→∞

F k(z) = 0}.

Following [7], if (p, q) = 1, we say that a holomorphic map P : C2 → C2

is quasi-homogeneous map of type (p, q) if the components (P1, P2) satisfy

P1(t
pz, tqw) = tnpP1(z,w) and P2(t

pz, tqw) = tnqP2(z,w). It is easy to see

that such a map must be a polynomial map.

Now let P be a quasi-homogeneous polynomial with P−1(0) = 0. Let

ΩP be the basin of attraction of P at the origin. One can see that ΩP is a

quasi-circular domain of type (p, q), bounded and pseudoconvex. Moreover,

P induces a non-injective proper holomorphic self-map of ΩP . One also has

that if z ∈ ΩP , then limn→∞ Pn(z) = 0; if z 6∈ ΩP , then limn→∞ ||Pn(z)|| =

∞.

As proved in [7], we notice that the dynamics of quasi-homogeneous

polynomial maps can be related to that of homogeneous ones. Let Φ(z,w) =
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(zq, wp). There exists a unique homogeneous polynomial Q(z,w) of degree

n such that

Φ ◦ P = Q ◦ Φ.

Also Φ is a proper map from ΩP to ΩQ, where ΩQ is the basin of attraction

of Q. It also follows that

Φ ◦ Pn = Qn ◦ Φ.

§5. Non-Hartogs case

In this section, we assume that Ω is quasi-circular of type (p, q) with

p, q ≥ 1. We also assume, without loss of generality, that (p, q) = 1. First

we use Theorem 2 to study the structure of the branching locus of proper

holomorphic maps from quasi-circular domains.

Lemma 8. Let F : Ω → D be a proper holomorphic map between pseu-

doconvex domains of finite type in C2. If Ω is quasi-circular of type (p, q),

then there exist p1, p2, . . . , pn such that the branch locus of F satisfies

VF =

n
⋃

i=1

{(λpzi, λ
qwi) : λ ∈ C} ∩ Ω,

where pi = (zi, wi) ∈ ∂Ω.

Proof. First the transversality of T -action can be verified as in [9,

Lemma 4.1]. It is easy to see by T -action that any irreducible component

of VF is given by {(λpz, λqw) : λ ∈ C} ∩ Ω for (z,w) ∈ ∂Ω, which contains

the origin since p, q ≥ 1 . We conclude that VF cannot have infinitely many

components by the compactness of VF near the origin. This proves the

lemma.

A quasi-circular domain of type (p, q) is said to be complete provided

that whenever (z,w) ∈ Ω, (λpz, λqw) ∈ Ω for |λ| ≤ 1. We will prove the

theorem in two cases as done in the Hartogs case.

Case 1. Complete quasi-circular domain of type (p, q)

We shall first prove that if the self-map is branched, then it must be a

(p, q) quasi-homogeneous polynomial map.
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Lemma 9. Let F : Ω → Ω be a proper holomorphic self-map of Ω. If

VF 6= ∅, then F = (f(z,w), g(z,w)) is given by

f(z,w) =
∑

pα+qβ=pk

Aαβz
αwβ

g(z,w) =
∑

pα+qβ=qk

Bαβz
αwβ,

for some positive integer k.

Proof. By Lemma 1, there exists Ln ⊂ VF n such that F (Ln+1) = Ln,

and F is proper from Ln+1 → Ln where Ln are distinct. By Lemma 8, there

exists (zn, wn) ∈ ∂Ω such that Ln = {(λpzn, λ
qwn) : λ ∈ C} ∩ Ω. It is easy

to see F (0) = 0. Since {Ln} are different we may assume that zn 6= 0 for

n = 1, 2, 3 . . .. Therefore

Ln = {(z,w) : wp = anz
q} ∩ Ω,

where an = wp
n/z

q
n. Since F : Ln+1 → Ln is proper, it follows that if |λ| = 1,

then

|f(λpzn+1, λ
qwn+1)| = |zn|

|g(λpzn+1, λ
qwn+1)| = |wn|.

Therefore, we have the function φn(λ) = f(λpzn+1, λ
qwn+1) maps |λ| < 1

properly to |λ| < |zn|, and the function ψn(λ) = g(λpzn+1, λ
qwn+1) maps

|λ| < 1 properly to |λ| < |wn|. It follows that φn(λ) is a finite Blaschke

product. We claim actually that φn(λ) = cnλ
N where cn is a constant and

N is independent of n.

In order to prove this, we first prove that F |−1
Ln+1

(0) = 0 for sufficiently

large n. In fact if not, there are infinitely many n for which there exist zn,

0 6= zn ∈ Ln+1 such that F (zn) = 0. Since Ln are only in common at 0, we

see zn are different, and therefore F−1(0) has infinitely many points, which

contradicts the properness of F .

Now we only have to prove φ−1
n (0) = 0 as well since φn is a finite

Blaschke product. Indeed, if there is c 6= 0, |c| < 1 such that φn(c) = 0.

Then since F : Ln+1 → Ln, F (cpzn+1, c
qwn+1) ∈ Ln, there exists λ0 such

that

F (cpzn+1, c
qwn+1) = (λp

0zn, λ
q
0wn).
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Since F−1(0) = 0 then λ0 6= 0, and therefore φn(c) = f(cpzn+1, c
qwn+1) =

λp
0zn 6= 0, which is a contradiction (notice zn 6= 0). Therefore φn(λ) =

cλk for some k. where k is at most of the multiplicity of F . We can also

assume that all φn have the same multiplicity, say N , which is at most the

multiplicity of F . Therefore φn(λ) = cnλ
N .

Consider the Taylor series of f(z,w) in a small neighborhood of (0, 0)

f(z,w) =
∑

α,β

Aαβz
αwβ .

Rewrite f(z,w) in terms of weight (p, q),

f(z,w) =
∞

∑

m=0

fm(z,w)

where

fm(z,w) =
∑

pα+qβ=m

Aαβz
αwβ.

We have

φn(λ) =

∞
∑

m=0

λmfm(zn+1, wn+1)

From φn(λ) = cnλ
N , for all n, it follows that fj(zn+1, wn+1) when j 6= N and

for all n. However, a simple computation shows, invoking an+1 = wp
n+1/z

q
n+1

fj(zn+1, wn+1) =
∑

pα+qβ=j

Aαβz
α
n+1w

β
n+1

= z
j/p
n+1

∑

pα+qβ=j

Aαβa
β/p
n+1.

Since an are different, we conclude that a
1/p
n are zeros of the polynomial:

∑

pα+qβ=j

Aαβt
β = 0,

where j 6= N . A polymonial cannot have infinitely many zero unless it is

zero. Therefore, we conclude that

Aαβ = 0
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whenever pα + qβ 6= N . Therefore we have that f is a quasi-homogeneous

polynomial of weight (p, q) of degree N , i.e.,

f(z,w) =
∑

pα+qβ=N

Aαβz
αwβ.

Similarly, using ψn(λ) we can prove that g(z,w) is a quasi-homogeneous

polynomial of weight (p, q). In fact, we notice

gp(λpzn+1, λ
qwn+1) = anf

q(λpzn+1, λ
qwn+1),

which implies that ψn(λ) = cnλ
l for some l and that the degree of g is

Nq/p. Since (p, q) = 1, we have N = kp, and the degree of g is qk. We set

f(z,w) =
∑

pα+qβ=kp

Aαβz
αwβ

g(z,w) =
∑

pα+qβ=kq

Bαβz
αwβ.

That is to say F is a quasi-homogeneous polynomial map of weight (p, q)

of degree k, so the lemma is proved.

To complete the proof of the theorem, we have to use some facts from

two variables complex dynamics. Let ΩF be the basin of attraction of F .

Then there exists a unique homogeneous polynomial map Q given in the

last section such that

Φ ◦ F = Q ◦ Φ,

where Φ = (zq, wp) as before. We first claim that ΩF = Ω. Indeed,

assume that Fn converges to G on Ω. For every λ ∈ C, |λ| < 1, we

have Fn(λpz, λqw) → G(λpz, λqw) as n → ∞. However, Fn is a quasi-

homogeneous polynomial map of weight (p, q) of degree kn, therefore

Fn(λpz, λqw) = λkn

Fn(z,w)

which converges to zero. Hence G = 0 and Ω ⊂ ΩF . But F is proper and

F (∂Ω) = ∂Ω. Hence ΩF is contained in Ω.

Now we notice that Φ(Ω) = ΩQ. Therefore the boundary of ΩQ is

smooth except possibly when z = 0 or w = 0. Therefore ΩQ contains

strictly pseudoconvex points.

We denote by π : C2\{0} −→ CP the canonical projection. Since Q is

nondegenerate, it takes lines to lines in C2 and naturally induces a rational
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mapping ϕ : CP −→ CP on the projective space. We claim that its Julia

set Jϕ does not coincide with CP . For the proof we apply an argument

of [6]. Suppose by contradiction it does. It is known (see [8, pp. 56–58])

that in this case for every point a ∈ Jϕ there exists a neighborhood U

and a positive integer n such that ∪n
k=1ϕ

k(U) covers CP . Take a such that

π−1(a) contains a strictly pseudoconvex point p in ∂ΩQ. Then there exists

a neighborhood W of p in C2 such that ∪n
k=1Q

k(W ) covers ∂ΩQ . Since Q

takes any strictly pseudoconvex point to a strictly pseudoconvex one, we

get that Ω is strictly pseudoconvex and by [13] VQ is empty: a contradiction.

Thus, Jφ is different from CP . But by the classical results Jφ is a closed

subset of CP with empty interior. Therefore ∂ΩQ ∩ π−1(Jφ) is a nonempty

open subset of ∂ΩQ which in view of [11], Proposition 7.1, is foliated by

Riemann surfaces; this is impossible since ΩQ is a proper image of the finite

type domain ΩQ. This completes the proof of the theorem.

Case 2. Incomplete quasi-circular domain of type (p, q).

Now we assume that Ω is not complete. We first observe that (0, 0) 6∈ Ω.

Indeed, this follows from using continuity principle and pseudoconvexity.

Given a point p = (z,w) in ∂Ω, we consider the complex curve

Lp = {(λpz, λqw) : λ ∈ C}.

Now we go back to the proof of the theorem. By Lemma 1, we have

Ln ⊂ VF n and F (Ln+1) = Ln, and F is proper from Ln+1 to Ln with

multiplicity m for all n.. By the fact proved above Ln = Lpn
∩ Ω where pn

is a boundary point. Since Ω is incomplete, there exist rn, Rn, Rn > rn > 0

such that

Ln = {(λpzn, λ
qwn) : rn < |λ| < Rn}.

We assume rn → r,Rn → R. Since Ω does not contain (0, 0), we have r > 0.

Consider the map φ ◦ F ◦ π(λ) : {rn+1 < |λ| < Rn+1} → {rn < |λ| < Rn}
where φ : λ → (λpzn+1, λ

qwn+1), and π is the projection from C2 → C.

Then it is a proper map. By Lemma 3, we have

Rn+1

rn+1
=

(Rn

rn

)m
,

which implies that
Rn+1

rn+1
=

(R1

r1

)nm
.
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Letting n → ∞, we see the left hand side goes to R/r, while the right

hand side goes to infinity, arriving at a contradiction, and the proof of the

theorem is complete.
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