
A CONTRIBUTION TO CHRONOGEOMETRY 

A. D. ALEXANDROV 

To H. S. M. Coxeter on his sixtieth birthday 

This paper deals with systems of pairwise equal and parallel cones in the 
affine w-space En, i.e. cones of a system are obtained one from another by means 
of translations. This subject is closely connected with the geometrical inter­
pretation of the theory of relativity, so one may say that it belongs to "elemen­
tary chronogeometry." The term "chronogeometry," which is due, it seems, to 
A. D. Fokker, means the relativistic theory of space-time. From the most 
general viewpoint, chronogeometry may be defined as a theory of spaces where 
"a geometry" is determined by a relation of precedence of points. Every point 
X of such a space is the vertex of a "cone" Cx of points preceded by X. We 
speak of "elementary chronogeometry" if these "cones" are ordinary cones in 
an affine space. 

1. Transformat ions preserving a system of cones. 

1.1. Let C be a cone in the affine n-space En, i.e. a point set consisting of 
rays issuing from a given point, the vertex of C. Suppose that C has the follow­
ing properties: (1) C does not lie in a plane, (2) its closed convex hull HC does 
not contain straight lines, (3) HC is not a Descartes product of a ray and an 
(n — 1)-dimensional cone. The latter condition implies that n > 2. 

THEOREM 1. Let each point X £ Enbe the vertex of the cone Cx equal and parallel 
to a given C with the above properties. Then every one-to-one mapping f of En onto 
itself that transforms every Cx into Cf(X) is linear. 

Remark. I t can be easily seen that the statement of our theorem becomes 
false as soon as one of the conditions (l)-(3) on C is omitted. However, if C 
is not convex, conditions (2) and (3) may be replaced by weaker ones; we shall 
discuss this below. 

COROLLARY. The mappings preserving the system of elliptic cones are Lorentz 
transformations. 

The essence of this statement is that even continuity of mappings is not 
assumed. By our theorem the mappings are linear and, therefore, according 
to a well-known result, they prove to be Lorentz transformations. (This 
corollary was proved in (2).) 
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1.2. As a preliminary to the proof of our theorem, we shall prove a few 
lemmas. In these lemmas C, Cx,f denote the cones and the mappings involved 
in our theorem, but the condition (3) on C may be omitted. 

LEMMA 1. The mapping/ preserves the system of the convex hulls of the cones Cx. 

Proof. Put Cx = Cx° and define for each X and each integer i > 0 the set 

Cx* = \J Cy'-1 

the sum of all Cy*"1 with F G Cx*"1. 
If A, B G Cx*"1 and F lies on the segment XA, the ray from F parallel to 

Xi3 crosses the segment AB. Therefore, if A, B G Cx*-1, the segment ^45 C Cx*. 
Hence it follows that 

Cxœ = U Cx* 

is the convex hull of Cx (not necessarily closed). 
With this construction, the mapping/ that preserves the system of the cones 

Cx preserves the system of Cx
œ as well. 

1.3. LEMMA 2. The mapping fis continuous. 

Proof. By Lemma 1 we can replace the cones Cx by their convex hulls. Thus 
we suppose that the Cx are convex. We exclude the point X from Cx. 

Define for each X the set Cx~ of all points F for which CY Z) Cx: 

Cx~= {Y:CYDCX}. 

The set Cx~ has the following properties: 
(1) Cx~ is a cone containing the cone symmetric to Cx with respect to X and 

contained in the closure of this cone. 
(2) If P is a supporting plane of the closure Cx of Cx such that 

pr\cx* (X), 
then P P\ Cx~ j£ (X) (CXl Cx~ being cones, these conditions mean that P has 
common rays with both CX} Cx~). 

The first property is evident because of the convexity of Cx. In order to 
verify the second, we cross Cx by a plane Q such that Dx = Cx C\ Qis bounded ; 
Dx is a convex set. The section DY = CY r\ Q is a set homotetic to £>x with 
respect to the point Z in which Q crosses the line XY. If F G dCx~, then 
Z G d£>x. 

If P is a supporting plane of Cx and CXC\P ^ (X), the (w — 2)-plane 
i£ = P Pi Q is a supporting plane of Dx = Cx C\ Q. 

I t follows that property (2) is equivalent to the following: For every 
supporting plane R of Dx the set P P\ Dx contains at least one point Z such 
that the set obtained from Dx by a homotetic enlargement with centre Z 
contains Dx-
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This is evident, for if Dx H R is empty, every Z Ç Dx H R satisfies this 
condition, and otherwise we take Z £ Dx C\ R. 

Now we construct the cone C^r which is determined by CY~ in the same way 
as Cx~ is determined by CY. By the definition of the cones Cx~ and C^r, the 
mapping/ preserves the system of these cones. 

We replace Cx by Cx= and denote it by Cx\ the vertex X is excluded from 
Cx=. 

Consider the sets NXY — Cx C\ CY~. 
If F lies within Cx, the set NXY intersects every Nxz with Z £ Cx. But if 

F Ç dCXl this is not so, for Cx has faces (its intersections with supporting 
planes) which have no common points (X being excluded). 

Thus the inner points of Cx differ from the boundary ones by a property 
determined by the sets NXY. But the mapping/ transforms these sets into the 
same sets ; therefore it preserves the interior of the cones Cx. 

If a given point A is the inner point of the cones Cx, CY~, the intersection 
CXC\ CY~ is a neighbourhood of A. Therefore/ preserves neighbourhoods, 
and Lemma 2 is proved. 

1.4. Lemmas 1 and 2 imply that the mapping/ preserves the system of the 
closed convex hulls HCX of the cones Cx. 

LEMMA 3. The mapping f transforms the tangent planes of the cones HCx into 
tangent planes, i.e. P being a tangent plane of HCx,f(P) is one of HCf(X). 

Proof. Replace the cones Cx by HCX and denote HCX by Cx. Take a point X 
and a point Y G dCx, Y ^ X. Define the set 

TXY = \JCZ (X 6 Cz,Ye dCz), 

the sum of all Cz with X G Cz, Y G dCz. 
The set TXY consists of the rays drawn from Y through all points belonging 

to Cx. This statement becomes evident if we draw through Y a plane Q such 
that Cx C\ Q is bounded. Then the sections Cz C\ Q of the cones Cz with 
X Ç CZf Y £ dCz are homotetic to Cx C\ Q with respect to F, and 

czr^QDCxr\Q. 

Therefore the sum \J(CZ C\ Q) oî all these sections contains all rays drawn from 
Y through the points of Cx C\ Q. Correspondingly, \JCZ consists of rays drawn 
from F through the points of Cx. 

If the closure TXY of TXY is a half-space, dTXY is the tangent plane to Cx 

at F. 
In general, TXY is a convex cone with the vertex F and contains the line XY. 

Let RXY be the maximal plane through F which is contained in fXY. For a pair 
of points X', F , TX.T. = TXY if and only if X', Y' € RXY- Thus RXY is the 
set of all X' for which there exist Y' such that TX>Y> = TXY. 

Owing to the given representation of the sets TXYl the mapping/ transforms 
them into the same sets. Therefore, it transforms the planes RXY into the same 
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planes. Being continuous, it preserves their dimensionality. Hence, in particu­
lar, it transforms tangent planes RXY = dTXY into tangent planes. 

1.5. The proof of Theorem 1. From the conditions ( l )-(3) imposed on the 
cone C its closed convex hull HC has n tangent planes Pt which bound an 
n-faced solid angle V; HC has more tangent planes Q, and no edge of V lies 
in all Q (because of the condition (3)). Take an edge e oi V and a Q which 
does not pass through e. Let e' be another edge which does not lie in Q. By 
Lemma 3 the mapping / transforms the planes Pu Q into planes and the 
planes parallel to them remain parallel. Therefore the 2-plane R = (e, e') is 
transformed into a 2-plane Rr and the lines parallel to e, e' and d = R C\ Q 
remain, respectively, parallel. Hence it follows that the mapping / of R onto 
R' is linear. Thus / is linear on all edges e of V and on all lines parallel to 
them, i.e. / is linear. 

2, "Spaces" and " t imes" determined by a system of cones. 
2.1. Let C be a cone in En consisting of rays passing from a given point 0 

through all points of a bounded closed domain in an (n — 1)-plane which does 
not contain 0. We consider the system of cones Cx homotetic (equal and 
parallel) to C with the vertices X at all points X Ç En. Cx~ denotes the cone 
symmetric to Cx with respect to X. 

The system {Cx\ of the cones Cx determines in En a ''geometry." In the 
study of it we follow an analogy with the relativistic theory of space—time. 
The surfaces dCx of the cones Cx are analogous to the light cones. 

Definition 1. By a space (with respect to {Cx}) we understand the set of all 
straight lines 2 parallel to a ray passing from an X within Cx. I t is an in — 1)-
dimensional affine space, the lines 8 being its points. 

This definition corresponds to the physical concept of space determined with 
respect to a given inertial system. The system is connected with a particle 
whose motion is depicted by the line 8o. A point in the space is determined by 
a line of events—the inertial motion of a particle which has zero velocity in the 
given system of reference. Such lines 8 are parallel to 8o. 

Definition 2. Let A, B be two points, B lying within the cone CA. The line 
80 = AB determines the space R consisting of lines 8||80. Let S(AB) denote 
the set of all 8 G R which intersect the set CA C\ CB~. We say that S(AB) 
is a sphere in R around the point 80 = AB. According to this definition the 
centre of the sphere is its centre of symmetry, and all spheres in the same space 
are homotetic to each other. 

The boundary of S(AB) consists of lines crossing dCA ^ dCB~- dCA is the 
cone depicting the propagation of light from the event A, and dCB~ depicts 
the propagation of light to the event B. Physically speaking, the light 
emitted from A is reflected at the points 2 € dS(.4.£>) and is focused at B. 
Thus our definition has the following physical meaning. The distances from a 
given point 80 to other points 2 are equal if the light emitted from 80 at one 

https://doi.org/10.4153/CJM-1967-102-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-102-6


CHRONOGEOMETRY 1123 

moment (event -4), being reflected at the points 8, returns to 80 simultaneously 
(event I?). 

2.2. THEOREM 2. All spheres in all spaces {i.e. for all pairs A, Bin Definition 2) 
are convex, if and only if Cx are convex. 

Proof. Let N be a ray in dCA at which dCA is not convex, i.e. CA has no local 
supporting plane along N. Then, if B0 £ N, the set of lines 2\\N which cross 
CA ^ CBo~ is not convex. Therefore, as soon as B is sufficiently near to B0, the 
sphere S(AB) will not be convex either. 

But, according to a well-known theorem, a closed domain which has local 
supporting planes at every boundary point is convex; cf. (4). Hence it follows 
that if Cx are not convex, then non-convex spheres exist. 

On the other hand, if Cx are convex, all spheres are, obviously, convex. 
Thus our theorem is proved. 

If we accept a given S(AB) for the unit sphere, we may define the distance 
in the space R by means of translation and homotetic transformation of 
S(AB). 

The distance satisfies the ordinary conditions imposed on a metric if and only 
if the spheres are convex and symmetrical with respect to their centres. The 
latter condition being fulfilled, our Theorem 2 proves to be equivalent to the 
following: 

THEOREM 2a. The distances determined in spaces by means of our spheres are 
the distances in the ordinary sense (i.e. they satisfy the triangle inequality) for 
every space if and only if the cones Cx are convex. 

2.3. Now we introduce the concept of "time." 

Definition 3. Let R be a space (Definition 1) and X Ç En. We say that a point 
F Ç En is simultaneous with X with respect to R : F sim X (R), if there exist 
two points A, B, B £ CA, such that X is the middle of the segment AB, the 
line AB belongs to R, and F G dCAC\ dCB~. 

This definition is nothing but the well-known Einstein definition of the 
simultaneity of events. The surface dCA of the cone CA depicts the light 
propagating from A, and dCB~ depicts the light that, being reflected, returns to 
the same spatial point 8 at the moment B. The event F of reflection is, by 
definition, simultaneous with the event X that is the middle of the segment of 
events between A and B. 

The set T(XR) of all F: F sim X (R) is a cone with the vertex X. Cones with 
different X are equal and parallel to each other. 

The relation F sim X (R) is symmetric and transitive if and only if the 
cones T(XR) are planes. This follows from the observation that the symmetry 
and transitivity of this relation are equivalent to the statement that 

T(XR) = T(YR) 
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for every Y G T{XR), i.e. every point Y G T(XR) is the vertex of this cone 
T(XR) and T(XR) is a plane. 

2.4. THEOREM 3. The relation Y sim X (R) is symmetric and transitive if 
and only if there exists a plane P such that the section P C\ CA has a centre of 
symmetry, which lies on the line S G R passing through A. If M is this centre, 
T{MR) = P. (All planes parallel to P have the same property with respect to 
all cones CA such that P C\ CA has inner points.) 

Proof. Suppose that a plane P with the indicated property exists. Let M 
be the centre of symmetry of P H CA. Then, B being symmetrical to A with 
respect to M, dCAC\ dCB~ is contained in P. Hence T(MR) = P and, there­
fore, according to the above observation, the relation "sim" (with respect to 
the space R determined by the line AB) is symmetric and transitive. 

Now, suppose that the relation "sim" is symmetric and transitive. Then, as 
is shown above, the cones T(XR) are planes. 

Take a line £ G R and two points A, B G S, B G CA, and let M be the middle 
of the segment AB. Then, by the very definition of the set T(MR), the set 
dCA C\ dCB~ is contained in the plane T = T(MR). This set bounds in T the 
set S) consisting of points in which the lines 8 G S{AB), i.e. those crossing 
CA P\ CB~, cross the plane T. Hence it follows that © C ©A = P ^ CA, 
2) C ©* = T r\ CB~. 

On the other hand, d£)A = T H dCA, d^)B = T C\ dCB, and, therefore, 
d35 is a part of d^)A and d^)B. But S)A, ^)B being closed domains, i.e. connected 
sets, the inclusions 62) C d£)A, dS) C d^B imply that 3) D 2)A, £) D S)B. 

With the above inclusions we get that © = 35^ = 3)#- The point M being 
the centre of 2), it proves to be the centre of S)A == T H CA, i.e. the cone CA 

has the property indicated in the theorem. 

2.5. THEOREM 4. TTze relation "sim" is symmetric and transitive with respect 
to every space if and only if the cones Cx are elliptic. 

By Theorem 3, this statement is equivalent to the following: 

THEOREM 4a. In order that a cone C be elliptic, it is necessary and sufficient 
that every inner point of it be the centre of symmetry of a plane section of C. 

In other words, this property means that for every line S passing through X 
within Cx there exists a plane P such that the point P C\ S is the centre of 
symmetry of P C\ Cx. 

If we consider a plane section of the cone C, Theorem 4a reduces to the 
following: 

THEOREM 4b. In order that a bounded closed domain be an ellipsoid, it is 
necessary and sufficient that every inner point of it be its projective centre of 
symmetry. (A point 0 is the projective centre of symmetry of a set M if there 
exists a projective transformation of M onto itself, which maps every straight 
line through 0 onto itself, changing its orientation.) 
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Proof. The necessity is obvious. 
Let a domain 2) have the indicated property. Let A £ d£) be a point at which 

3) has a supporting plane containing no other points of d£). Draw from A a ray 
N passing through inner points of 3). Every such point being the projective 
centre of symmetry of 35, the ray N crosses d3) at a point B which has the 
same property as the point A. This observation leads to the conclusion that 33 
is convex, and that every point A 6 d3) can be transformed into any other 
B e dSD. 

Now we observe that every point of any plane section of £) is the projective 
centre of this section. Hence it follows that it is sufficient to prove our theorem 
for a convex 2) in a 2-plane. In this case the proof is simple and we omit it. 

2.6. I t is possible to introduce other definitions of "times" and "spaces." 
Let P be a plane having no common points with every CA\(A) if A 6 P. 

P can be considered as a set of simultaneous points. Correspondingly, the set 
of all planes parallel to P represents an "a priori time." 

The intersections Cxr\P, CY~ r\ P may be called the "expanding" and 
"contracting" spheres in P ; they consist of points simultaneously reached by 
light emitted from X and focused at Y. 

If these spheres coincide, i.e. if every expanding sphere is a contracting one, 
they have centres of symmetry. Then M being the centre of symmetry of 
Cx C\ P, the lines parallel to XM determine a space R, and P proves to be the 
set T(MR) of points simultaneous with M in the sense of Definition 3. Thus 
the coincidence of the expanding and contracting spheres is equivalent to the 
conditions of Theorem 3, and their coincidence for every plane P is equivalent 
to the conditions of Theorem 4. 

Thus we have 

THEOREM 5. The sets Cx r\ P prove to be the sets CY~ r\ P for every plane 
P(P C\ CA = (A), A 6 P)if and only if the cones Cx are elliptic. 

3. Some other results and observations. 

3.1. In our Theorem 1, the mappings / are determined by the condition 
/(Cx) = C/(x). But one can consider more general mappings defined by the 
condition/(Cx) = Cx>, i.e. the image of every cone Cx is a cone CX' parallel and 
equal to Cx but it is not presupposed that X' — f(X). We cannot prove that 
such mappings are necessarily linear under conditions as general as those of 
Theorem 1. Still, we can prove their linearity under somewhat different 
conditions. 

Let C be a cone subject to the following conditions in which 8, 8' denote rays 
contained in C issuing from the vertex: (1) There exist S such that for every £' 
the plane angle 88' is contained in C. (2) All these 8 do not lie in an (n — 1)-
dimensional plane. (3) C satisfies the conditions of Theorem 1. 
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THEOREM 6. Let every point X Ç Enbe the vertex of the cone Cx equal and parallel 
to a given C with the indicated properties. Then every one-to-one mapping f of En 

onto itself, which transforms every Cx into some other one,f{Cx) = Cx>, is linear. 

Proof. Define for every X £ En the set Cx* = (^X^CY CY- I t is not difficult 
to verify that Cx* is a cone which satisfies the conditions (1) and (2) imposed 
on the cones in Theorem 1 ; it contains the rays parallel to the rays 8 with the 
above-indicated properties; without the condition concerning those rays, Cx* 
could consist of one point X. 

Every mapping / which preserves the system of the cones Cx preserves that 
of Cx* and/(Cx*) = C*/(x)- Thus Lemma 2 of §1 applies and gives t h a t / is 
continuous. Therefore, / preserves the system of cones Cx and maps their 
vertices into vertices (for Cx and Cx* have the same vertex). Theorem 1 being 
applied, we see t ha t / i s linear. 

3.2. The conditions of Theorems 1 and 6 that the closed convex hull HC of 
the cone C is not a Descartes product and does not contain a straight line can 
be replaced by weaker ones. For instance, we may observe that by Lemma 1 
f(HCx) = HCf(x) and, therefore, if we put Cx* = HCX\CX, we have 

/(Cx*) = c w 
Hence, if the cones Cx* satisfy the conditions of Theorems 1 and 6, / is linear, 
although HCX might be a Descartes product or contain straight lines. 

We shall not look here for the necessary and sufficient conditions to be 
imposed on the cones Cx so that the mappings / will be linear. The wording 
of these conditions and the proof of the corresponding theorem are somewhat 
tiresome. We observe, without proof, only the following simplest result. 

THEOREM 7. The conclusions of Theorems 1 and 6 remain true if the closed 
convex hull HC of the cone C is a Descartes product, but dC is not contained in 
dHC. 

3.3. I t is possible to consider more general point sets instead of cones. 
Suppose that to every X 6 En there corresponds a set 9Kx, every 9KX being 

obtained from any other WlY by means of a translation Y —> X. Let the cone 
of rays issuing from X through all points of $Jlx be subject to the conditions 
( l)-(3) of Theorem 1. 

Put 9ftx = a#x° and define the sets 

(*) awx* = u 2Wr*"\ a»*00 = u m x \ 

Then, if 9J?xœ is a cone, we get the system of cones Cx = 9Kx°° with the properties 
supposed in Theorem 1. The simplest condition which guarantees that Tlx°° 
is a cone is the following: (4) 9J?X consists of segments and rays issuing from X. 
Thus we have 
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THEOREM 8. If the sets ($ftx satisfy all indicated conditions, the one-to-one 
mappingf of En onto itself, which maps every $lx onto SD?/(X), is linear. 

This is a particular case of the following general problem. What are the 
necessary and sufficient conditions on the sets <jfflx C En, which are pairwise 
equal and parallel, for the mappings preserving the system of these sets to be 
linear? An even more general problem is as follows. Let R be a space with a 
transitive group G and 5DÎ a point set in R. Let {3KX} be the system of sets 
derived from Wl by means of all transformations g 6 G. What are the conditions 
which guarantee that the mappings preserving this system are automorphisms 
of the space (R, G)? In the case studied here, (R} G) is a free abelian locally 
bicompact group. 

3.4. Our simple considerations are connected with philosophical problems 
concerning space and time. The structure of the four-dimensional world, in 
relativitiy theory, may be considered as determined by the propagation of 
light or, in the language of geometry, by the system of the light cones (5). 
A. Robb has observed that the same structure may be considered as determined 
by the relation of precedence of events (6). 

An event is a point-phenomenon and the world may be considered as a set of 
events. There exists a fundamental relation between events: one event acts 
upon another. The acting of one upon another may be defined physically as a 
transition of energy and impulse, in particular, by means of light. 

According to the corollory of Theorem 1, Lorentz transformations are fully 
determined by the light cones, for even the continuity of the transformation 
preserving these cones is not presupposed there. Hence it follows that the follow­
ing definition of space-time may be given: 

Space—time is a set of all events with abstraction made of all properties with 
the exception of those defined by the relation of acting upon. 

This definition may be made the foundation of the relativistic theory of 
space-time (1). The spaces and times are determined with respect to an inertial 
system and their metric properties are determined by the same relation of 
acting upon, i.e. by the system of cones Cx consisting of events F acted upon by 
the event X. 

If 3KX is the set of events upon which the event X acts directly, the set Stt^00 

defined by (*) consists of all events upon which X acts directly or indirectly. 
The relation of direct or indirect acting upon is transitive. Abstracted from its 
physical properties, it becomes a relation of precedence. 

The convexity of the cones Cx is equivalent to the transitivity of this relation 
as defined by means of the relation Y Ç Cx. According to Theorem 2, the 
triangle inequality for the spatial distances determined by the cones Cx is 
equivalent to the convexity of these cones, and therefore it is equivalent to the 
transitivity of the relation of precedence. 

As an event is an elementary phenomenon, so acting upon is an elementary 
cause-effect relation. Therefore, the spatial-temporal structure of the world is 
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determined by its cause-effect structure. The metric relations in the space are 
determined by the same structure. 
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