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Asymptotic Continuous Orbit Equivalence of
Smale Spaces and Ruelle Algebras

Kengo Matsumoto

Abstract. In the first part of the paper, we introduce notions of asymptotic continuous orbit equiva-
lence and asymptotic conjugacy in Smale spaces and characterize them in terms of their asymptotic
Ruelle algebras with their dual actions. In the second part, we introduce a groupoid C*-algebra that
is an extended version of the asymptotic Ruelle algebra from a Smale space and study the extended
Ruelle algebras from the view points of Cuntz-Krieger algebras. As a result, the asymptotic Ruelle
algebra is realized as a fixed point algebra of the extended Ruelle algebra under certain circle action.

1 Introduction

D. Ruelle initiated a study of a basic class of hyperbolic dynamical systems, called
Smale spaces, from a view point of noncommutative operator algebras in [33, 34].
Smale spaces are, roughly speaking, hyperbolic dynamical systems with local product
structure. His definition of Smale space was motivated by the work of S. Smale [36],
R. Bowen [2,3], and others. Two-sided subshifts of finite type are typical examples of
Smale spaces. Ruelle introduced non-commutative algebras from Smale spaces and
studied equilibrium states on them. After the Ruell€’s papers, Ian F. Putnam [25-28],
Putnam-Spielberg [29] and Kaminker-Putnam-Spielberg [10] (cf. K. Thomsen [37],
etc.) investigated more detail on various kinds of C*-algebras associated with Smale
spaces from the view points of groupoids and structure theory of C*-algebras. For a
Smale space (X, ¢), Putnam considered the following six kinds of C*-algebras written
in [25,26]:

L) S(X,¢), U(X,¢), A(X.¢), S(X,¢)xZ, U(X,$)xZ, A(X,$)xZ.

The symbols S, U, and A correspond to stable, unstable, and asymptotic equiva-
lence relations, respectively. The last three algebras in the above list are crossed prod-
ucts of the first three algebras by Z-actions defined from automorphisms induced
by ¢, respectively. Putnam has written the second three algebras as R, R,, R, and
calls them the stable Ruelle algebra, the unstable Ruelle algebra, and the asymptotic
Ruelle algebra ( [26]). In this paper, we write them as R;,fR;, R; to emphasize
the original homeomorphism ¢. He pointed out that if (X, ¢) is a shift of finite
type defined by an irreducible square matrix A with entries in {0,1}, the algebras
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S(X,¢) xZ and U(X, ¢) » Z are isomorphic to the stabilized Cuntz-Krieger alge-
bras 04 ® K and Oy ® K, respectively, where K denotes the C*-algebra of com-
pact operators on a separable infinite-dimensional Hilbert space. Putnam and Spiel-
berg [29] (¢f. Killough and Putnam [11]) also constructed other kinds of C*-algebras
S(X,¢,P),U(X, ¢, P)and their crossed products S(X, ¢, P)xZ, U(X, ¢, P)xZ from
a ¢-invariant subset P c X of periodic points by using étale groupoids defined by re-
stricting stable and unstable equivalence relations to P, respectively. Although there
are many different choices for P, they are all Morita equivalent to S(X, ¢), U(X, ¢)
and S(X, ¢) xZ, U(X, ¢) x Z, respectively. In this paper, we will not deal with these
C*-algebras S(X, ¢, P), U(X, $,P),S(X,¢,P)xZ,U(X, ¢, P) x Z.

In this paper we will mainly focus on the algebra R, the last one in (1.1). By Put-
nam [25], the algebra R is realized as the groupoid C*-algebra C*(Gg x Z) of an
étale groupoid G§ x Z. Its unit space (Gg x Z)° is identified with the original space
X. We naturally identify C(X) with a subalgebra of R§. A Smale space (X, ¢) is said
to be asymptotically essentially free if the interior of the set of n-asymptotic periodic
points {x € X | (¢"(x),x) € Gg} is empty for every n € Z with n # 0. If (X, ¢) is ir-
reducible and X is not any ﬁmte set, (X, ¢) is asymptotically essentially free (Lemma
5.2). We know that (X, ¢) is asymptotically essentially free if and only if the étale
groupoid Gg x Z is essentially principal (Lemma 5.3). Hence, if (X, ¢) is irreducible
and the space X is infinite, then the C*-algebra R is simple (Proposition 5.4) and
the C*-subalgebra C(X) is maximal abelian in R§. Since C* (G » Z) is canonically
isomorphic to the crossed product C*(Gg) x Z of the groupoid C*-algebra C*(Gg),
which is the C*-algebra A(X, ¢), the th1rd one in (1.1) with an integer group action
coming from the original transformation ¢ on X, the algebra R has the dual action
written pt of the circle group T = R/Z. Throughout the paper we assume that the
space X is infinite.

In the first part of this paper, we introduce a notion of asymptotic continuous orbit
equivalence in Smale spaces, which will be defined in Section 2. Roughly speaking,
two Smale spaces are asymptotically continuous orbit equivalent if they are contin-
uous orbit equivalent up to asymptotic equivalence. We will show that spaces being
asymptotic continuous orbit equivalent in Smale spaces is equivalent to their asso-
ciated étale groupoids being isomorphic. It corresponds to the fact that continuous
orbit equivalence of one-sided topological Markov shifts is equivalent to their associ-
ated étale groupoids being isomorphic (cf. [19,21,22]). If two Smale spaces (X ¢) and
(Y, y) are asymptotically continuous orbit equivalent, written (X, ¢) (Y V),

then there exists a homeomorphism /: X — Y having certain contmuous homomor-
phisms cg: Gg»Z — Zand cy: Gy xZ — 7Z. The continuous homomorphisms define

unitary representations Uy (cg) on 1*(G§ » Z) and Uy (cy) on I*(Gy, » Z) of T, which
give rise to actions Ad(U;(cg)) on Rg of T and Ad(U(cy)) on Ry of T, respectively.
In Sections 3 and 5, we will prove the following theorem.

Theorem 1.1 (Theorems 3.4 and 5.7) Let (X, ¢) and (Y,y) be irreducible Smale
spaces. Then the following assertions are equivalent.

(i) (X, ¢) and (Y, ) are asymptotically continuous orbit equivalent.
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(i) The groupoids Gg x Z and Gy, » Z are isomorphic as étale groupoids.
(iii) There exists an isomorphism ®: R¢ — Ry, of C*-algebras such that ®(C(X)) =
C(Y) and

®0p§b:Ad(U,(c,,,))oq), ®0Ad(U[(c¢)):p;V0® forteT

for some continuous homomorphisms cy: Gy » Z — Z and cy: Gy x 7. — Z.

In Section 4, we will prove that stably or unstably asymptotic continuous orbit
equivalence of Smale spaces preserves their periodic orbits, so that their zeta functions
are related to each other by the associated cocycle functions (Theorem 4.9).

In Section 5, we study asymptotic continuous orbit equivalence in Smale spaces in
terms of the dual actions of the associated Ruelle algebras.

In Section 6, we will introduce a notion of asymptotic conjugacy between Smale
spaces (X, ¢) and (Y,y), written (X,$)=(Y,y). Roughly speaking, two Smale
spaces are asymptotically conjugate if they are topologically conjugate up to asymp-
totic equivalences. This is stronger than asymptotic continuous orbit equivalence but
weaker than topological conjugacy. The notion of asymptotic conjugacy in this pa-
per is not the same as the notion of eventual conjugacy, which is used in dynamical
systems (cf. [13, Definition 7.7.14]). Let dg: Gg xZ — Zand dy: GyxZ~1L be the
continuous homomorphisms of étale groupoids defined by

dy(x,n,2) =n, dy(y,m,w)=m for (x,n,z) € Gg xZ, (y,m,w) € Gy x Z.

We will characterize asymptotic conjugacy in terms of the Ruelle algebras with their
dual actions in the following way.

Theorem 1.2 (Theorem 6.4) Let (X, ¢) and (Y, y) be irreducible Smale spaces. Then
the following assertions are equivalent.
(i) (X, ¢) and (Y, ) are asymptotically conjugate.
(ii) There exists an isomorphism ¢: Gg » 7 — Gy, x 7 of étale groupoids such that
dyop=dy.
(iii) There exists an isomorphism ®: Rg — Ry, of C*-algebras such that ®(C(X)) =
C(Y)and®op? =pY o ® fort € T.

The asymptotic Ruelle algebra R¢ has a translation invariant faithful tracial state
coming from a maximal measure called the Bowen measure on X. Hence, the algebra
R¢ is never purely infinite. In Section 7, we will introduce a unital, purely infinite
version of Rg. The introduced C*-algebra is denoted by R* and called the extended
asymptotic Ruelle algebra. It has a natural T2-action denoted by p%*. The fixed point
algebra (R;’”)‘w of R%" under the diagonal T-action defined by = ps’)"(z’z), zeT
is isomorphic to the original asymptotic Ruelle algebra R§ (Theorem 7.9?.

In Sections 8 and 9, we will apply the above discussions to shifts of finite type,
which we call topological Markov shifts, from the view point of Cuntz-Krieger alge-
bras. For an irreducible and not permutation square matrix A with entries in {0,1},
let us denote by (X 4,7 4) the associated two-sided topological Markov shift. The dy-
namical system is a typical example of a Smale space as in [25,26,33]. Consider the
asymptotic Ruelle algebra RZ and the extended asymptotic Ruelle algebra JL;: for the
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topological Markov shift (X 4,7 4), respectively. Let pA[ and p# be the gauge actions
on the Cuntz-Krieger algebras O 4 and O 4, respectively, where A’ is the transpose of
the matrix A. We put the diagonal gauge action §2 = pft @pAreTon Oy ® Oy

Theorem 1.3 (Theorem 9.6 and Corollary 9.7) Let (X4, 04 ) be the Smale space of the
two-sided topological Markov shift defined by an irreducible non-permutation matrix A
with entries in {0,1}. Then there exists a projection E 4 in the tensor product C*-algebra
Oar ® O such that 82(E4) = E4 for all r € T and the extended asymptotic Ruelle
algebra R2" is isomorphic to the C*-algebra Ex(Oa: ® O4)Ey, denoted by R3". The

asymptotic Ruelle algebra RZ. is isomorphic to the fixed point algebra (R;’”)‘SA of R
under the diagonal gauge action §*.

For the two-sided topological Markov shift (X4,74), we denote by R3" the
extended asymptotic Ruelle algebra ULSU:’, which is identified with the C*-algebra
E4(Oar ® O4)E4, and by R} the asymptotic Ruelle algebra RZ , which is identified
with the fixed point algebra of E4(O4¢ ® O4)E 4 under the diagonal gauge action §4
by the above theorem.

In Section 10, we will present the K-groups of the asymptotic Ruelle algebras R for
some topological Markov shifts. In Putnam [25] and Killough and Putnam [11], the
K-theory formula for the asymptotic Ruelle algebras R% for the topological Markov
shift (X 4,7 4) has been provided. We will use Putnam’s formula in [25] to compute
the K-groups of the C*-algebra R for the N x N matrix

with all entries being I’s, so that the topological Markov shift (X 4,0 4) is the full
N-shift. Let us denote by R%, the asymptotic Ruelle algebra R for the matrix A. The
C*-algebra R, is a simple AT-algebra of real rank zero with a unique tracial state,
written 7y. We will show that Ko(R%) = Ki(R%) = Z[+] (Proposition 10.3) and
v« (Ko(R%)) = Z[ 5] (Lemma 10.4). We then see (Proposition 10.5) that two alge-
bras RY and R, are isomorphic if and only if Z[+ ] = Z[;]. As a result, we know
that the two-sided full 2-shift and the two-sided full 3-shift are not asymptotically
continuous orbit equivalent (Corollary 10.6).

In Section 11, we refer to differences among asymptotic continuous orbit equiva-
lence, asymptotic conjugacy and topological conjugacy of Smale spaces, and present
an open question related to their differences.

Throughout the paper, we denote by Z,. and N the set of nonnegative integers and
the set of positive integers, respectively.

2 Smale Spaces and their Groupoids

Let ¢ be a homeomorphism on a compact metric space (X, d) with metric d. Let us
recall the definition of Smale space following D. Ruelle [33, 7.1] and I. F Putnam [25,
Section 1]. Our notations differ slightly from those of Ruelle and Putnam. For € > 0,
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we set
Ac:={(x,y) e Xx X |d(x,y) <e}.
Suppose that there exist €y > 0 and a continuous map
[ -] (e y) e Agy — [x, 7] € X
having the following three properties called (SS1):

(i) [x,x]=xforxeX,

(i) [A[x, vz =[x, [y, 2]] = [x 2] for (x, ), (3, 2), (% 2), ([x, ], 2), (%, [, 2]) €

Gii) [9(x). $(»)] = $([x, 7]) for (x, ), ($(x), $(1)) € Aey
For 0 < € < ¢g, put
X(x,e)={yeX|[yx] =y d(x,y) <€},
X*(x,e)={yeX|[x,y] =y, d(x,y) <e}.

We further require that there exists 0 < Ay < 1 such that the following two properties
called (SS2) hold:

(2.1 d(¢(y), ¢(2)) < Aod(y,2) for y,z € X*(x,€),
d(¢7(y), 7' (2)) < Aod(y,2) for y,z € X" (x,¢).
Definition 2.1 (Ruelle [33, 71]) A Smale space is a topological dynamical system

(X, ¢) of a homeomorphism ¢ on a compact metric space X with a bracket [ -, -]
satisfying (SS1) and (SS2) for suitable €, 4.

By Ruelle [33, 7.1] and Putnam [25, Section 1], there exists €; with 0 < ¢; < g such

that for any e satisfying 0 < € < €, the equalities

Xi(x,¢)={yeX|d(¢"(x),¢"(y)) <eforalln=0,1,2,...},

X"(x,e) ={yeX|d(¢"(x),¢"(y)) <eforalln=0,-1,-2,...}
hold.
Lemma 2.2 (Putnam [25, Section 1], Ruelle [33,71]) For x, y € X with (x, y) € A,
and d(x, [y, x]),d(y, [y, x]) <e,

{[y>x]} = X" (y,e) 0 X¥(x ).
Hence, for 0 < € < € and x, y, z € X, the equality [ y, x] = z holds if and only if
d(¢™" (), ¢7"(2)) <, d(¢"(x),¢"(2)) <e foralln=0,1,2,....

This means that the bracket [ -, - | is determined by the original dynamics (X, d, ¢)
if it exists. The following lemma is also useful.

Lemma 2.3 (Putnam [25, Section 1], Ruelle [33, 71]) For any e with 0 < € < €y and
x € X, we have

(i) ¢(X*(x,€)) € X*(p(x)s€)),
(ii) ¢~ (X¥(x,€)) c X“(¢7'(x),¢€)).
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Following Putnam [25, Section 1], for x € X, we put
X(x) ={y e X[ lim d(¢"(x),¢"(y)) = 0},
X'(x) = {y e X[ lim d(¢™"(x),¢™"(y)) = 0},
X (x) = X'(x) n X"(x).
We note that the inclusion relations X*(x,€p) c X*(x) and X“(x,¢p) c X*(x) were

shown in [25]. The following lemma is from [25,33].

Lemma 2.4 (Putnam [25, Section 1], Ruelle [33, 71]) For any e with 0 < € < €9 and
x € X, we have

() X*(3) = Uiy 67" (X°(¢" (1), €)).
(i) X*(x) = UpZo ¢"(X*(¢7"(x),€)).
Following Putnam [25, Section 1], we put
G = {(x,9) € Xx X | y € X' (x.60)},
GE0 — {(x,7) € X x X | y e X*(xe0) ),
a,0 _ s,0 u,0
Gy =Gy NGy,
and for n e N,
Gy" = (¢ x9)"(Gy"),
Gy" = (¢ x )" (Gy"),
a,n _ S,n u,n
G¢ = G¢ n G¢ .
All are given the relative topology of X x X.
Since [y, x] = y if and only if [x, y] = x, one sees that y € X*(x, €q) if and only if

x € X*(y,€). Hence, (x,y) € Gy" ifand only if (y,x) € Gg" for * = s,u, a.
We note the following lemma, which is well known and useful.

Lemn.m 2;50 for x,y€X we hfzve (x,y) € G;’O if and only if x = y. Hence we may
identify G with X as a topological space.

Proof Take an arbitrary (x, y) € Gg’o. As(x,y) € G;’O, we see that y € X*(x,€9), so
that [y,x] = y,and also as (x, y) € G;,o, we see that y € X“(x,€¢), so that [x, y] = y.
Hence, we have

x=[xx] =[x [y.x]] =[x y] = y.

By Lemma 2.3, we know that

(2.2) G;’" c G;’”“, *=s,u,a, n=0,1,...

Following [25, Section 1], [26, Section 3], and [29, Section 2], we define several equiv-
alence relations on X:
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By (2.2), the set G§ = U2, G;’" is an inductive system of topological spaces. Each
Gy, * = s,u,a is endowed with the inductive limit topology. The following lemma
has also been shown by Putnam.

Lemma 2.6 (Putnam [25, Section 1])

(i) s ={(0y) e Xx X[ lim d(¢"(x),¢"(y)) =0}
(ii) Gy={(x.y) e X xX| lim d(¢7™"(x),¢7"(y)) = 0}.
(iii) Gy ={(xy) e Xx X[ lim d(¢"(x),¢"(»))

= lim d(¢™"(x),¢™"(y)) = 0}.

Putnam studied three equivalence relations, G, G, and G on X, by regarding
them as principal groupoids. He pointed out that the third equivalence relation G§
is an étale equivalence relation whereas the first two are not étale in general. He also
studied the associated groupoid C*-algebras C*(Gy), C*(Gj), and C*(Gg), which
have been denoted by S(X, ¢), U(X, ¢), and A(X, ¢), respectively. He has pointed
out that they are all stably AF-algebras if (X, ¢) is a shift of finite type. He also studied
their semi-direct products by the integer group Z as groupoids

Gy #Z={(x.my) e Xx Zx X | (¢"(x),y) €G3},
GinZ={(x,my) e X xZx X| (¢"(x),y) € G},
Gy % Z={(x,my) e Xx Zx X | (¢"(x), ) € G3).

Since the map

y:(x,ny) eGgnZ — ((x,¢7"(y)).n) €GyxZ
is bijective, the topology of the groupoid G x Z is defined by the product topology of
G x Z through the map y. Let us denote by (G; % Z)° the unit space of the groupoid
G4 Z, which s identified with that of G § and naturally homeomorphic to the original
space X through the correspondence (x,0,x) € (G§ x Z)° — x € X for » = s,u, a.
The range map r: Gy x Z — (G % Z)° and the source map s: Gg x Z — (G x Z)°
are defined by

r(x,n,y)=(x,0,x) and s(x,n,y)=(»0,y).
The groupoid operations are defined by
(x,n,y)-(x',mw)=(x,n+m,w) ify=x,

(x,m, )7 = (9 -m,x).

Putnam [25, 26] and Putnam and Spielberg [29] also studied their associated
groupoid C*-algebras C* (G, x Z), C*(Gy x Z), and C*(Gg x Z), which have been
written R, Ry, and R, respectively in their papers. In this paper we denote them
by Rj, Ry, and Rg, respectively, to emphasize the homeomorphism ¢. We remark
that Putnam-Spielberg [29] (¢f. Killough-Putnam [11]) also constructed other kinds
of C*-algebras, S(X, ¢, P), U(X, ¢, P), and their crossed products, S(X, ¢, P) x Z,
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U(X, ¢, P) x Z, from a ¢-invariant subset P ¢ X of periodic points by using étale
groupoids defined by restricting the stable equivalence relation G§, unstable equiv-
alence relations Gy to P, respectively. In this paper, we will not deal with these
C*-algebras S(X, ¢, P), U(X, ¢, P), S(X,$,P) xZ, U(X, ¢, P) x Z.

3 Asymptotic Continuous Orbit Equivalence

Let (X, ¢) bea Smale space. In this section, the symbol d will be used as a two-cocycle.
It does not mean the metric on X. A sequence { f, } nez of integer-valued continuous
functions on X is called a one-cocycle for ¢ if it satisfies the identity

(3.1 (%) + fi (" (%)) = frem(x), xeX,nmeZ.

For a continuous function f: X - Z and n € Z, we define

Y f(¢i(x)) forn >0,
ff(x)=10 for n = 0,
-y f(o'(x)) forn<o.

It is straightforward to prove the following lemma.

Lemma 3.1 For n,m € Z, the identity

(32) 1)+ fm(¢"(x) = [ (x), xeX

holds. Hence, the sequence { f" } ,ez, is a one-cocycle for ¢.

We note that a sequence of functions satisfying (3.1) is determined only by f;.
In what follows we focus on asymptotic equivalence relations Gg. A continuous
function d: Gg — Z is called a two-cocycle if it satisfies the following equalities:

(3.3) d(x,z) +d(z,w) =d(x,w), (x,2), (z,w), (x,w) € Gg.

The identity (3.3) means that d: G; — Z is a groupoid homomorphism.

Definition 3.2  Smale spaces (X, ¢) and (Y, ) are said to be asymptotically contin-
uously orbit equivalent if there exist a homeomorphism /: X — Y, continuous func-
tions ¢;: X = Z, ¢;: Y — Z, and two-cocycle functions d;: G; - 7, dy: Gf; -7
such that
@ " (x) +di(¢™(x), ¢"(2)) = ¢i"(2) + di(x,2), (x,2) € G, m € Z;
(2) " (y) +da(y" (y),y" (W) = &' (W) + da(y,w),  (y,w) € Gy, meZs
and
(i) for each n € Z, the pair (y1 ) (h(x)), h(¢"(x))), denoted by & (x), belongs
to Gy, for each x € X, and the map &': x € X — £'(x) € Gy is continuous;
(i) for each n € Z, the pair (¢ (h™'(y)), h " (y"(y))), denoted by &} (), be-
longs to G for each y € Y, and the map &3: y € Y > &3(y) € G is continuous;
(iii) the pair (y*?) (h(x)),h(z)), denoted by #;(x, z), belongs to G, for each
(x,2) € Gg, and the map #:: (x,2) € G ~ n1(x, z) € Gy, is continuous;

https://doi.org/10.4153/CJM-2018-012-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-012-x

Asymptotic Continuous Orbit Equivalence of Smale Spaces and Ruelle Algebras 1251
(iv) the pair (¢%")(h7'(y)), h"'(w)), denoted by #,(y,w), belongs to Gy for
each (y,w) € Gy, and themap n,: (y,w) € G > n2(y,w) € Gy is continuous;

W) O (h(x) +da(yd D (h(x)), h(¢"(x))) =1, x€X, nels

@) (W) + d(@E O () K (Y (9) =, yeY,nels
(i) €' (h(x)) + da(y 2 (h(x)), h(2)) = 0, (x,2) € G

viii) 0 (71 () + dy (§2O (7 () B (W) =0, (yw) € G

In this situation, we write (X, ¢) oo (Y,y).

Remark 3.3 (i) Condition (1) above is equivalent to

c(x) +di(p(x), ¢(2)) = ci(2) + di(x,2),  (x,2) € Gy,

and condition (2) is similar to (1).
(ii) Conditions (i)-(iv) are equivalent to the following conditions, respectively:
(i) For each n € Z, there exists a continuous function k ,,: X — Z, such that

(3.4) (¢S (h(x)), y* O (h(¢" (x)))) € Gy°,
(yRn P (), y 8O (m(¢"(x)))) € GL°.
(ii) For each n € Z, there exists a continuous function k, ,: Y — Z, such that
(9RO SO (07 (), g2 (W7 (9" ()))) € G°,
(¢ OGOV (7 (y)), 67RO (W7 (9" (1)) € Gy
(iii) There exists a continuous function i : Gf‘b — 7, such that
(y DD ((x)), ™ (h(2)) € Gy for (x,2) € G,
(97O 0 (), y D ((2))) € G for (x,2) < G-
(iv) There exists a continuous function m,: Gl’; — 7, such that
(00w (1174 (3)), §700) (17 () € G52 for (3, w) € G
(¢7mOmrBO (B (y)), ¢~ (K7 (w))) € Gy for (y,w) € Gy

In what follows, we will assume that our Smale space is irreducible, which means
that for every ordered pair of open sets U, V c X, there exists K € N such that X (U)n
V+@.

Theorem 3.4  Suppose that Smale spaces (X, ¢) and (Y, y) are irreducible. Then the
following assertions are equivalent:

(i) (X, ¢) and (Y, ) are asymptotically continuous orbit equivalent;
(ii) the groupoids Gg x Z and Gy, x Z are isomorphic as étale groupoids.

Proof (ii) = (i): Suppose that the groupoids Gg x Z and Gy x Z are isomorphic
as étale groupoids. There exist homeomorphisms h: (Gg x Z)° — (Gy, x Z)° and
¢n: Gg x Z — Gy, x Z that are compatible with their groupoid operations. Since the
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unit spaces (Gg x Z)° and (Gy, x Z)° are identified with the original spaces X and Y
as topological spaces through the identifications

(x,0,x) € (GgxZ)° —xeX and (9,0,y)e(GyxZ)°— yeY,

respectively, we have a homeomorphism from X onto Y, which is still denoted
by h: X — Y. As ¢u(x,n,2) € Gy x Z for (x,n,z) € Gg x Z, there exists
a(x,n,z) € Z such that ¢, (x,n,z) = (h(x),ca(x,n,z),h(z)). In particular, we
have (x,n,¢"(x)) € Gg x Z for z = ¢"(x), and can define ¢, (x) = c1(x, n, ¢" (x))
so that

(3.5) (h(x), cLn(x), h(¢"(x))) € Gy x Z.
Now for x € X and n, m € Z, we have
(x,n+m,¢""(x)) = (x,n,¢"(x)) - (¢"(x),m,¢""(x)) in Gg»Z,
so that
(h(x)s ctnem (%), B (™™ (x)))
=pn(x,n+m,¢"""(x))
=on (%, 1, 8" (x))pn (" (x), m, """ (x))

=(h(x), cin(x), (" (%)) (h($" (x))s c1,m ($" (%)), h($™™ (x)))
=(h(x), cLn(x) + cLm (9" (x)), B(¢"™ (%))

Hence we have
(3.6) Clnam(x) = cLn(x) + cim (9" (x)),

so that the sequence {c},, } nez of continuous functions is a one-cocycle function on
X. By putting ¢;(x) := c1,1(x), we see that ¢]'(x) = c1,,(x) by (3.6). By (3.5), we see
that (v ) (h(x)), h(¢"(x))) € Gy Since the maps below

((x,x),n) € Gy *xZ
—  (x,n,¢"(x)) € Gy % Z
Ph n n a
B (B, (x), h($7(x))) € GE n Z
4 - (x n n a
— (h(x), g T (h($" (x))), ] (x)) € Gy x Z
A ) Yo .
LI (IO () B8 (), €] () € Gy x 7
are all continuous, the map &: x € X - &(x) == (v ¥ (h(x)), h(¢"(x))) € Gy is
continuous.
On the other hand, for (x,z) € Gy we see that (x,0,z) € G§ x Z. Hence there

exists di(x, z) € Z such that ¢, (x,0,2) = (h(x), di(x,2), h(z)). Since ¢j,: Gg=Z —~
Gy, Z is continuous, the function d; : G(‘z — Zis continuous. For (x,z), (z,w) € Gf;,
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we have (x,0,w) = (x,0,2)(z,0,w) € G5, and hence
(h(x),di(x,w), h(w)) = 5 (x,0,w)
= on(x,0,2) - 91 (2,0, w)
= (h(x),dl(x, z), h(z)) - (h(z),dl(z,w),h(w))
= (h(x),dl(x, z) + dl(z,w),h(w)) ,

sothatd; (x,w) = di(x,z)+di(z, w) holds,and d;: G§ — Zisatwo-cocycle function.
Since the maps

((x,2),0) e G x Z
— (x,0,2) eGg=Z
2 (h(x),di(x.2), h(2)) € o Z
L ((h(x),y™ & (h(2)),di(x,2)) € GL x Z

(1) syt )Y 5q

(v (h(x)), h(2)), di(x,2)) € Gy x Z

are all continuous, the map #:: (x,z) € Gy — ni(x,z2) := (y"®2) (h(x)), h(z)) €
Gy, is continuous.
For (x,n,x"), (x',m, z) € G§ x Z, the identity

on((x,m,x") - (x',m,z)) = @y (x,n,x") - oy (x',m, 2)

is equivalent to the identity
(9" (x)) + di( ¢ (x),2) = (<) + (9" (x), ') + di(97(x),2),
which implies the identity
o' (x) + d1(¢m(x),¢m(z)) = (2) +di(x,2), (x,2) €Gg, meZ.

Similarly, we have one-cocycle function c,: ¥ — Z and two-cocycle function
dy: Gy, — Z for the homeomorphism O Gy »Z — Gg x Z. Since

B = (91) gy s (G2 ) = ¥ — (GE )" = X,
we see that ¢! = ¢-1. By the identity
(x,1,¢"(x)) = (¢ 0 pn)(x, 1, 8" (x)) forxeX,neZ,

we have
(pn' o 1) (1, 9" (x))
= 9 (h(x), ¢ (x), h(¢" (x)))
= 0 (h(x), ¢ (%), ¥ O (h(x))) 93" (¥5 ) (h(x)), 0, (9" (x)))
= (%, ¢ O (h(x)), k7 (¥ (h(x)))
(R T (h(x))), da (¥ D (h(x)), (9" (%)), " (%))
= (2,657 (h(x)) + da(¥7 O (h(x)), h($" (x))), 9" (1)),
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so that the identity
SO (h(x)) + da (v O (h(x)), h(9"(x))) = n
holds, and similarly
T (W) + di( 95O (W (), H (" (7)) =, ye Y nel,
For (x,z) € Gy, the identity (x,0,2) = (93" 0 9)(x,0,2) holds, so that we have

(930 91)(x,0,2)
= 93" (h(x),d(x,2), h(2))
= 03 (h(x), di (2, 2), y 2 (h(x))) @3 (v (h(x)), 0, h(2))
= (26" (h(x)), 1 ("D (h(x)))
(7 (AD (h(x))) da (5D (h(2)), h(2)), 2)
= (2, (h(x)) + da (¥ @2 (h(x)), h(2)), 2).
Hence we have
D (h(x)) + da (D (h(x)), h(2)) =0, (x,2) € G,

and similarly

OB () + A9 (W (), K W) =0, (W) € Gy
Therefore, we see that (X, ¢) o (Y,v).

(i) = (ii): Assume that (X, ¢) ~ (Y,y) and take a homeomorphism h: X — Y,
continuous functions ¢;: X — chcgE: Y — Z, and two-cocycle functions d; : Gg -
Z, d: Gy, — Z as in Definition 3.2. Let (x, n,z) € G » Z be an arbitrary element so
that (¢"(x), z) € Gy, and we have

(x,n,2) = (x,n,¢"(x)) - (¢"(x),0,2).
Put
(37)  n(x,mz) = (h(x),cf' (), h(¢" (x)) - (h($" (x)), di(¢" (x).2), h(2)).
By Definition 3.2(i), (v *)(h(x)), h(¢"(x))) belongs to Gy As a consequence,
(h(x),c'(x), h(¢"(x))) gives an element of Gy x Z. As (¢"(x),z) € G, we see
that by Definition 3.2(iii), (y4(®"(*):2)(h(¢"(x))),h(z)) belongs to Gy, so that
(h(¢"(x)),di(¢"(x),2), h(2)) gives an element of Gy, x Z. Hence, ¢j,(x,n,z) de-
fines an element of the groupoid Gy, x Z such that
n(x,n,2) = (h(x), ¢ (x) + di( ¢"(x),2), h(2)).
It is straightforward to see that the equality (1) in Definition 3.2 implies
on((x,n,x") - (x',m,2)) = @n(x,m,x") - @i (x', m, 2)

for (x,n,x), (x',m,z) € Gg x Z..
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Since x € X - &'(x) = (v ¥ (h(x)), h(¢"(x))) € Gy, is continuous by Defini-
tion 3.2(i) and

y—l o ((v/—c{‘(x) % w—c{‘(x)) « id)(E{‘(x),c{‘(x))
=y (h(x),y T (h(9"(x))), cf (x))
= (h(x), ¢ (x), h(¢" (x))),

the map ¢} : Gg % Z — Gy, x Z defined by

oh(x.1,2) := (h(x), ] (x), h($" (x)))
is continuous.

And also the map n:: (x,2) € G§ — mi(x,2) = (y1*2) (h(x)), h(z)) € Gy is
continuous by Definition 3.2(iii) and

y ((p BETERD @D id ) (1(¢7 (x),2), di(¢" (x),2))
=y (h(¢" (), y "D (h(2)), di(¢" (x),2))
=(h(¢"(x)), di(¢"(x),2), h(2)).

Hence the map ¢ : Gg % Z — Gy x Z defined by

¢ (x,n,2) = (h(9" (x)), di(¢" (x),2), h(2))
is continuous. Since ¢, (x,n,z) = ¢}, (x,n,2)¢%(x, n,z) by (3.7), the map ¢, Gg x
Z — Gy » Z is continuous.

Similarly, we can define a continuous map ¢;-1: Gy % Z — Gy x Z from the home-

omorphism 4™': Y — X and one-cocycle function ¢,: Y — Z, two-cocycle function
da: Gy — Z by setting

P (ramaw) = (K (), 5 () + da(y" ()W) 7 (W) for (y,m,w) € G » .

For (y, m,w) € Gy x Z, we put

(pn)' (o, w) =(h7 (), 3" (), h™ (9™ (1))
(9n)" (o, w) =(H7 (™ (9))> (™ (), W), h7H (W),

so that

on-1(yom,w) = (@n1)' (o muw) - (@41) (s myw) - for (y,m,w) € Gy % Z.
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We will next show that ¢, and ¢,-1 are inverses of each other. For x € X, n € Z, we
have

(pnr 0 9n)(x,n,¢"(x))
= g1 (h(x), f (x), h(¢" (x)))
= i (h(x), ¢ (), yT O (h(x))) - 93! (v (h(x)), 0, h(¢" (x)))
= (x5 @ (W), 7 (WO (h(x))))
(W YTO (%)), da (v O (h(x)), (4" (%)) ¢" (%))
= (.65 O (h() + da(yT O (h(2)), B9 (x))), $" ().
By the condition of Definition 3.2(v), we have
(911 0 9n) (51,97 (x)) = (6, m,9" (x)).
We also have for (x,z) € G,
Pn1 0 9n(x,0,2)
= gp-1(h(x), di(x,2), h(2))
= (0,63 (h(x)), 1 (D (h(x))))
(W (D (h(x))), da (D (h(x)), h(2)), 2)
= (¢ 9 (h(x) + da(y 2 (h(x)), h(2)), 2)
By the condition of Definition 3.2(vii), we have
(¢n-1091)(x,0,2) = (x,0,2).
Therefore, we have for (x,n,z) € G; x 7,
(¢n-1091)(x,1,2)
= ((pn1o9n)(x.n,¢"(x))) - ((pn1 0 9n)(¢"(x),0,2))
=(x,n,¢"(x)) - (¢"(x),0,2) = (x,n,2).
Similarly, we have (¢, © ¢4-1)(y, m,w) = (y,m,w) for (y,m,w) € Gy, x Z. Hence

we have ¢j,-1 = (¢1,) " and ¢}, gives rise to an isomorphism Gg x Z — Gy x Z of the
étale groupoids. ]

Smale spaces (X, ¢) and (Y, y) are said to be stably continuous orbit equivalent
if in Definition 3.2, we can replace Gg, Gy, with Gy, G, respectively, and written

(X,¢) o (Y, y). Unstably continuous orbit equivalent is similarly defined by re-

placing Gg, Gy, with Gy, Gy, respectively, and written (X, ¢) . (Y, ). The precise

definition of stably continuous orbit equivalent follows.

Definition 3.5 Smale spaces (X, ¢) and (Y, ) are said to be stably continuous orbit
equivalent if there exist a homeomorphism /: X — Y, continuous functions ¢;: X —
Z, ¢3: Y - 7Z, and two-cocycle functions dj : G3¢ -7, dy: G;, — Z such that

@ " (x) +di(¢™(x), ¢™(2)) = " (2) + di(x,2), (x,2) € Gy, m e L.
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2) G'(y) + (Y™ (y),y" (W) = 3" (W) +do(y,w),  (y,w) € Gy, m € Zs
and

(i) for each n € Z, there exists a continuous function k; ,: X — Z, such that
( Wkl,n(x)+cf'(x)(h(x))) l//kl,n(x) (h((p”(x)))) c Gsw,o;
(ii) for each n € Z, there exists a continuous function k; ,: Y — Z, such that

(4420750 (07 (3)), O (4" (7)) € Gy

(iii) there exists a continuous function m1;: G; — 7., such that

(wml(x’z)+dl(x’z)(h(x)),l//ml(x’z)(h(z))) € GfV’O for (x, Z) € G:by

(iv) there exists a continuous function m,: Gj, — 7, such that
(=m0 (571 (), ™0 (17 () € G5 for (3, w) € G

W SO (h(2)) +da(yd D (h(x)), h(¢"(x)) = n, x€X, nel;

W) o P (7 (1)) + di (@O (1 (), KW () =, yeY, nel
(vii) ¢ (h(x)) + dy (D (h(x)), h(2)) =0, (x,2) € GS,;
wiii) ¢* (k71 (y)) + di (%0 (W7 (5)), K (W) =0, (1, w) € G,

If we replace Gfp’o, Gf,,’o, Gy, Gy, with G;,o’ Gf;,’o, Gy, Gy, respectively, then (X, ¢)
and (Y, y) are said to be unstably continuous orbit equivalent.
We can prove the following theorem in a similar fashion to Theorem 3.4.

Theorem 3.6  Suppose that the Smale spaces (X, ¢) and (Y, y) are irreducible. Then
the following conditions are equivalent:
) (X,6) = (Y,9) (resp. (X,9) = (Y,y))
(ii) the groupoids Gy x Z and Gy, x ZZ (resp. Gy » Z and Gy, x Z) are isomorphic as
topological groupoids.

We note that the groupoids Gy, Gy, Gg, Gy, above are the non-étale groupoids ap-
pearing in Lemma 2.6, which were defined in [25]. We do not know whether or not
the corresponding theorem holds for étale groupoids defined from ¢-invariant set of
stable or unstable equivalence relations appearing in [29].

4 Asymptotic Periodic Orbits of Smale Spaces
Let (X, ¢) be an irreducible Smale space.

Definition 4.1 Anelement x € X is called an asymptotic periodic point if there exists
p € Zwith p # 0 such that (x, ¢$#(x)) € Gg. We call such p asymptotic period of x. If
|p| is the least positive such number, it is said to be the least asymptotic period of x.

We note that the asymptotic period is possibly negative, and hence if p is the least
asymptotic period, then —p is also the least asymptotic period.
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We assume that (X, ¢) o (Y, y) and keep a homeomorphism h: X — Y, con-

tinuous functions ¢, ¢; and two-cocycle functions dj, d, which give rise to asymptot-
ically continuous orbit equivalence between (X, ¢) and (Y, y).

Lemma 4.2 If x € X is an asymptotic periodic point with asymptotic period p, then
h(x) is also an asymptotic periodic point with asymptotic period c (x) +dy (¢?(x), x).

Proof Since (x, ¢7(x)) € Gg and hence (x, p, x) € G§ x Z, we have

o p,x) = (), ¢ (x) + (87 (), ), ().
As (X, 9) o (Y, y), h(x) is an asymptotic periodic point in Y with asymptotic
period ¢/ (x) + dy (¢?(x), x). [ |

Lemma 4.3 Let x € X be an asymptotic periodic point with least asymptotic period
p. Let p' be the least asymptotic period of h(x). Then we have the equality

@) 3 (h(x))+da (v (h(x)), h(x)) = n-(c (h(x)) +da(¥* (h(x)), h(x)))
forallneZ.
Proof Suppose that (x, ¢”(x)) € Gg. Put y = h(x) and q" = f(x) + di (¢ (x), x).

By the preceding lemma, we know that y has asymptotic period ', so that (y, p’, y) €
Gy % Z. Now suppose that equality (4.1) holds for n = k. Since (y, p’, y) (¥, kp', y) =

(3> (k+1)p’, y), we get

(4.2) onr (10 ) (k' 9)) = o (3, (K +1)p', 7).
The left-hand side of (4.2) equals

w1 (1, 0 y) o1 (. kp' p)
= (K79, f (9) + da(y? (), ), h (%))
(W), ST () + (), ), 57 ()
= (K75, h (9) +da (¥ (1), ) + 57 (9) + (W (), ), H7(9)).
The right-hand side of (4.2) equals

o1 (s (k+1)p", ) = (B (1), S5V () + do (502 (3), ), 7N (7)),
so that we have

() +da (v (), y) + A () +d2 (¥ (), y) = SV (1) +da(yEIP(5), ).

By induction, we obtain the desired equalities for all # € N, and hence for all n € Z in
a similar way. ]

Lemma 4.4 If x € X is an asymptotic periodic point with asymptotic period p, then
h(x) is also an asymptotic periodic point with asymptotic period c (x) +dy (¢?(x), x).
If, in particular, p is the least asymptotic period of x, then ¢ (x) + dy(¢? (x), x) is the
least asymptotic period of h(x).
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Proof It suffices to show the “if in particular” part. Suppose that (x, $*(x)) € Gg

and p is the least asymptotic period of x. We will show that ¢ (x) + di (¢ (x), x) is

the least asymptotic period of i(x). Let p" be the the least asymptotic period of h(x).
Put ¢’ = ¢/ (x) + di(¢?(x),x), so that ¢’ = n - p’ for some n € Z. We will prove that
n = +1. We have

(x, p,x) = (@n-1 © @1) (x, p, x)
= g1 (h(x), ' h(x))
= (% ¢d (h(2)) + da(y? (h(x)), h(x)), ).

Hence, p = cgl (h(x)) +dy(y? (h(x)), h(x)). As g’ = np', the preceding lemma tells
us that

(43) p=n-( (h(x)) + da(y* (h(x)). h())).

Since p is (the least) asymptotic period of h(x), we have (y? (h(x)), h(x)) € Gy, so
that by Definition 3.2(iv), we have

(4.4) g2 DR (57 (g (h(x))), b7 (h(x))) € G

By Definition 3.2(ii), we have ((/)Cg,(h(x)) (x), k' (y? (h(x)))) € Gg and hence
(4.5)
(¢C§/(h(x))+d2(Wpl(h(x)),h(x))(x))¢d2(wp,(h(x))»h(x))(h—l(wpl(h(x))))) € Gl

By (4.4) and (4.5), we have

(¢4 BN+ BEMHE (1), 1) € GE.
As p is the least asymptotic period of x, we have
(4.6) cfl(h(x)) +dy(y? (h(x)),h(x)) =p-m’ for some m’ ¢ Z.
By (4.3) and (4.6), we have
p=n-m'-p,

so that we conclude that = +1,and hence ¢’ (x)+d; (¢?(x), x) is the least asymptotic
period of h(x). [ |

For an asymptotic periodic point x € X with asymptotic period p, we put
ch (x) = c (x) + di (¢* (x), x) € Z,
If p is the least asymptotic period, the preceding proposition tells us that
f(x)=n-cl(x) forneZ.

In this case, as any asymptotic period g of x is written q = m - p for some m € Z with
m # 0, we have ¢; " (x) = nm - c} (x) =n- ¢, (x), so that c; 7 (x) = n- c}(x).

For a periodic point x € X, the finite set {¢" (x) | n € Z} is called a periodic orbit.
Let us denote by

Porb (X) := the set of periodic orbits of (X, ¢).
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A periodic point with period p is called a p-periodic point. Let Per,(X) be the set of
p-periodic points of (X, ¢). The following theorem due to R. Bowen tells us that the
set Per,, (X) is finite for each p, because so is Per, (X 4).

Theorem 4.5 ( [2, Theorem 3.12]) Let (X, $) be an irreducible Smale space. Then
there exists an irreducible subshift of finite type (X 4,0 4) such that there exists a finite-
to-one factor map ¢: (Xa,04) = (X, ¢).

For a periodic orbit y € P (X), take a periodic point x € X such that
y = {¢"(x) | n € Z}. The cardinality of the set {¢" (x) | n € Z} is called the length of y
and written |y|. We will show that the periodic orbits P, (X) and Py, () are related
by their cocycle functions under the condition (X,¢) ~ (Y,w). A point x € X is
called a stably periodic point if there exists p € Z with p £ 0’such that (x, ¢?(x)) € Gy
We call such p a stable period of x. We note that Lemmas 4.2, 4.3, and 4.4 hold for
stably periodic points and stable periods under the condition (X, ¢) ~ (Y,y). We
provide the following lemma. SCOP

Lemma 4.6  Suppose that (X, ¢)SC':)E(Y, V). Let x € X be a periodic point in X such
that $? (x) = x. Put q = ¢/ (x) and assume q > 0, otherwise take —p. Then we have the
following:
(i) cfp(x) =kqforkeZ.
(ii) wi(h(x)) € Y*(h(x)) so that the limit limy_, .. wi*(h(x)) exists in Y.
(iit) Put np(x) = limy_ 0o 2% (h(x)). Then

(4.7) (" (%) =y (u(x))  for nel.

In particular, n,(x) is a q-periodic point in Y.
(iv) np(x) € Y*(h(x)).
(v) If p is the least period of x, then c!’ (x) is the least period of 1, (x).
i) () = p.

Proof (i) Since ¢?(x) = x, we have d;(¢? (x),x) = 0, so that ¢} (x) = cf (x) +
di(¢?(x),x) = ¢ (x). Hence, the equality ¢/ (x) -k = cfp (x) for k € Z is immediate.

(ii) We have (y2(h(x)), h(x)) = (4 & (h(x)), h(¢?(x))), which belongs to
Gy, because of Definition 3.5(i), so that y?(h(x)) € Y*(h(x)). By using [29, Lemma
5.3], the element limy_, ., y2*(h(x)) exists in Y and is a periodic point with period

(iii) By Definition 3.5(i) with Lemma 2.6, we have
; qk n R gk (1 (x) — () (1 qk
lim y*(h(¢"(x))) = lim y*(y7h(x))) = y2 ™ (lim y*(h(x))),

so that the equality (4.7) holds.
(iv) For each n € Z, we have gn = ¢ (x)n = /" (x) by (i), so that the equality

Tim g (" (h(x))) = lim y?*(h(9""(x))) = lim y7*(h(x))
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holds because of Definition 3.5(i). It then follows that
lim y" (7)) = lim y'( Jim ¥ (h(x))
Jim (i " 09)
lim (Jim yo*(y" ((x)))
Jim (Jm v 109)
lim y*(h(x)) = (),

andalso for j=1,...,q-1,
Ty (4 (x)) = y/( i y2" (7a(x)))
= y/( lim y7" (h(x))
= lim yo"*I (h(x)).
Hence, we have
lim d(y" (4 (), " (h(x))) = 0

where the above d( -, - ) is the metric on Y, so that we obtain that ;,(x) € Y*(h(x)).

(v) Assume that p is the least period of x. We will show that g = ¢ (x) is the least
period of #;,(x). Let go be the least period of #;,(x), such that g = go - m for some
m € Nand y? (n,(x)) = #,(x). Hence, we have

Jim y#I(y® (h(x))) = lim I (h(x)), j=0,1,....9-1,
so that
lim y" (y* (h(x))) = lim y"(h(x)).
By Lemma 2.6, we have that (y?° (h(x)), h(x)) € Gy, and hence qq is a stable period
of h(x) . As q is the least stable period of i(x) by Lemma 4.4 for stably period points
and q = qo - m, we get m = 1; that is, q is the least period of 7, (x).
q

(vi) We will prove ¢ (,(x)) = p, where q = ¢/ (x). As the function ] is contin-
uous, we have

A (x)) = lim c(y™ (h(x))).
By the cocycle property (3.2) for ¢, and Definition 3.5(v), we have
(™ (h(x))) = T (h(x)) - 2 (h(x))
= O () - 5 ()
= ((k+D)p—da(yt " @ (h(x)), h($*DP (x))))
~ (kp - da(y" @ (h(x)), h($* (x))))
= p— da(yFU(h(x)), h(x)) + da(y*? (h(x)), h(x))
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We then have
lim y" (97 (h(x))) = lim y"(h(¢™(x)) = lim y" (h(x))

This implies that y* (h(x)) € Y*(h(x)) for all k € Z. As 55 (x) € Y*(h(x)) by (iv),
we have y% (h(x)) € Y*(y,(x)) for all k € Z, so that there exists ko € N such that
forall k > kgand [ ¢ N

d(y™ (v (h(x))). " (4 (x))) < eo.

Hence for j=1,...,q - 1, there exists k; € N such that forall k > kjand [ ¢ N
d(y" I (T (h(x))), y" (11(x))) <eo.

We then find K € N such that forall k > Kand n € N,

d(y" (Y™ (h(x))).v" (4 (x))) < eo.
This implies that Y% (h(x)) € Y*(#,(x),€o) for all k > K. Since

lim y &0 (n(x)) = Jim y#* (h(x)) = (x),
by the continuity of d,, we see that
lim d,(yD1(h(x)), h(x)) = lim do(y*? (h(x)), h(x)) = d2( 11 (x), h(x)),
thus proving limy_, . ¢ (y7*(h(x))) = p. [ |
For a g-periodic point y in Y, we put
M (y) = lim 500" (W7 (y)).

The above limit exists in X by a similar manner to Lemma 4.6(ii), and #,-1(y) is
c}(y)-periodic point in X.
Lemma 4.7  For a periodic point x in X, we have

(48) I’lh—l(ﬂh(x)) = (p_dl(ﬂh(x))h(x))(x)'
Hence 1,-1(11(x)) belongs to the periodic orbit of x under ¢.

Proof Suppose that ¢*(x) = x. Take the constants 0 < €] < €9 and 0 < Ay < 1 for
the Smale space (X, ¢) as in Definition 2.1 and right after Definition 2.1. By using
Definition 3.5(ii), we know that Lemma 4.6(iv) implies that (7, (x), h(x)) € Gy, so
that

(P RED (171 (g, (x))), x) € G

because of Definition 3.5 (iv). Hence, for ¢ > 0 with 0 < € < ¢, there exists ng € N
such that

a7 (9" (¢ (W ((x))))), ¢"(6™ (1)) ) <€ forn=0,12,...

where the above d( -, - ) is the metric on X, and hence

¢ (I (7 (4 (x)))) € X*($™ (x)s€)-
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For any I € N, we have by (2.1)

d( ¢! (@I (17 (g (x)))) s ¢ (9™ (%))
< Agd (9" BRI (17 (5, (x))) ), 9™ (x))

<M e
so that
nh_,rﬂlo ¢pn(¢no+dz(r7h(x),h(x))(h—l(ml(x)))) - 7lll—>rl;lo P (@™ (x)) = ¢™(x).
Since
,}i_f?o PP (ot (mn (LR (1 (1))
= gt ( Tim P (W (1 (x))))
= gt RO (g (i (x))) s
the equality
ot lmCIRCD) (g, (4 (x))) = ¢™ ()
holds, thus proving (4.8). .

We thus reach the following proposition.

Proposition 4.8  Suppose that (X, ¢$) ~ (Y,y). Then there exists a bijective map
&t Porp(X) = Pory (Y) such that SCOE

1E,(y)| = |VN(x)]  fory € Pop(X) withy = {¢"(x) | n € Z}.

Proof Fory = {¢"(x)|neZ} ePop(X), put p = |y| the positive least period of x.
Define

En(y) = {v" (nu(x)) | ne Z}.
Since 77, (x) is a periodic point in Y with its least period ¢/ (x), & (y) is a periodic
orbit in Y such that |£,(y)| = ¢! (x)|. We note the corresponding statement for 1~
to Lemma 4.6 (iii) holds, so that we have the equality

(4.9) 1 (V' () = 6% (i (), ne’
for a periodic point y € Y. By (4.7) and (4.9), we have

Wh*l(wn(rlh(x))) — ¢C;(’1h(x))(7’lh*1(77h(x))) - ¢f£'(r1h(x))—dz(nh(x)),h(x))(x)

Hence, #7,-1(y"(4n(x))) belongs to y, so that we have &,-1(&,(y)) = y. Simi-
larly, we have &,(&,-1(y")) = ¥’ for " € Porp(Y). We thus conclude that the map
&n: Porb(X) = Porb (Y) is bijective and satisfies the desired property. [ |

The zeta function {4(t) for the dynamical system (X, ¢) is defined by

{o(t) = exp i %| Per,(X)|}  (cf [2,13,24,35)),

n=1
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where | Per,, (X)| means the cardinal number of the finite set Per, (X). Suppose that
(X, ¢)A50E( Y, w). By Proposition 4.8, there is a bijectivemap &j,: Porp (X) = Porp (Y)

such that
1E,(y)] = | (x)|  fory € Porp(X) with y = {¢"(x) | n € Z}.

We set the two kinds of dynamical zeta functions

G()= [ a-ts0h,

yEPmb(X)

(g,e,(8) = exp{ i% Z exp( —s|c1”(x)|)} (cf [24,35]).

n=1"" xePer,(X)

N

By putting t = e™*, we see that

Ce, (1) = Cg,aa(5)
by general theory of dynamical zeta function (cf. [24,35]).

Theorem 4.9  Suppose that (X, ¢) ~ (Y, ). Let h: X - Y be a homeomorphism
that gives rise to a stably continuous orbit equivalence between them. Then we have

Co(t) = e, (1) and  §y(t) = L, (1)

Proof There exists a bijection &j,: Pob(X) = Porp(Y) such that |, (y)| = |c‘1"|(x)|
for y € Pop (X) with y = {¢"(x) | n € Z}. As &, is bijective with |&,(y)| = |c|1y‘(x)|, it
is direct to see that {,(t) = {, (¢), and similarly {4 (¢) = (¢, _, (2). [ |

We remark that a similar statement for UCOE holds.
5 Asymptotic Ruelle Algebras R§ with Dual Actions

Let us recall the construction of the groupoid C*-algebras from étale groupoids (
[30]). Let G be an étale groupoid with range map r: G — G° and source map s: G —
G° from G to the unit space G° of G. In [30], “r-discrete” was used instead of “étale”

The (reduced) groupoid C*-algebra C; (G) for an étale groupoid G is defined in
the following way ( [30]). Let C.(G) be the set of all continuous functions on G with
compact support that has a natural product structure of *-algebra given by

(fre)w)= > fOgltTu)= 3 f(t)g(t),

r(t)=r(u) u=tity
fru)=f@w?),  f,geCc(G), ucG.
Let Co(G®) be the C*-algebra of all continuous functions on the unit space G° that
vanish at infinity. The algebra C.(G) is a Co(G°)-right module, endowed with a
Co(G®)-valued inner product given by

(E)(8) = () f(s(1)), §€Cc(G), feCo(G), teG,

(&m(x)= > &t)n(t), £,1€C.(G), x €G°.

x=s(t)
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Let us denote by [?(G) the completion of the inner product Co(G°)-module C.(G).
It is a Hilbert C*-right module over the commutative C*-algebra Co(G®). We de-
note by B(I1?(G)) the C*-algebra of all bounded adjointable Cy(G®)-module maps
on [*(G). Let  be the *-homomorphism of C.(G) into B(I1*(G)) defined by (f)¢ =
f = &for f,& € C.(G). Then the closure of 7(C.(G)) in B(I*(G)) is called the (re-
duced) C*-algebra of the groupoid G, which we denote by C; (G). If we endow C.(G)
with the universal C*-norm, its completion is called the the (full) C*-algebra of the
groupoid G, which we denote by C*(G). By a general theory of groupoid C* -algebras,
C; (G) is canonically isomorphic to C*(G) if the groupoid is amenable ( [30]). An
étale groupoid G is said to be essentially principal if the interior of G’ = {y € G |
s(y) = r(y)} is G° ([3L, Definition 3.1]). By Renault [30, Proposition 4.7], [31, Propo-
sition 4.2], Co(G®) is maximal abelian in C*(G) if and only if G is essentially princi-
pal.

Definition 5.1 A Smale space (X, ¢) is said to be asymptotically essentially free if
the interior of the set of n-asymptotic periodic points {x € X | (¢"(x),x) € G§} is
empty for every n € Z with n # 0.

We always assume that the space X is infinite. Recall that a Smale space (X, ¢)
is said to be irreducible if for every ordered pair of open sets U, V c X, there exists
K € N such that ¢¥(U) n V # @. It is equivalent to the condition that for every
ordered pair of open sets U, V c X, there exists K € N such that $ X(U) n V # @.
The referee kindly showed to the author the following lemma with its proof below.
The author deeply thanks the referee.

Lemma 5.2 If a Smale space (X, ¢) is irreducible and X is infinite, then (X, ¢) is
asymptotically essentially free.

Proof Let U,,n € N be a countable base of open sets of the topology of X. Since
(X, ¢) is irreducible, the set 52, " (U, ) is dense in X for every m € N. By Baire’s
category theorem, N5r_; Upey ¢ (U, ) is dense in X. The set N5y Unzg ¢ (Un)
coincides with the set of points whose forward orbit is dense in X. Now suppose
that for a fixed n # 0, the interior of the set of n-asymptotic periodic points
{x e X|(¢"(x),x) € Gg} contains a non-empty open set U. There exists a point
x € U such that the forward orbit of x is dense in X. Since (¢"(x),x) € Gg, we
have

lim d(¢"(¢"(x)), 9" (x)) =0,

so that ¢ (x) € X*(x). By [29, Lemma 5.3], there exists limj_, o, $*" (x), denoted by
¥, in the set of n-periodic points Per, (X). We note that although [29, Lemma 5.3]
is considering only mixing Smale spaces, the assertion [29, Lemma 5.3] holds in the
irreducible Smale space with X being infinite. Since X is infinite, one can find a point
2 ¢ {y:¢(»),....¢" " (y)}. Pute = $ Min{d(z,¢'(y)) | i = 0,1,...,n —1}. Let us
denote by N,(z) the e-neighborhood of z of open ball. We put V = Uy Nc(¢'(»)),
so that we have V n N.(z) = @. Since X is compact, there exists § > 0 such that for
all wy, w, € X, d(wy, wy) < & implies d(¢7(w;), ¢/ (w;)) <eforall j=0,1,...,n 1L
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In particular, for j = 0, we have & < e. Since limj_, ., $*"(x) = y, there exists K € N
such that d(¢*"(x), y) < 8 for all k > K. Hence, we have

d(gbj(q’)k"(x)),(/)j(y)) <e forallj=0,1,...,n-1, k>K,

so that ¢*"*J(x) € N.(¢/(y)) forall j = 0,1,...,n—1, k > K. Hence we have ¢ (x) €
V for all m > K - n. This contradicts the condition that the forward orbit of x is dense
in X. We thus conclude that the interior of the set {x ¢ X [ (¢"(x),x) € Gg} is
empty. u

Lemma 5.3 A Smale space (X, §) is asymptotically essentially free if and only if the
groupoid G§ x 7 is essentially principal.

Proof Aswe have
(Gg=Z) = U {(x,n,2) eGgxZ| x =z}
nez
=U {(x,n,x) eXxZxX|(¢d"(x),x) ¢ Gf;},
nez
the interior int((Gg x Z)") of (Gg » Z)" is
int ((Gg»Z)") = U int({(x,n,x) e XxZx X | (¢"(x),x) € G§}).
nez
For n = 0, we see that
int ({(x,0,x) e XxZx X | (x,x) € Gg}) = (Gg »Z)° = X.
Hence , int((Gg % Z)") = (G = Z)° if and only if
int({(x,n,x) e X xZx X | (¢"(x),x) € Gg})
is empty for all n € Z except n = 0. This implies that (X, ¢) is asymptotically essen-
tially free if and only if G§ x Z is essentially principal. |

The following proposition as well as Lemma 5.5 is well known to experts through
[25, Theorem 3.1]. The proof is also direct from Renault’s result [30, Proposition 4.6].

Proposition 5.4  If a Smale space (X, §) is irreducible, then the groupoid C* -algebra
C;(Gg » Z) is simple.

Lemma 5.5 (cf. [29, Theorem 1.1])  The groupoids Gf; and G; x 7, are both amenable.

By Lemma 5.5, the full groupoid C*-algebras C*(Gg), C* (G »Z) and the reduced
groupoid C*-algebras C; (Gg ).Cr (Gf’;5 x Z) are canonically isomorphic respectively.
We do not distinguish them and write them C*(Gy), C*(Gg x Z), respectively.

For an irreducible Smale space (X, ¢), the asymptotic Ruelle algebra R is defined
as the groupoid C*-algebras C*(Gg xZ) of the étale groupoid G xZ. The algebra was
written R, in Putnam’s paper [25]. In this paper, we denote it by R¢. As in [25,29],
the groupoid G§ » Z is the semidirect product of the groupoid G ¢ by the integer
group Z, one knows that the algebra R§ is naturally isomorphic to the crossed product
C*-algebra C*(Gg) x Z of the groupoid C*-algebra C*(Gg) by Z.
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In the construction of the groupoid C*-algebra C*(Gy x Z), we first define the
unitary group U? forte T=R/Zon IZ(G;‘5 % 7,) by setting

(5.1) [U?E](x, n,z) = exp (2mv/—1nt ) &(x, n, z)

for & € lz(Gg x Z), (x,n,z) € Gy x Z. The automorphisms Ad(Uf),t € T on
B(1 Z(Gg x 7)) leave R globally invariant, and yield an action of T on Rg. Let us
denote by p? the action Ad(U;’5 ),t € T on RY. It is direct to see that the action is
exactly corresponds to the dual action of the crossed product C*(Gy) x Z.

A continuous function f: Gg x Z — Z is called a continuous homomorphism if it
satisfies

fyy2) = f(y) + f(y2)  fory,y2 € Gg = Z.
It defines a one-parameter unitary group U;(f),t € T on lz(Gg x 7)) by setting

[U:(f)€](x.m.2) = exp (2m/71f (x, m, 2) 1) E(xam,2)

for & € lz(G; x Z), (x,n,z) € Gg x Z. In particular, for the continuous homomor-
phism d¢(x, n,z) = n, we have U,(dg) = U? by (5.1).

Now suppose that (X, ¢) o (Y,y). Let ¢i: Gg 1 Z — Gy, x Z be the isomor-
phism of the étale groupoids and let #: X — Y be the homeomorphism that gives

rise to the asymptotic continuous orbit equivalence between them. We define two
unitaries

Vi: 2(Gy xZ) — (GG« Z) and  Vyr: I*(Gg x Z) — I(Gy » Z2),
by setting

62) Vidlena) =lpu(ema),  (el(GhxD), (xm2) Gy xT,
(Vi E](ys mw) = E( @ (y,m,w)),  Ee lz(G(‘z %Z), (y,m,w) € Gy =7

Since the unit space (Gg x Z)° is identified with the original space X through the
correspondence (x,0,x) € (G§ x Z)° — x € X and (Gg x Z)° is clopen in G¢ » Z,
we regard C(X) as a subalgebra of Rg. Similarly, C(Y') is regarded as a subalgebra of
Rﬂ

v

Proposition 5.6  Suppose that (X, ¢) ~ (Y,y), and keep the above notation. Let
Pn: GyxZ — GyxZbethe isomorphism%(ﬁize étale groupoids giving rise to (X, ¢) o
(Y,y).Let f: Gg=Z — Zand g: Gy»Z — Z be continuous homomorphisms satisfying
f = g ¢n. Then there exists an isomorphism ®: R§ — Ry of C*-algebras such that

O(C(X)) =C(Y) and
(5.3) ®oAd(Ui(f)) =Ad(Ui(g)) o®,  forteT.

Proof We set @ = Ad(Vj1). It satisfies O(Cc(Gg x Z)) = Cc(Gy, x Z), and hence
O(RG) = Ry, and ©(C(X)) = C(Y). For { € I*(Gy % Z), (y,m,w) € Gy = Z and
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a € Cc(Gg x Z), we have the following equalities:

[(® 0 Ad(UL()))(@)¢] (, m, w)
= Vi Ui(£)aUs(f) Va1 (y m, w)
= [U()aU()) Val) (g3 (7, m, w))
= exp (2nV=1f (93" (s m.w)) D)@ = (U () VaO) 1 (93 (s m, )
= exp (27v/=1f (9, (3 m, w))1)
> aW U VOO e mw)) )

r(y)=r(9;" (y,m,w))

= exp (271 (93 (2 m,w)) 1)
Y a(y)exp(-2nV/1f (95 maw))t)

r(y)=h71(y)
(Vi) (g5 (s maw)))
= exp (27v/1f (9, (3 m, w))1)
Y a(y)exp( - 2nVU(F(r™) + Flg7' (3 mw)))E)

r(y)=h7'(y)
(Vi) (g5 (0 mw)))
= > a(yexp(-2nV-1f(y ™)) (@n(y™) (3 m,w))

r(y)=h71(y)

and

[ (Ad(U(g)) o @) (a) (] (3, m, w)
= [Ut(8) Vi aViUi(g) {1 (y, m, w)
= exp (21V/=1g(y, m, w) 1) [Vi1aVi Uy (€)“C1(y m, w)
= exp (21V/~1g(y, m, w)1)[aVi Ur(g)* (1 (@} (o m, w)
= exp 2ﬂ\/_g(y m,w)t)

(
(
( a(»)(ViUi(2) ) (v o' (o mw)) )
()= r(«»,,l(y mow))
=exp ( Zﬂ\/_g(y,m,w)t)
> amWi@) O (en(yen (romw))))
r(y)=h7(y)
= exp (2mV/~1g(y, m,w)t)
> a(y)exp( - 2nvV=1g(gn(y™) - (3, m, w)t)

r(y)=h"'(y)

(o™ (omw)))
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= > aexp(—2nV=1e(en(yNE) L on(y™) - (romaw)).
r(y)=h71(y)
By assumption, we see that f(y™') = g(@x(y™")), so that we obtain ® o Ad(U,(f)) =
Ad(LB(g))O(D. |

We assume that (X,¢) ~ (Y,y).Let h: X — Y be a homeomorphism that
ACOE

gives rise to the asymptotic continuous orbit equivalence between them. Take the

continuous functions ¢;: X — Z, ¢: Y — Z and two-cocycle functions d;: G; -

Z, dy: Gy, —~ Z satistying Definition 3.2 of asymptotic continuous orbit equivalence.
We set two functions

(5.4) cg(x,m,2) = ¢ (x) + di(¢" (%), 2), (x,n,2) € Gg x Z,
cy(ysmow) =3’ (y) + 2 (y" (), w), (y,m,w) € Gy % Z.
They satisfy
co(y1y2) = co(y1) +c4(y2) for y1,y2 € Gg x Z,
cy(y172) = cy (1) + ey (¥2) for y1,y5 € Gy » Z,
and hence they are continuous homomorphisms satisfying
on(x,n,2) = (h(x),co(x,n,2),h(z)), (x,n,2) € Gg % Z,

ora (s w) = (B (0)s ey mw) (W), (o, w) € G w 7,
We note that the following identities hold:

(5.5)dy( on(x,n,2)) = cg(x,n,2), de( @' (> m,w)) = cy (3, m,w),

cy(pn(x,m,2)) =dg(x,n,z) =n, cs( @' (y,mw)) =dy(y,m,w) =m.
Theorem 5.7  Suppose that Smale spaces (X, ) and (Y, y) are irreducible. Then the
following assertions are equivalent:

(i) (X, ¢) and (Y, ) are asymptotically continuous orbit equivalent.
(ii) There exists an isomorphism Rg — Ry, of C*-algebras such that ®(C(X))
C(Y) and

®op! = Ad(Ui(cy)) o ®,  ®oAd(Ui(cy))=plo®  forteT

for some continuous homomorphisms cg: Gg » Z — Z and cy: Gy x Z — L.

Proof (i) = (ii): Take f = dy, g = ¢y in equality (5.3). We then have Ad(U,(dy))
pf’ and ¢y o ¢, = dy by (5.5). Hence by (5.3), we obtain

(5.6) ®op! = Ad(Ui(cy))o®,  teT.

Take f = c4,g = dy in equality (5.3). We then have Ad(U,(dy)) = p} and ¢y o
(pn)t= dy by (5.5). Hence by (5.3), we obtain

(5.7) ®oAd(Ui(cy)) =pfo®,  teT.
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(ii) = (i): Since the Smale spaces (X, ¢) and (Y, ) are both asymptotically es-
sentially free, the étale groupoids Gy » Z and Gy, x Z are both essentially princi-
pal by Lemma 5.3. By Renault [31, Proposition 4.11], an isomorphism Ry — Ry of
C*-algebras such that ®(C(X)) = C(Y) yields an isomorphism of the underlying
étale groupoids G4 x Z and G, » Z. Hence by Theorem 3.4, we see the implication
(ii) = (@i). [ |

Remark 5.8  Similar discussions to Theorem 5.7 for topological Markov shifts with
continuous orbit equivalence are seen in several papers (cf. [5,6,14-17,21], etc. ).
6 Asymptotic Conjugacy

In this section, we will introduce a notion of asymptotic conjugacy between Smale
spaces and describe the asymptotic conjugacy in terms of the Ruelle algebras with its
dual actions. Smale spaces (X, ¢) in this section are assumed to be irreducible and
the space X to be infinite.

Definition 6.1 Smale spaces (X, ¢) and (Y, ) are said to be asymptotically con-
jugate if they are asymptotically continuously orbit equivalent such that we can take
their cocycle functions such as ¢; =1, ¢; =1and d; = 0, d; = 0 in Definition 3.2.

In this situation, we write (X, $)=(Y,y). Namely, we have (X, ¢) and (Y,y)
are said to be asymptotically conjugate if and only if there exists a homeomorphism
h: X — Y that satisfies the following four conditions:

(a) There exists a continuous function k; ,: X — Z, for each n € Z such that
(G (h(x)), y*r ) (h(¢" (x)))) €GP,
(O b))y ((97(x)))) € Gy
(b) There exists a continuous function k; ,: Y — Z, for each n € Z such that
(¢k2’"(y)+n(h_1(y)), ¢k2,n(y)(h—1(wn ()/)))) c G;’O,
(¢7 (W7 (y)), ¢ (N (y" (1)) € G°.

(c) There exists a continuous function m;: sz — 7., such that
(wml(x’z)(h(x)),wml(x’z)(h(z))) € Gf(,’o for (x,2) € sz,
(1//_’”1("’2)(h(x)),l//_ml(x’z)(h(z))) € G;‘,’O for (x,z2) € sz.

(d) There exists a continuous function m,: G{; — 7, such that

(9™ 0™ (K (3)), ™0 (17 (w))) € G5 for (y,w) € G2,
($70M (1 (1)), 67O (h (W) €GL° for (y,w) € GE.

Recall that the Ruelle algebra R§ is defined as the groupoid C*-algebra C*(G§ x Z) of
the étale groupoid Gg»Z. Itis naturally isomorphic to the crossed product C* (G;) b
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Z of the C*-algebra C*(Gg) by the automorphism ¢* on C*(Gg) induced by the
formula

¢ (f)(x.2) = f(9(x).9(2))  for f € C(G), (x,2) € Gy.
Define the unitary Uy on I>(G§ » Z) by setting

(6.1) (Up&)(x,n,2) = &(Pp(x),n-1,2) for & e ZZ(GZ5 xZ), (x,n,z) € Gg x Z.
It is direct to see that

UpfUg =¢"(f)  for feCc(Gy),
where
flx,z) ifm=0,

for (x,z) € G&.
0 otherwise, (x.2) ¢

flxamz) = {
Now we assume that (X, ¢) is irreducible, so that the C*-algebra RY is simple
by Proposition 5.4. Hence we know that Ry is isomorphic to the C*-algebra
C*(C*(Gg), Uy) generated by the its subalgebra C*(Gg) and the unitary Uy. The
following lemma follows directly from J. Renault’s result [31, Proposition 4.11].

Lemma 6.2 Let (X, ¢) and (Y, y) be irreducible Smale spaces. The following asser-
tions are equivalent:
(i) There exists an isomorphism ¢: Gy x Z — Gy » Z of étale groupoids such that
9(G§) = Gy and 9(G3°) = Gy*;
(ii) there exists an isomorphism ®: Rg — Ry of C*-algebras such that O(C*(Gg)) =
C*(Gy) and ®(C(X)) = C(Y).

Proof By Lemma 2.5, the spaces G;’O, Gf;,’o are identified with X, Y respectively as
topological spaces. They are also identified with the unit spaces (G4 »Z)°, (Gy x Z)°,
respectively. Since (X, ¢) and (Y, y) are irreducible and hence asymptotically essen-
tially free, the étale groupoids Gy x Z and Gy, x Z are both essentially principal by
Lemma 5.3. The implication (i) = (ii) is direct. By Renault [31, Proposition 4.11], an
isomorphism Ry — Ry of C*-algebras such that ®(C(X)) = C(Y) yields an isomor-
phism ¢ of the underlying étale groupoids G§ x Z and Gy, x Z. By the construction of
the isomorphism ¢ of the étale groupoids, we see that 9(Gg) = Gy, by the additional
condition ®(C*(Gg)) = C*(Gy), thus proving the implication (ii) = (i). [ |

Proposition 6.3 Let (X, $) and (Y, y) be irreducible Smale spaces. Suppose that
there exists an isomorphism @: R¢ — Ry of C*-algebras such that ®(C(X)) = C(Y)
and

®0p;’5:p‘foq), teT.
Then there exists a homeomorphism h: X — Y that gives rise to an asymptotic contin-
uous orbit equivalence between (X, ¢) and (Y, ) such that its cocycle functions satisfy

ClEl, 6251, d150, dzEO.
Namely, (X, ¢) and (Y, y) are asymptotically conjugate.
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Proof Suppose that there exists an isomorphism @: R§ — Ry of C*-algebras such
that @(C(X)) = C(Y) and ® o p;’s = p/ o ®,t € T. We will first show that d; = 0,
d, = 0. Since the fixed point algebra (fR;)p " of R under p? is canonically isomor-
phic to the groupoid C*-subalgebra C*(Gy), the isomorphism @: R§ — Ry, satisfies
?(C*(Gg)) = C*(Gy). By Lemma 6.2, we then find a homeomorphism h: X — Y
and a groupoid isomorphism ¢, : GygxZ —~ GyxZ such that (ph(Gg) =Gy, goh|G$,o =
hand @(f) = foh™' for f € C(X). For (x,z) € G, we have

on(x,0,2) = (h(x),c¢(x,0,z),h(z)) = (h(x),dl(x,z),h(z)).

As 91 (x,0,2) € Gy, we know that dy(x,z) = 0,and d>(y, w) = 0 for (y,w) € Gy.

We will next show that ¢; =1, ¢; = 1. Since the isomorphism @: ng - in,’, satisfies
?(C(X)) = C(Y), the groupoid isomorphism ¢ : G » Z —~ Gy x Z with home-
omorphism h: X — Y yields an asymptotic continuous orbit equivalence between
them. They also satisfy the equalities

(62)  ou(x,n,2) = (h(x),c4(x,n,2),h(2)), (x,n,2) € Gg % Z,

prs (o w) = (e omw), W), (ramw) € GEwZ,
Let V}, be the unitary defined in (5.2). As in the proof of Proposition 5.6, by putting
®;, = Ad(Vjy-1), we have an isomorphism ®@j,: R — Ry such that ®,(C(X)) =
C(Y) and

®j0p? = Ad(Ui(cy)) 0@, @y o Ad(Us(cy)) = pY 0 @y

Let Uy be the unitary defined in (6.1), which corresponds to the implementing uni-
tary of the positive generator of the group representation of Z in the crossed product
C*(Gg) » Z. 1t satisfies the equality Ug fUg = f o ¢ for f € C(X). For f € C(X), as
O(f) = Dy(f), we see that

O(Uy)Du(f)P(Ug) = O(fo¢) =DPu(fo¢)=Du(Up)@in(f)Pn(Ug),
so that
@, (P(Ug)) f®,(P(U)) = Us fU5.
Hence, we have
Us @3, (2(Uy))f = fU; @3, (@(Uy))  forall f e C(X).

Since (X, ¢) is irreducible and hence asymptotically essentially free, the groupoid
Gg » Z is essentially principal by Lemma 5.3. By [30, Proposition 4.7] or [31, Propo-
sition 4.2], C(X) = C((Gg % Z)°) is a maximal abelian C*-subalgebra of R. Hence,
there exists a unitary f, € C(X) such that U;@;l((b( Ug)) = fos so that

(6.3) D(Uy) = Pu(Ugfo).

Since @ 0 p? = p¥ o @ and ®;, o Ad(U¢(cy)) = p} o @y, we get the following by
equality (6.3):

(6.4) ®opf(Uy) = (@) 0 Ad(Ur(cy))) (Ugfo)-
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As pf(U,p) = exp(2m\/~1t) Uy, the equality (6.4) becomes
(6.5) exp (2mV/-1)D(Uy) = @5 ( Ur(cg) Ug foUr(c4)*) -
As fo € C(X) and U;(cy)* = Us(—cy), we have the following for & e lZ(G(‘;5 x 7) and
(x,n,2) € Gg % Z:
[(Ui(—c4) fo€](x,n,2) = exp ( 21V -1(~c(x, n,2))t) [fo&](x,n,2)
= fo(x) exp (Zn\/—_l(—c¢(x, n,z))t) &(x,n,z)
= [fo(x)Ue(=¢4)&] (x,n,2),
so that U;(cy ) fo = foUi(cy)*. Hence, equation (6.5) implies

exp (2mV/-1t)D(Uy) = @1, (Ui(cy)Us Ui (c4)* fo)
which becomes by (6.3),

exp (27t\/—_1t)CDh(U¢) = D (Ui(cy)UgUs(cy)*),
so that
(6.6) exp (2nV~1t) Uy = Uy(c) Uy Uy (cg)*
For & e lz(Gg‘f5 % Z) and (x,n,z) € Gg x Z, we have the equalities
[Ui(cy)UpUs(cg)*E] (x,1,2)

= exp ( 27‘[\/—_1C¢ (x,1,2)t) [UgUs(=c)é](x, 1, 2)

= exp ( 271\/—_1C¢(x, n, z)t) [Ui(=c4)E](¢p(x),n—1,2)

= exp (Zﬂ\/—_l(c¢(x, n,z) = cy(p(x),n-1,2))t) E($(x),n - 1,2).
On the other hand,

[exp (2mV/~1t)Ug&](x, 1, 2) = exp (2mV/-1)E(¢p(x), n -1, 2).
By (6.6), we have

co(x,m,2) —cy(p(x),n-12) =1.
By (5.4), we see that
cg(x,m,2) - c¢( ¢(x),n-12)

{c(x) +di(¢"(x),2)} = {7 (8(x)) + ("7 ($(x)). 2)}
a(x).

Therefore, we have ¢;(x) =1for all x € X, and ¢,(y) = 1forall y € Y similarly. [ |

Recall that d¢ (x, 1, 2) = n for (x,n,z) € G x Z defines a continuous homomor-
phism dy: Gg xZ — Z.

Theorem 6.4 Let (X, ) and (Y, y) be irreducible Smale spaces. Then the following
assertions are equivalent:

(i) (X, ¢) and (Y, ) are asymptotically conjugate: (X, ¢) = (Y, v).
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(ii) There exists an isomorphism ¢: Gg x Z — Gy, x 7 of étale groupoids such that
dll/ oP = d¢
(iii) There exists an isomorphism ®: Rg — Ry, of C*-algebras such that

O(C(X))=C(Y) and ®opl=plod,  teT.

Proof Theimplication (iii) = (i) follows from Proposition 6.3. In the proof of Propo-
sition 6.3, we showed that there exists an isomorphism of groupoids ¢;: Gg x Z —
G]‘,‘, x Z such that ¢; =1, ¢c; =1and d; =0, d, = 0. Hence we have

cp(x,m,2) = ¢ (x) +di(¢"(x),2) =n  for (x,n,2) € Gy » Z

and ¢y (y, m,w) = m, similarly. This implies that cy = dy and ¢y = dy. By (6.2), we
obtain dy, o ¢ = dg. This argument shows that the implications (iii) = (ii) = (i) hold.

We will show the implication (i) = (iii). Suppose that (X, ¢) and (Y, y) are
asymptotically conjugate. Take a homeomorphism h: X — Y, which gives rise to the
asymptotic conjugacy. In the proof of (i) = (ii) of Theorem 5.7, we know that ¢4 = d
and ¢y = dy, because c¢(x,n,2) = n for (x,n,2) € Gg x Z and cy(y, m,w) = m for
(y,m,w) € G; x Z, similarly, which come from the conditions ¢; =1, ¢; =1,d; =0,
d, = 0. Hence, we have

Ad(Ui(cy)) = Ad(Ui(dg)) = p¢ and  Ad(Ui(cy)) = Ad(Ui(dy)) = p!.

We thus obtain the equality @y, o p‘f = p!/ o @}, by (5.6) or (5.7). ]
7 Extended Ruelle Algebras R%*

In this section, we will introduce an extended Ruelle algebra R3" from a certain
amenable étale groupoid of a Smale space (X, ¢). The introduced C*-algebra con-
tains the asymptotic Ruelle algebra R§ as a fixed point subalgebra under some circle
action. The extended Ruelle algebras will be useful in the following sections to inves-
tigate the asymptotic Ruelle algebra R for topological Markov shifts from the view
points of Cuntz-Krieger algebras.

We first introduce the following groupoid G* x 72 for a Smale space (X, ¢) that
will be proved to be étale and amenable:

Gy %2 ={(x,p,q,y) e Xx Lx Lx X | (" (x), y) € Gy, (¢7(x), y) € Gy}
The following lemma is straightforward.

Lemma 7.1 For (x,p,q,y),(x',p’.q',y") € Gg* » 72, we have

D (x.p+p.q+q.y)eGy «L?ify=x';
(i) (y>—p>—q,x) € Gg* x 72,
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Two elements (x, p, 4, y), (x' p'.q', y') € Gg* x 72 are composable if and only if
y = x'. The multiplication and the inverse in G3* x 72 are given by

(pgy)- (<045 y) = (e p+plig+q’y) ify=x,
(*.2,4:7) " = (o=, =4, %).

We write the unit space (G x 72)° of Gy x 72 as

(Gy* 7%)° = {(x,0,0,x) | x € X},
which is identified with X. Define the range map, source map

r,s: Gs¢,u ><]ZZ N (Gs¢,u ><]ZZ)O
by
(% pqy) = (%,0,0,x),  s(x,p.4,y) = (1,0,0,y).
For p,qeZandn=0,1,..., we set
Gy " (prq) = { (5, 9) e X x X | (¢7(x), ) € G", (¢%(x), y) € G},
Gy (p.4) = { (x,9) € X x X [ ($7(x), 1) € Gy, ($7(x), y) € Gy}

For each n, the set Gy™"(p, q) is endowed with the relative topology from X x X.
Since G © G;’"“ for * =s,uandn=0,1,..., we have
) G (p )G (pa) and Gy (pa) = U G5 (pr ).
We can endow Gy (p, q) with inductive limit topology from the inductive system
(7.1) of the topological spaces {Gy""(p,q)}nez,. Since we can identify Gy x 72
with the disjoint union U(,,g)e72 Gy (p» ), the groupoid Gg* x Z? has the topology

defined from the topology of the disjoint union Uy, 4)e72 Gy* (P q). We then have the
following proposition.

Proposition 7.2 Gfp’“ x 7% is an étale groupoid.

Proof We will show that the range map r : (x,p,q,y) € sz’” % 7* - (x,0,0,x) €
Gy x 72 is a local homeomorphism. Take an arbitrary point (x, p, g, y) € Gy x 72
Since Gy % Z2 = Uy, q)ez2 Gy (p, q) and G (p, q) = Uy G3*" (p> 9), we assume
that (x, y) belongs to G;’”’N(p, q) for some N € Z,, so that

(¢P(x),y) €G5N,  (99(x),y) e GyY

which imply that
72 (P, ¢Y (M) €6y (97N (),97V (1) € Gy
and

d(¢N+‘D+n(X),¢N+n(y)) <€, d(¢—(N—q+n) (x), ¢—(N+n)(y)) < €p

foralln = 0,1,2,.... Take z € X such that d(¢™ (), $V*?(2)) < €0 and d(x, z) is
small enough so that (¢™(y), ¢N*?(2)) € A.,. Hence, the point [¢N (y), pV P (z)]
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defines an element of X, and we have an element ¢~ ([¢™ (), $V*?(z)]) in X. Since
we can assume that [¢V (), NP (2)] € X*(¢N(y), €0), we have

d( 3, ¢ N ([N (1), 6" (2)]) =d( 6NN (1)), 6 N ([6N (1), ¢V (2)]))
<Agd( o™ (»), [N (1), 9" (2)])

< AON€0.
Similarly we have an element
[¢"MD(2),¢ V()] eX and V([¢"V P (2).9N(n)]) € X
such that
d(7,¢"([p"" 0 (2), 97 ()]) < W'eo.
We can also assume that 1)) < 3 by taking N large enough, so that
d(¢™ (L™ (2, 0™ (D, ¢V ([ (), ¢V 7 (2)])
<d(y, ¢ ([p" VD (2), 97V ND) +d( 3¢V ([$" (1), ¢ (2)]))

<2A\ep < €.
Hence we have
(6™([67 2@ 6D ¢ N ([$Y (1), ¢V (2)]) ) € Ay,
so that the element

73)  p(2)=[oN([¢ V(). 6N(1]) . ¢ N ([6" (1), 6V P (2)]) ]

is defined in X. The map y is defined on a small neighborhood of x and gives rise to
a continuous map on the neighborhood. The conditions in (7.2) imply

[N (), oV ()] =6 (), (o NP () e NN =N ().
Hence, for z = x in (7.3), we have
y(x) = [¢V ([0 N (x), 6V (1]), ¢ ([¢V (1), ¢V (0)]) ]
=[¢" (6™ (). 67 (¢" (1) ]
=[yyl=y.

We will next show that y is injective. Suppose that y(z) = y(z’) for z, 2’ in a small
neighborhood of x. Since

74) o N@@) =[[6 N V(2), s V(] N ([N (1), ¢V (2)])]
=[N D (2), 67N ([$" (1), 9" P (2)])]

and similarly

75 o) =[¢ V()¢ (9 (). 6N P (D]
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We then have by (7.4), (7.5)

¢ NV (2) = [[¢p" N D (2), 6N ([¢V (1), 9" (2)])], ¢V D (2)]

(67 (y(2)), ™D (2)]
[V (y(2)), ¢~ (2)]

[p~ VD (2), ¢~ (2)],

so that

(7.6) ¢ VD (2) = [¢"ND(2), gD (2)].
Since z, z’ are in a small neighborhood of x, we can assume that
(77) d(¢~ND(2'), VD (2)) <.

By (7.6) and (7.7), we know

¢—(N—q)(zl) c X“( ¢—(N—q)(z)’€0) ,
so that

(7.8) d( ¢~ N=arm) (2, ¢_(N_q+")(z)) <g foralln=0,12,....

As z, 7z are in a small neighborhood of x, we can assume that

d(¢7"(x),¢7"(2)) < %0, d(¢7"(x),¢7"(2)) < %O foralln =0,1,...

Hence, we have
(7.9) d(¢7"(z'),¢"(z)) <& foralln=0,1,...N-q.
By (7.8) and (7.9), we obtain

d(¢7"(z'),¢7"(z)) <eo foralln=0,1,2,...

and hence z’ € X"(z,€).
We similarly observe that

d(¢"(z'),¢"(z)) <e foralln=0,1,2,...
and hence z’ € X*(z,¢) , so that

7 € X*(z,60) N X*(z,€0)

I O e (U ORI CO I Nl O]

and z’ = [z, z] = z. This shows that y is injective on a small neighborhood of x and
locally a homeomorphism by the definition of y. As a consequence, the groupoid

G;;" x 72 is étale.

Lemma 7.3  The étale groupoid G* x 7* is amenable.

Proof ~Consider the groupoid homomorphism 7: (x, p,q, y) € Gg* x 7Z* - (p,q) €
Z*. The kernel is Gy NGy = G, which is amenable by Lemma 5.5. Hence by [I,

Proposition 5.1.2], we conclude that G;’” x Z?* is amenable.

https://doi.org/10.4153/CJM-2018-012-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-012-x

1278 K. Matsumoto

Definition 7.4 A Smale space (X, ¢) is said to be (s,u)-essentially free if the interior
of the set {x € X | (¢7(x), x) € Gy, (¢7(x),x) € Gy} is empty for each (p,q) € ZxZ

with (p, q) # (0,0).

The following lemma, which was kindly suggested by the referee, is proved in a
similar way to Lemma 5.2

Lemma 75 If (X, ¢) is irreducible and X is infinite, then (X, ¢) is (s,u)-essentially
free.

Proof Suppose that the set

int{xeX|(¢?(x),x) e Gy, (¢7(x),x) € Gf;}

contains a non-empty open set U for a fixed (p, q) € Z x Z with (p,q) # (0,0). We
can assume that p # 0. Since

int{xeX | (¢ (x),x) e Gy, (97(x), x) € G;} cint{xeX|(¢?(x),x) e G;},
we have a non-empty open set U such that
Ucint{xeX|(¢?(x),x)e Gfp}

for a fixed p # 0. By the same argument as the proof of Lemma 5.2, we have a contra-
diction, thus proving (X, ¢) is (s,u)-essentially free. [ |

Lemma 76 A Smale space (X, ¢) is (s,u)-essentially free if and only if the étale
groupoid G* x 7* is essentially principal.

Proof Aswe have
(G(sp,u « ZZ)/
= U {(x,p,q,y) GG;’” ><Z2|x:y}
pqeZ
= U {(xp.gx) e XxZxZx X | (¢F(x), %) € G}, (¢1(x), x) € Gy},
pqeZ
the interior int((Gy" » Z2)") of G* » Z? is
int((Gfp’“ xZ)") =
U int({(x,p,q,x) e XxZxZ x X | (¢*(x),x) € Gy, (¢7(x),x) € G;})
PqeL
For p = g = 0, we see that
int({(x,0,0,x) EXXZxZxX|(x,x) ¢ Gy (x,x) € Gg}) = (Gfp’” x7*)° = X
Hence, int((Gy" = Z*)") = (Gy" = Z*)° if and only if the interior of

{(x,p,q:%) e XxZxZx X | (¢7(x),x) € Gy (9%(x), x) € G;}

is empty for all p, g € Z except p = q = 0. This implies that (X, ¢) is (s,u)- essentlally
free if and only if Gy x 72 is essentially principal.
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Definition 7.7  The groupoid C*-algebra C* (G;’“ x7?) of the étale amenable group-
oid Gy* x Z? for a Smale space (X, ¢) is called the extended asymptotic Ruelle algebra
or simply the extended Ruelle algebra and written RY".

Since Gy x Z?* is amenable, the C*-algebra Ry" is identified with the reduced
groupoid C*-algebra C; (G " x 7*) on ZZ(G;’” x Z*) in a canonical way.
Similarly to Proposition 5.4, we obtain the following.

Proposition 7.8  If a Smale space (X, ¢) is irreducible and X is infinite, then the
C*-algebra Ry" is simple.

We note that the above proposition also follows from [29, Theorem 1.4] through
Proposition 710, which will be shown later.

Let U,, .,, (z1,22) € T? = {(z1,23) € C x C | |z;] = 1} be an action of T? to the
unitary group of B(/? (Gg" = 7*)) defined by

(ERIEN X SIREA R CI N B)
for £ e I2(Gy" » Z2), (x, p. g, y) € Gy x Z2. It is easy to see that the automorphisms
Ad(Uy,.z,) of B(I*(Gy" % %)) for (21,22) € T leave Ry" globally invariant. They
give rise to an action of TZ on R3", denoted by py*. Let us denote by 82 = p;’)‘zz,z) ,Z €
T the action of T, called the diagonal action. Recall that the asymptotic Ruelle algebra
R§ is defined by the groupoid C*-algebra C*(Gg x Z) of the étale groupoid Gg » Z.
We then have the following theorem.

Theorem 7.9  Assume that a Smale space (X, ¢) is irreducible and X is infinite. Then
the fixed point algebra (R ”)5 of Ry" under the diagonal action 8¢ is isomorphic to
the asymptotic Ruelle algebra Ry-

Proof The étale groupoid G x Z is identified with the subgroupoid

(50 p.py) € XX Zx Zx X | ($9(x),9) € Gy (97(x), y) € Gi} € Gy w22
of Gy* » Z?, which is written (G" % Z*)". Since (Gy" » Z*)" is clopen in Gy*  Z2,
we have a natural inclusion relation C (G 7Z*)P) c Ce(Gyx Z*) of the algebras.
For f e C.((Gy" » 7*)P), we put

€ (f)(xp.q,7) = itpsq.
Then &, defines a continuous linear map from C(Gy" x 7*) to Ce((Gy" x Z4)P)
and extends to fR;” by the formula
es(f)= [82(f)dz for feR",

so that we have a conditional expectation from IRS * onto Rg. Itis routine to check that
€¢(R3") is the fixed point algebra (R3" )‘3‘45 of fRS ¥ under the diagonal action §¢. m

{f(x p.py) ifp=gq,
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The author would like to thank the referee who kindly suggested the following
proposition.

Proposition 710 The extended Ruelle algebra R3*" is stably isomorphic to the tensor
product Ry ® R of the stable Ruelle algebra R, and the unstable Ruelle algebra Ry.

Proof It is easy to see that the correspondence
(x)pyz) X (y)q)w) € (G; X Z) X (G;Z X Z) —
((x.2) x (5»w), (p,9)) € (G x G) % 2

yields an isomorphism of étale groupoids between (Gy x Z) x (Gy x Z) and
(G§ x Gy) x Z*. Hence we have

Ry ® Ry = C*((G; nZ) % (Gg 07)) = C*((G; x Gg) x7%).

As in the proof of [25, Theorem 3.1], the diagonal A = {((x,2) x (x,2),(p,q)) €
(GyxGg)x Z*} is an abstract transversal in the sense of Muhly, Renault, and Williams
[23]. Since the reduction of (G x G ) x Z* to A is clearly isomorphic to Gy » 7* as
étale groupoids, we see by [23, Theorem 2.8] that C*(Gy" x Z7*) is stably isomorphic
to C*((Gy x Gg) 7%), so that the extended Ruelle algebra R" is stably isomorphic
to the tensor product Ry ® Rg. ]

8 Asymptotic Continuous Orbit Equivalence in Topological Markov
Shifts

In the first part of this section, we will deal with topological Markov shifts, which are
often called shifts of finite type, as examples of Smale spaces. They have been studied
by Ruelle, Putnam and Putnam-Spielberg, etc. from the view point of Smale spaces.
The following description follows from Putnam’s lecture note [26, Section 1].

Let A = [A(i,j)]ﬁ.\fj=1 be an N x N matrix with entries A(i, j) in {0,1} for i,j =
1,..., N such that none of its rows or columns is zero. We assume that N > 2 and the
matrix A is irreducible and not any permutation matrix. Let us denote by X 4 the shift
space of the two-sided topological Markov shift (X 4,7 4), which is defined by

X4 = {(x,,),,ez € {1,...,N}Z | A(xp, xp41) = 1foralln e Z}

with shift transformation o4 defined by 04 ((x,)nez) = (Xn+1)nez. We note that the
assumption that A is irreducible and not any permutation matrix implies that the shift
space X 4 is infinite and hence homeomorphic to a Cantor discontinuum.

Take and fix an arbitrary real number 1o with 0 < A4 < 1. The space X 4 is endowed
with the metric d defined by

0 if (xn)neZ = ()’n)neZ’
d((xn)neZ>()’n)neZ) =141 if xo # Yo
(Ao)**! if k = Max{|n| | x; = y; for all i;|i| < n}.
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With this metric d, the space X 4 is a compact Hausdorff space such that the topologi-
cal dynamical system (X 4, 04 ) is called the two-sided topological Markov shift defined
by A. For k € Z,, we set

Bi(X4) = {(x,,)’fl=1 e{L,...,N}Y | A(xp, Xps1) =1, m =1,....,k-1}

and B, (X4) = U52, Bk(X4), where By (X 4) denotes the empty word @. Each mem-
ber of B (X 4) is called an admissible word of length k.

We will view the topological Markov shift as a Smale space in the following way.
Take €y = 1, so that we have (x, y) € A, if and only if xo = yo. Hence, the bracket
[, ¥] = ([, ¥]n)nez € Xa for (x, y) € A, can be defined by

x, ifn<o,
[x, y]n = .
Yo ifn>0.

Since xo = o, ([, ¥]n) nez defines an element of X 4. We then have
X, (x,€60) = {yeXa|yn=x,forn=0,1,2,...},
X (x,€0) = {y € Xa | yn = xnforn=0,-1,-2,...}.

As in Putnam’s lecture note [26, Section 1], the two-sided topological Markov shift
(X 4,0 4) with the metric d becomes a Smale space for €y = 1and Ay itself.
Forn=0,1,2,..., we write

GG Gyt GG
Since
G"={(x,y) eXaxXa|yi=xforalli=0,1,2,...},
Gy’ ={(x,y)eXaxXa|yi=x;foralli=0,-1,-2,...},
G =G"nGY = {(x,y) e XaxXa|x =y},
we know for n =0,1,2,...,
Gy"={(x.y) eXaxXa|yi=x;foralli=n,n+1Ln+2,...},
Gy"={(x,y) eXaxX4|yi=x;foralli=-n,—n-1,-n-2,...},
GY" =Gy nGY" ={(x,y) eXaxXa|yi=x;forall|i| =n,n+1Ln+2,...}.

All of them are given the relative topology of X4 x Xa. Each of them defines an
equivalence relation on X 4. We set

s ot s,n u ot u,n a Rt a,n
GA: U GA) > GA: U GA) > GA: U GA’ >
n=0 n=0 n=0

and they are endowed with the inductive limit topology, respectively. Putnam studied
these three equivalence relations G%, G4, and G% on X4 by regarding them as topo-
logical groupoids. He studied the associated groupoid C*-algebras C*(G?%,), C*(G%),
and C*(G%) which have been denoted by S(X4,04), U(X4,04),and A(X4,04), re-
spectively. He pointed out that they are all stably AF-algebras. He investigated their
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semi-direct products as groupoids
G 7= { (5, ) € Xa x Zx Xa | (@h(x),7) € G},
Gin 7= { (x,m, ) € Xa x Zx Xa | (@h(x), ) € G4,
GixZ={(x,ny)eXaxZxXal|(d4(x),y)eGs}.
Putnam has also deeply studied the associated groupoid C*-algebras C* (G x Z),
C*(GY4 x Z), and C* (G4 » Z) which have been written Ry, R,, and R,, respectively
in his papers. In this paper, we denote them by R, R, and Rf, respectively, to
emphasize the matrix A. We note that the irreducibility of the Smale space (X 4,7 4)
corresponds to the irreducibility of the matrix A, and the condition that X 4 is infinite
corresponds to the property that the matrix A is not any permutation matrix.
In the second part of this section, we study asymptotic continuous orbit equiva-
lence defined for Smale spaces in Section 3 focusing on topological Markov shifts.
Let (X4,04) and (Xp,0p) be topological Markov shifts. We will regard them as

Smale spaces and consider conditions under which they become asymptotic contin-
uous orbit equivalence.

Lemma 8.1 Conditions (i) and (ii) in Remark 3.3 are equivalent to the following
conditions (i) and (ii), respectively.

(i) There exists a continuous function ky: X4 — Z, such that
—ky(x)+er(x —ky(x — s,
(8.1) (T5 D (h(x)), 75 (W(@a(x))) ) € G5,
——ky(x)+c1(x —k(x —_ u,
(75O (h(x)), 75 (h(@a(x))) ) € G,
(ii) There exists a continuous function ky: Xg = Z. such that

(Eﬁz(}’)+cz(y)( h_l(y)) >E§2(y)(h_l(53(}/))) ) c GZ,O’

(E;kz(}’)JrCz()’)( h—l(y)) ,E;kz()’) (h_l(EB()’))) ) c Gz,o.
Proof (i) We will prove that equality (8.1) implies (3.4) by putting ki, (x) = k7' (x).

Suppose that there exists a continuous function k;: X4 — Z, satisfying equality (8.1).
Since

G;’O = {(x,y) € XpxXp|y;i=xforalli= 0,1,2,...},
G4 is an equivalence relation in X x Xp. In equality (8.1), we have
T (h(Ta(x))) e Xp(T5 ) (h(x)), ),
so that by Lemma 2.3, for any m € N,
(8.2) (TR (h(Ga(x)))) € Xa( Ty (T5 O (h(x))), ),
and hence

(5 (), 75 (h(@a(x))) ) € G5
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Take m = k1 (c4(x)) + c1(04(x)) so that we have

(Egl(3A(X))+61(EA(x))+k1(x)+61(x) (h(x)),

5’;1(EA(x))+cl(3A(x))+k1(x)( h(EA(x))) ) c G;’O,
that is
(8.3) (52‘2(")”’2(3‘)(h(x)),Kg(E"(x))Jrkf(x)(h(EA(x))) ) e G2,
By replacing x with 4 (x) in the equality (8.1) and (8.2), we have

(Egl(EA(x))Hl(EA(X))( h(EA(x))) ,EZI(EA(x))(h(Ei(x))) ) c G;’O,

a3(F4 ™ (1)) EXB(ag(a}z;l(aux))ﬂl(m(x))(h(aA(x))))’60),

so that
(Eg%l@(x))ﬂl(@(x))( h(EA(x))) ’ngkl(@(x))( h(Ei(x))) ) c G;’O.
Take m = k;(x) so that we have
(LN TN (5, (x))), TEO RO (72 (x))) ) € G,
that is
84 (5O (h@a)), 7 P (h(@A()) ) € Gy
By (8.3) and (8.4), we have
(a5 O (), 7 O (1@ () ) € G5

This proves (3.4) for n = 2. We can prove (3.4) inductively for general # in a similar
fashion, and we can see (i). Assertion (ii) is shown in a similar way to (i). [ |

For x = (x,)nez € X4, we put
x- = (%-n) o> X = (%n)520-

Hence we have (x,z) € G3;° (resp. (x,z) € G4°) ifand onlyif x, = z, (resp. x_ = z_).
By Remark 3.3 with Lemma 8.1, we can reformulate asymptotic continuous orbit
equivalence in topological Markov shifts in the following way.

Proposition 8.2  Topological Markov shifts (Xa,54) and (Xp,0p) are asymp-
totically continuous orbit equivalent if and only if there exist a homeomorphism
h: X4 — X, continuous functions ¢;: Xa — Z, ¢c3: Xp — Z, and two-cocycle func-
tions dy: G§ = Z, dy: G§ — Z, such that

D) " (x) +di(ay (x),0% (2)) =c"(2) + di(x,2), (x,2) €GE, meZ,

2) () +da(05 (), 0 (W) = &' (w) + da(y,w),  (y,w) € G, meZ,
and
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(i) there exists a continuous function ky: X 4 — Z, such that
5~ .
5 (h(x))s =55 O (W(Ga(2)))ss
‘““‘”C“”(h(x)) 75" (h(Ga(2)))-
(ii) there exists a continuous function ky: Xp — Z, such that

2D (h71(y)), = T2 (1 (G(0)))s
T (0))- =7 0 @ ()

(iil) there exists a continuous function my: G4 — Z.. such that

D (), =TT (@) Sor (x,2) € G,

‘""(" DD (p(x))- = ‘"““ D (h(2))-  for (x,2) € G4
(iv) there exists a continuous function my: G§ — Z such that

G B (171 (), =GO (Y (w)), for (.w) € G,
7RO (W () = 7O (W)= for (3, w) € G

V) ¢ (x)(h(x)) +dy (o (x)(h(x)) h(oy(x))) =n, xeXaneZ
(vi) c“”( W () + di(@E O (T )) @) = yeXpnels

i) ¢ (h(x)) + dy (@2 (h(x)),h(2)) =0, (x,2) € GY
(viti) ¢*" (h71(y)) + (TR0 (h7H(p)), i (W) =0, (3, w) € Ga.

9 Approach from Cuntz—Krieger Algebras

Let A = [A(i, j)]¥ j-1 be an irreducible square matrix with entries in {0,1}. We as-
sume that A is not any permutation matrix. Let {S; | i = 1,..., N} be the canonical
generating partial isometries of the Cuntz-Krieger algebra O4 defined by the matrix
A, and similarly let {T; | j = 1,..., N} be the canonical generating partial isometries
of the Cuntz-Krieger algebra O 4« defined by the transposed matrix A* of A ( [7]).
They are the universal unique C* -algebras subject to the following operator relations,

respectively
N
2,887 =1, S;S; —ZA(: 7SS, i=1...,N,
j=1 j=1
N N
ZT]-TJ-*:L T T =Y A'(i, DTS, i=1...,N.
j=1 j=1

In the algebra O4, the automorphisms p# € Aut(O4),t € T = R/Z defined by
pi(Si) = eVl =1, N yield an action of T on O 4 is called the gauge action.

It is well known that the fixed point algebra (O 4)? " of 04 under the gauge action p? is
an AF-algebra written ¥4, whose maximal abelian C*-subalgebra consisting of diag-
onal elements is written D 4. For an admissible word p = (g1, ..., 4m) € Bm(Xa), we
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denote by S, the partial isometry S, ---S,,.. The C*-algebra J, is generated by par-
tial isometries of the form S, S for y,v € B,,(X4),m =1,2,..., and the C*-algebra
D4 is generated by projections of the form S, S, for y € B. (X4). Let X4 be the shift
space of the right one-sided topological Markov shift (X4, 04), which is defined by
the compact Hausdorff space

XA = {(x,,)neN € {1,...,N}N | A(x,,,x,,+1) =1 n EN}

with shift transformation o4 ((x4)nen) = (X441) nen- As in [7, Section 7], the C* -alge-
bra D, is canonically isomorphic to the commutative C*-algebra C(X4) of all con-
tinuous functions on X 4. _

We similarly write the partial isometry T = Tg T for & = (&,..., &) €
By (X 4:) and the C*-subalgebras Far, D 4¢ of O ¢ for the transposed matrix At re-
spectively.

Let us consider the tensor product C*-algebra O 4: ® O 4. In the algebra O 4 ® O 4,
we define the projections

N N
EAZZT]'T;@S;S]', EAtZZTj*Tj(X’SjS;.
=1 =1
The projection E4 appeared in Kaminker-Putnam [9, Section 4] in the study of K-
theoretic duality between O 4 and O 4.

Lemma 9.1 (cf. [9, Section 4])
(9.) Ej = Eye.

Proof We have

N N N
Ea=YTiT/ ®8S8;i =Y T;T} ®( ZA(i’j)Sjs;) =

i=1 i=1 j=1 i

N
Ep = ZT*T@S Z(ZA(;,QTT)@Sjs;:_

j=1 j=1 i=

M=
M=

A(z NTT] ®S;S;,

Il
—
-

= !

zZ

A'(j, )T T} ®S;S;,

—
-
I
—

thus proving (9.1). ]
Definition 9.2 (The extended Ruelle algebra for topological Markov shift) We de-
fine the C*-algebra R} by

fR‘SA’H = EA(OAt ® OA)EA
as a C*-subalgebra of the tensor product C*-algebra O 4 ® O4.

We also define C*-subalgebras
D% =Ea(Dar ® Dy)Ea, S =Ea(Ta ® F4)Eq.
Therefore, we have C*-subalgebras of R
@S U c S u c RS u

For an admissible word E=(&,...,&) € Bi(X4), we denote byz the admissible
word (&, ..., &) in X 4, obtained by reversing the symbols of the word (&, ..., &).
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Lemma 9.3 Forp= (Ut ...otm)sv=1r...,vp) € Bo(Xa), E= (&k,..., &), and
7= (n15....m) € B«(Xar), the following two conditions are equivalent:

(i) EA(TET,; ® SHS;)EA = TET% ® S.”S:’.

(i) A(&k, 1) = A(ni,v) =1

Proof We have the following equalities:
N
EA(TETH ® SySV) = Z; Ti T’TETH ® S,-S,- SMSV

133 751
:At(‘ul)fk)TETﬁ* ®SI"S:
:A(fka.ul)TETﬁ* ®S‘MS:

= TMTMTETH@S S,,8uS,

Similarly, we have
(TET% ® SMS:)EA = A(’/II’VI)TET% ® SyS:

Hence the equality Eo (T T ®S,S} ) Ea = Tz T; ®S,,S; holds ifand only if A&k, 1) =

A(np,v) =1L [ |
Let us denote by R, the *-subalgebra of R};" linearly spanned by the operators of
the form
TET% ®S,S, for  A(&k,m) =A(n,v) =1,
where

#= (s fim)sv = (vi,...,va) € Bo(Xa),
&= (& 80,7 = (o om) € Bo(Xar).

Lemma 9.4 R is dense in R3}".

Proof Let P4 be the x-algebra linearly spanned by the operators of the form S, S}
for y,v € B,(X4). Asin [7, Section 2], the algebra P4 becomes a dense *-subalgebra
of O4. We denote by P4« ® P4 the linear span of elements

TeTy ®8,S,  for p,ve B.(Xa), E7eB,(Xqr).

It becomes a dense *-subalgebra of the C*-algebra of tensor products O 4¢ ® O4. For
any Y € R}" € O ® Oy, take Y, € Poe ® P4 such that [Y -V, | - 0asn — oo. Since

HY_EAYnEAH = HEAYEA _EAYnEAH < HY— YnH — 0

as n — oo, and E4 Y, E4 belongs to RY, we conclude that RY is dense in R3". [ |

Lemma 9.5 %" is canonically isomorphic to C(X »).
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Proof For = (p1s...,4m)> €= (&,..., &) € Bo(Xa) with A(&x, 1) = 1, denote
by &u the admissible word (&1, ..., &k, ph1s - .. fim) € Bo(Xa). Let Ug, be the cylinder
set of X 4 defined by

Ugu = { (xn)nez € Xa | X_(kory = &1 X1 = &ty X0 = Eky X1 = 1o o> Xn = fim )
Since ©3" = E4(Da ® Dy )E4 and
Da=C"(SuS, | p € B(Xa)), Dyr = C*(TETE* | £ € Bi(Xar)),
it is straightforward to see that the correspondence
TETg ® SHSZ €D — XU, € C(X4)
yields an isomorphism between D% and C(X4). [ |

Consider the automorph1sms y(r 9= p,t ® ps , (r,s) €T? on O ® Oy for the
gauge actions p* on O 4r and p* on O4. Since y¢,, . (Ea) = Ea, we have an action y*
of T? on R%*. The diagonal action 82, t € T on R;" is defined by 82 y(t it €T.On
the other hand, the groupoid C*-algebra R2* = C*(G}" x Z*) of the étale amenable
groupoid G3" x Z* has an action pz of T? defined in the paragraph right before
Theorem 7.9. Its dlagonal action 6%4 of T on ﬂL” is defined by 674 = p%’:’( .p)- 1ts fixed
point algebra (fJL )9 is isomorphic to the asymptotlc Ruelle algebra RZ written
R4. For the structure of the algebra R", we have the following theorem.

Theorem 9.6 Let A be an irreducible and non-permutation matrix with entries in
{0,1}. Then the C*-algebra R3;" is a unital, simple, purely infinite, nuclear C*-algebra
isomorphic to the groupoid C*-algebra R" of the étale groupoid G;* » 72. More pre-
cisely, there exists an isomorphism ®: Ry — R of C*-algebras such that

(9.2) O(D") =C(Xa) and Doy = Pt 0@ (1s) € T2,

In particular, we have ® o §2 = §74 o @ for t € T.

Proof Since A is irreducible and not any permutation matrix, the Cuntz-Krieger
algebras O4, O4: are both unital, simple, purely infinite and nuclear ( [7, Theorem
2.14]). Hence, so is the algebra Eo(O4r ® O4)E4 = R3". We will construct an iso-
morphism ®: R,* — z: having the desired properties (9.2). As in [19,30-32], the
right one-sided topological Markov shift (X4, 04) gives rise to an étale groupoid Gy,
which is defined by

Ga = {((xi)le,n,(yj)]il) eEXaxZxXa|n=1-kxi :y,-+1,i:1,2,...}.

We have the groupoid G4« for the transposed matrix A’ in a similar way. It is well
known that the groupoids G4, G4+ are amenable and étale such that their C*-algebras
C*(Ga),C*(Gyr) are isomorphic to the Cuntz-Krieger algebras O4, O 4¢, respec-
tively. Let G4+ x G4 be the direct product of the groupoids so that C*(Ga: x Gu)
is isomorphic to the tensor product C*(Gy:) ® C*(Gy) of the groupoid C*-algebras.
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Hence we have a natural isomorphism @: O ® Oy = C*(Gar x G4). For elements
((x)7m, (yi)le) eGawithn=1-k, x;p = yiy forieN,
((x})}":’l, n, (y;);jl) eGuwithn' =1'- K, x;+k, = y}+,, forjeN
of the groupoid G4, we assume that A(x{,x;) = A(y},y1) =1 Putx = (x;)%, 5 =

(yi)iZand x" = (x7) 2, ¥" = ()3, We define a bi-infinite sequence 7(x’,x) =

(r[(x,s -x)i)ieZ bY Setting

i ifi >1,
ﬂ(x/,x)i _ {X1 1

’ .y
x',, ifi<o.

Then 7(x’, x), and similarly 7(y’, y), belong to X4. Put N = Max{l +1,I'} and
p=-n,q=n'. Since

()i = n(s )i 2N,

F ()= n(ys ) P<-N,
we have

(n(x',x),p, 9 ﬂ(y’,y)) e an Y/
Define the subgroupoid G4t x4 G4 of G4 x G4 by
Gur xaGa={((x'sn",y"),(x,n,y)) € Gar x Go | A(x{, x1) = A(y1, 1) =1}

It is easy to see that the correspondence
((X’, n',y’)’ (X, n,y)) € GAt XA GA N (ﬂ(x',x), _n, ”,>7T(y,’y)) c Gi’u « ZZ

yields an isomorphism of étale groupoids, so that we can identify G 4: x4 G4 and G3* »
7? as étale groupoids through the above correspondence. Since G4r x4 G4 is a clopen
subset of G4: x G, the characteristic function yg,,x,6, of Gar x4 G4 on Gar x G4
belongs to the C*-algebra C*(G4: x G4 ), which is denoted by P,4. It then follows
that the isomorphism @: Q4 ® O4 - C*(Gar x Gu) satisfies ®(E4) = P4. Hence
the restriction of @ to the subalgebra E4 (O 4 ® O4)E, gives rise to an isomorphism
EA(oAt ® OA)EA - P,C* (GAt X GA)PA, which is still denoted bY O®. AsP4,C* (GAt X
Ga)P4 isidentified with C*(G3" xZ?), we have an isomorphism @: R — R¥. Itis
also described in the following way. For g = (1, ... tim)s v = (V1,...,Vs) € Bo(X4)
and & = (&,....&),1=(n1,....m) € Bu(Xar) with A(&x, u1) = A(n1,v1) = 1, we
know that

((;5”‘*" (x),y) € G;’Im_"‘, (¢H‘(x),y) € GZ’Il_kI for x € Ug,, y € Upy.

Let yg,,,v € Cc(G3" » Z*) be the characteristic function of the clopen set
Ugy,ny = {(x,m—n,l—k,y) €GY“ % Z? | x € Uy, y € Uyys

(T4 (). T4() € G (32" (x), 54 (7)) € G°}.
It is not difficult to see that the correspondence

(9.3) TETﬁ* ® SMS: € R;u — XE.“J]V € CC(GXM X ZZ)
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. . . . . S,u * s,u 2\ (_ s,u 3
gives rise to the isomorphism ®: R3" - C*(G" x Z7)(= R2"). By (9.3), we easily
see that O satisfies (9.2). [ |

Corollary 9.7  'The fixed point algebra (fR;\’”)‘SA of R%" under the diagonal gauge
action 84 is isomorphic to the asymptotic Ruelle algebra R4,

Proof The fixed point algebra (3?%’;‘)5% of R2" under 894 is isomorphic to the as-
ymptotic Ruelle algebra R4 by Theorem 7.9. Hence the assertion follows from Theo-
rem 9.6. u

PutU; =T} ® S;in Oy ® Opfori=1,...,N. Weset Us = N, U; in O ® O4.
Lemma 9.8 Uy is a unitary in R3", that is, UsU} = U, Uy = E4.
Proof We have
N N
EsUi= (YT T8 8;8) ) Ui = Y T T © 888 = T} ®°;
j=1 =1
and similarly U;E4 = Uj, so that we have U; € R%". Since we have U; U} = T;'T; ®
SiS; and U;U; = T; T} ® S} S;, we see that
It then follows that

N N
UpUa=Y UU; =Y T;T; ® S;S; = Ea.
i=1 i=1
We have Up U} = E, similarly. [ |

Define the inner automorphism a4 of R3" by setting a4 = Ad(Uy).
Proposition 9.9  Let ®: R3" — R2"(= C* (G} » 7*)) be the isomorphism defined

in Theorem 9.6. Then the restriction ®|gsu: D}* — C(X4) of ® to the commutative
C*-subalgebra D" satisfies the relation:

Doay=0,00

where G4 (f) = foaa for f € C(Xa).

Proof Forp = (p1s...,pm)> €= (&1,..., &) € Bo(Xa) with A(&k, 1) =1, we have

N
UA(TETE* ® SyS;)UZ = i;I Ti* TETE* T] ® S,SyS;S;
= Tgl Tfl Tfk-l“'fl Tgk,l---fl Ts*l Tfl ® ka.MS;ky
= TE;H'"& Tgk-r“fl ® S;kyS’gk#.
This shows that the equality ® o a4 = 4 o ® holds on D3". [ |

We note that the unitary ®(Uy ) in R2" belongs to the asymptotic Ruelle algebra
RZ and it is nothing but the unitary Ug, for (X, ¢) = (X4,024) defined in (6.1).
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Remark 9.10 In [8, Proposition 6.7], C. G. Holton proved that if two primitive
matrices A and B are shift equivalent (cf. [13]), then the asymptotic Ruelle algebras
R4 and R§ are isomorphic by showing that the automorphism a4 induced by the
original transformation o 4 on the AF-algebra C*(G4) has the Rohlin property.

10 K-theory for the Asymptotic Ruelle Algebras for Full Shifts

In this final section, we will compute the K-groups and the trace values of the as-
ymptotic Ruelle algebras R} for some topological Markov shifts. In [25](cf. [11]), the
K-theory formula for the asymptotic Ruelle algebras R¢ for the topological Markov
shift (X4, 04 ) has been provided. In particular, ring and module structure of the K-
groups were deeply studied in [11]. We will see the K-groups of the C*-algebra R%
in a concrete way for full shifts by using the Putnam’s formula in [25] which we will
describe below. Let A be an N x N irreducible matrix with entries in {0,1}. Let us
consider the abelian group H(A) of the inductive limit

A'®A A'®A
— —

(10.1) ARV ARV
Under a natural identification between ZY ® Z" and the N x N matrices My (Z)
over Z, we set Hy(A) = My(Z) for k = 1,2,.... Then the map A’ ® A in (10.1) goes
to the map 15: Hig(A) - Hy1(A) defined by i ([T, k]) = [ATA, k +1] for [T, k] €
Hi(A) with T € My(Z). Define the homomorphism ay: Hi(A) - Hy.1(A) by
ar([T,k]) = [A*T, k +1] for [T, k] € Hi(A), which extends to an endomorphism
a: H(A) - H(A). Putnam showed the following K-theory formula by using the
six-term exact sequence for K-theory of the C*-algebra R¢.

Proposition 10.1 (Putnam [25, p. 192])

Ko(R%) = Coker ( id—a: H(A) — H(A)),
Ki(R%) = Ker (id-a: H(A) — H(A)).

We will compute the groups K, (R%) for the N x N matrix A = [i i] with all
entries being I's, so that the topological Markov shift (X 4,024) is the full N-shift writ-
ten (Xy,0n). Let us denote by R, the asymptotic Ruelle algebra R for the matrix

A. For a natural number 7, Z[+] means the subgroup {% ¢ R | m,k € Z} of the
additive group R. We provide the following lemma.

Lemma 10.2  There exists an isomorphism &: H(A) — Z[ 55 ] of abelian groups such
that the diagram

24

H(A) H(A)

| |

Zh] —— 7]

is commutative. Hence o = id on H(A).
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Proof For a matrix T = [t;;] i1 € Mn(Z), define sy(T) = ,] \ tij. As ATA =
sn(T)A, the map sy: Myn(Z)(= Hi(A)) — Z defines a homomorphism such that
([T, k]) = [sn(T)A, k +1] for T € Mn(Z). For [T, k],[S,k] € Hr(A), [T, k]
and [S, k] define the same element in H(A) if and only if sy (T) = sy(S). Define
Sn: Hi(A) — Z by setting Sy ([T, k]) = sy(T) for [T, k] € Hi(A). Since

S (k([T.k])) = sn(sn(T)A) = sn(T)N* = NSy ([T, k]),

we have the sequences of commutative diagrams:

Hi(A) —— Hy(A) —— H3(A) —— - H(A)
A |
z N, g N, g M Z[ L]
and
Hi(A) —— Hy(A) —— H3(A) —— --- H(A)
R 2. r 2, r = R

Hence, we can define an isomorphism &: H(A) — Z[#] c R by setting

E([T,k]) = sN(T)eZ[ ] for [T, k] € Hi(A).

(TR = s

(N2)k1
Since a([T,k]) = [A*T, k +1] and sy (A*T) = N%sn(T), we have

E(a([T.K])) = ayeen (A7) = (1) = 6T KD,

so that the isomorphism &: H(A) — Z[ 5] satisfies § o « = £, and hence we have
a =idon H(A). [ |

As id -« is the zero map on H(A) with Z[#] = Z[+] in R, thus by the formula
of Proposition 10.1, we have the following proposition.

Proposition 10.3 (cf. [11, Section 3.3])  Ko(R%) = Ky(RY) = H(A) 2 Z[ ]

C. G. Holton proved that if an N x N matrix A is aperiodic, then the shift 7 on
the AF-algebra C*(G4%) has the Rohlin property [8, Theorem 6.1]. For the N x N
matrix A = [I i ] the algebra C*(G%), which is the C*-algebra of the groupoid G4

is the UHF algebra of type N, so that the crossed product Ry = C*(Gy) x5

is a simple AT-algebra of real rank zero with a unique tracial state by [4, Theorem
1.1], [12, Theorem 1.3]. The unique tracial state on R%; is denoted by 7. It arises from
the Parry measure on the full N-shift (X, ox) (Putnam [25, Theorem 3.3]). We can
determine the trace values of the Ky-group in the following way.
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Lemma 10.4 1n.(Ko(R$)) = Z[] inR.

Proof By Corollary 9.7, the algebra R, is realized as the fixed point algebra of R}"
under the diagonal gauge action. It is easy to see that R%; is generated by linear
span of operators of the form T¢T7 ® S, 87 for p = (p1,..> pm),v = (Vi,..., Vn) €
B.(X4), &€= (& s &),71 = (15> 1) € Bo(X4¢) such that k + m = [ + n. Since
the tracial state 75 on R%, comes from the Parry measure on Xy, we have

e &=, u=v
T*Ti. ® S Sx- — Nk+m > >
v §on T ) {0 otherwise.

Through the six-term exact sequence

Ko(C*(Gy)) L Ko(C*(GY)) . Ko(RY)

| l

id
K(RE)  —— Ki(C*(GY)) ——— K(C*(G§))
for the crossed product R%; = C*(G%) % Z with the fact K3 (C*(G%)) =0and a = id,
all elements of Ko (R ) come from those of Ko (C*(G%)) = H(A). We thus conclude
that 7x. (Ko(R$)) = Z[+ . [ |

For two natural numbers 1 < M,N € N, let M = pf‘ ophn N = q{l gl
be the prime factorizations of M, N such that p; < -+ < py, g1 < -+- < g, and
ki,...okm,h,. .., 1, € N, respectively.

Proposition 10.5 Keeping the above notation, the following assertions are equivalent.

(i) The Ruelle algebras R§, and RS, are isomorphic.
(ii) Z[+] = Z[+] as subsets of values of R.
(i) {p1,--->pm}={q1>--->qu}, thatis, m=nand p1 =q1,..., Pm = qn.

Proof (i) = (ii): Since the Ruelle algebras R, and R%, have unique tracial state,
respectively, the assertion follows from the preceding lemma.

(ii) = (i): The algebras R, R4 are both AT-algebras of real rank zero with unique
tracial state. The condition Z[ -] = Z[ ] implies that their K-theoretic dates

( 0(R31)s Ko(Rip)+, [1], Ki(Riy )) (Ko(fR )s Ko(RY)+, [1], Ky (RY ))

coincide because of Proposition 10.3 and Lemma 10.4. By a general classification the-
ory of simple AT-algebras of real rank zero, we conclude that the Ruelle algebras R},
and R%; are isomorphic.

The equivalence (ii) <> (iii) is easy. [ |

We have the following corollary.
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m

of M, N as in the above proposition. If the sets {p1,...,pm} and {q1,...,qn} do not
coincide with each other, then the two-sided full shifts (X, 0y ) and (X, o) are not
asymptotically continuous orbit equivalent.

Corollary 10.6 Let M = pf‘ - pkm and N = q{l ---g' be the prime factorizations

Proof Suppose that {p1,...,pm} # {41, .., qn}. By the above proposition, the Ru-
elle algebras Ry, R§, are not isomorphic. Since the isomorphism class of the Ruelle
algebra is invariant under asymptotic continuous orbit equivalence by Theorem 5.7,
we know that (X, 7)) and (X, 0 ) are not asymptotically continuous orbit equiv-
alent. ]

11 Concluding Remarks

Before ending the paper, we refer to differences among asymptotic continuous orbit
equivalence, asymptotic conjugacy and topological conjugacy of Smale spaces. It can
be proved that topological conjugacy implies asymptotic conjugacy, which implies
asymptotic continuous orbit equivalence. For an irreducible Smale space (X, ¢), its
inverse system (X, ¢~') automatically becomes an irreducible Smale space by defini-
tion. We then see the following proposition.

Proposition 11.1  An irreducible Smale space (X, ¢) is asymptotically continuous orbit
equivalent to its inverse (X, ¢™1).

Proof InDefinition3.2,wesetY = X,y = ¢ 'andtakeh =id, c; = -1, c; = -1, d; =
0, d, = 0. We then see that ¢! (x) = —nforallx € X and ¢} (y) = -nforally e Y. It
is direct to see that all conditions in Definition 3.2 hold for these cy, ¢, di, d>, so that
(X, ¢) is asymptotically continuous orbit equivalent to its inverse (X, ¢™"). [ |

We can easily explain the above situation in terms of C*-algebras. We actually
see that the identity map id: X — X induces an isomorphism ®: Rg — R¢_, of
C* -algebras such that

®(C(X)) =C(X) and CDOp?:pgloq),

because in Theorem 1.1(iii), we may have.
Ad(Ui(cy)) =p?,, Ad(Ui(cy)) =p?.

Corollary 11.2  'There exists a pair (X, ¢) and (Y, ) of irreducible Smale spaces such
that they are asymptotically continuous orbit equivalent but not topologically conjugate.

Proof As in [13, Example 7.4.19], the matrix A = [J 3] is not shift equivalent to its
transpose A’ = [¥ 1]. Let (X, ¢) and (Y, y) be the shifts of finite type defined by
the matrices A and A’, respectively. Since (Y, y) is naturally topologically conjugate
to (X, ¢™'), the Smale spaces (X, ¢) and (Y, y) are asymptotically continuous orbit
equivalent by the preceding proposition. As shift equivalence relation of matrices is
weaker than strong shift equivalence, by Williams’ theorem [38] the shifts of finite
type (X, ¢) and (Y, y) are not topologically conjugate. [ |
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In the recent paper [18], which is a continuation of this paper, the author shows that
two-sided topological Markov shifts are topologically conjugate if and only if they are
asymptotically conjugate. Hence the example in the proof of Corollary 11.2 shows us
that there exists a pair (X, ¢) and (Y, y) of irreducible Smale spaces such that they
are asymptotically continuous orbit equivalent but not asymptotically conjugate. For
a general irreducible Smale space, however, we do not know whether or not the as-
ymptotic conjugacy implies topological conjugacy. This is an open question probably
being affirmative.

We finally remark the following. We know that if two irreducible topological Mar-
kov shifts are asymptotically continuous orbit equivalent, then their asymptotic Ru-
elle algebras are isomorphic by Theorem 5.7, since these asymptotic Ruelle algebras
R4 have unique tracial states 74 coming from the Parry measures on the shift spaces.
Hence, the trace values 74. (Ko (R%)) are invariant under asymptotic continuous or-
bit equivalence. For two matrices

11 1 1
A:|:1 1] and B:[l O]

itis straightforward to see that T4, (Ko (R%)) # 7+ (Ko(R§)) as subsets of R, because
75+ (Ko(R%)) contains the trace values of the dimension group of the AF-algebra
defined by the matrix B. Hence we know that the two-sided topological Markov shifts
(X4,04) and (Xp,03) are not asymptotically continuous orbit equivalent, whereas
their one-sided topological Markov shifts (X4, 04 ) and (X3, 03 ) are continuous orbit
equivalent as in [14, Section 5].
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