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Asymptotic Continuous Orbit Equivalence of
Smale Spaces and Ruelle Algebras

Kengo Matsumoto

Abstract. In the ûrst part of the paper,we introduce notions of asymptotic continuous orbit equiva-
lence and asymptotic conjugacy in Smale spaces and characterize them in terms of their asymptotic
Ruelle algebraswith their dual actions. In the second part, we introduce a groupoid C∗-algebra that
is an extended version of the asymptotic Ruelle algebra from a Smale space and study the extended
Ruelle algebras from the view points of Cuntz–Krieger algebras. As a result, the asymptotic Ruelle
algebra is realized as a ûxed point algebra of the extended Ruelle algebra under certain circle action.

1 Introduction

D. Ruelle initiated a study of a basic class of hyperbolic dynamical systems, called
Smale spaces, from a view point of noncommutative operator algebras in [33, 34].
Smale spaces are, roughly speaking, hyperbolic dynamical systemswith local product
structure. His deûnition of Smale space was motivated by the work of S. Smale [36],
R. Bowen [2,3], and others. Two-sided subshi�s of ûnite type are typical examples of
Smale spaces. Ruelle introduced non-commutative algebras from Smale spaces and
studied equilibrium states on them. A�er the Ruelle’s papers, Ian F. Putnam [25–28],
Putnam–Spielberg [29] and Kaminker–Putnam–Spielberg [10] (cf. K. _omsen [37],
etc.) investigatedmore detail on various kinds of C∗-algebras associated with Smale
spaces from the view points of groupoids and structure theory of C∗-algebras. For a
Smale space (X , ϕ), Putnam considered the following six kinds ofC∗-algebraswritten
in [25,26]:

(1.1) S(X , ϕ), U(X , ϕ), A(X , ϕ), S(X , ϕ)⋊Z, U(X , ϕ)⋊Z, A(X , ϕ)⋊Z.

_e symbols S, U , and A correspond to stable, unstable, and asymptotic equiva-
lence relations, respectively. _e last three algebras in the above list are crossed prod-
ucts of the ûrst three algebras by Z-actions deûned from automorphisms induced
by ϕ, respectively. Putnam has written the second three algebras as Rs , Ru , Ra and
calls them the stable Ruelle algebra, the unstable Ruelle algebra, and the asymptotic
Ruelle algebra ( [26]). In this paper, we write them as Rs

ϕ ,R
u
ϕ , R

a
ϕ to emphasize

the original homeomorphism ϕ. He pointed out that if (X , ϕ) is a shi� of ûnite
type deûned by an irreducible square matrix A with entries in {0, 1}, the algebras
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S(X , ϕ) ⋊ Z and U(X , ϕ) ⋊ Z are isomorphic to the stabilized Cuntz–Krieger alge-
bras OA ⊗ K and OAt ⊗K, respectively, where K denotes the C∗-algebra of com-
pact operators on a separable inûnite-dimensional Hilbert space. Putnam and Spiel-
berg [29] (cf. Killough and Putnam [11]) also constructed other kinds of C∗-algebras
S(X , ϕ, P),U(X , ϕ, P) and their crossedproducts S(X , ϕ, P)⋊Z,U(X , ϕ, P)⋊Z from
a ϕ-invariant subset P ⊂ X of periodic points by using étale groupoids deûned by re-
stricting stable and unstable equivalence relations to P, respectively. Although there
are many diòerent choices for P, they are all Morita equivalent to S(X , ϕ),U(X , ϕ)
and S(X , ϕ)⋊Z,U(X , ϕ)⋊Z, respectively. In this paper, we will not deal with these
C∗-algebras S(X , ϕ, P),U(X , ϕ, P), S(X , ϕ, P) ⋊Z,U(X , ϕ, P) ⋊Z.

In this paper we will mainly focus on the algebra Raϕ , the last one in (1.1). By Put-
nam [25], the algebra Raϕ is realized as the groupoid C∗-algebra C∗(Ga

ϕ ⋊ Z) of an
étale groupoid Ga

ϕ ⋊ Z. Its unit space (Ga
ϕ ⋊ Z)○ is identiûed with the original space

X. We naturally identify C(X) with a subalgebra of Raϕ . A Smale space (X , ϕ) is said
to be asymptotically essentially free if the interior of the set of n-asymptotic periodic
points {x ∈ X ∣ (ϕn(x), x) ∈ Ga

ϕ} is empty for every n ∈ Z with n ≠ 0. If (X , ϕ) is ir-
reducible and X is not any ûnite set, (X , ϕ) is asymptotically essentially free (Lemma
5.2). We know that (X , ϕ) is asymptotically essentially free if and only if the étale
groupoid Ga

ϕ ⋊ Z is essentially principal (Lemma 5.3). Hence, if (X , ϕ) is irreducible
and the space X is inûnite, then the C∗-algebra Raϕ is simple (Proposition 5.4) and
the C∗-subalgebra C(X) is maximal abelian in Raϕ . Since C∗(Ga

ϕ ⋊ Z) is canonically
isomorphic to the crossed product C∗(Ga

ϕ) ⋊Z of the groupoid C∗-algebra C∗(Ga
ϕ),

which is the C∗-algebra A(X , ϕ), the third one in (1.1) with an integer group action
coming from the original transformation ϕ on X, the algebra Raϕ has the dual action
written ρϕ

t of the circle group T = R/Z. _roughout the paper we assume that the
space X is inûnite.

In the ûrst part of this paper,we introduce a notion of asymptotic continuous orbit
equivalence in Smale spaces, which will be deûned in Section 2. Roughly speaking,
two Smale spaces are asymptotically continuous orbit equivalent if they are contin-
uous orbit equivalent up to asymptotic equivalence. We will show that spaces being
asymptotic continuous orbit equivalent in Smale spaces is equivalent to their asso-
ciated étale groupoids being isomorphic. It corresponds to the fact that continuous
orbit equivalence of one-sided topological Markov shi�s is equivalent to their associ-
ated étale groupoids being isomorphic (cf. [19,21,22]). If two Smale spaces (X , ϕ) and
(Y ,ψ) are asymptotically continuous orbit equivalent, written (X , ϕ) ∼

ACOE
(Y ,ψ),

then there exists a homeomorphism h ∶ X → Y having certain continuous homomor-
phisms cϕ ∶ Ga

ϕ⋊Z→ Z and cψ ∶ Ga
ψ⋊Z→ Z. _e continuous homomorphisms deûne

unitary representations Ut(cϕ) on l 2(Ga
ϕ ⋊Z) andUt(cψ) on l 2(Ga

ψ ⋊Z) ofT,which
give rise to actionsAd(Ut(cϕ)) onRaϕ ofT and Ad(Ut(cψ)) onRaψ ofT, respectively.
In Sections 3 and 5, we will prove the following theorem.

_eorem 1.1 (_eorems 3.4 and 5.7) Let (X , ϕ) and (Y ,ψ) be irreducible Smale
spaces. _en the following assertions are equivalent.

(i) (X , ϕ) and (Y ,ψ) are asymptotically continuous orbit equivalent.
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(ii) _e groupoids Ga
ϕ ⋊Z and Ga

ψ ⋊Z are isomorphic as étale groupoids.
(iii) _ere exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such that Φ(C(X)) =

C(Y) and
Φ ○ ρϕ

t = Ad(Ut(cψ)) ○Φ, Φ ○Ad(Ut(cϕ)) = ρψ
t ○Φ for t ∈ T

for some continuous homomorphisms cϕ ∶ Ga
ϕ ⋊Z→ Z and cψ ∶ Ga

ψ ⋊Z→ Z.

In Section 4, we will prove that stably or unstably asymptotic continuous orbit
equivalence of Smale spacespreserves theirperiodic orbits, so that their zeta functions
are related to each other by the associated cocycle functions (_eorem 4.9).

In Section 5, we study asymptotic continuous orbit equivalence in Smale spaces in
terms of the dual actions of the associated Ruelle algebras.

In Section 6, we will introduce a notion of asymptotic conjugacy between Smale
spaces (X , ϕ) and (Y ,ψ), written (X , ϕ)≅

a
(Y ,ψ). Roughly speaking, two Smale

spaces are asymptotically conjugate if they are topologically conjugate up to asymp-
totic equivalences. _is is stronger than asymptotic continuous orbit equivalence but
weaker than topological conjugacy. _e notion of asymptotic conjugacy in this pa-
per is not the same as the notion of eventual conjugacy, which is used in dynamical
systems (cf. [13, Deûnition 7.7.14]). Let dϕ ∶ Ga

ϕ ⋊ Z → Z and dψ ∶ Ga
ψ ⋊ Z → Z be the

continuous homomorphisms of étale groupoids deûned by

dϕ(x , n, z) = n, dψ(y,m,w) = m for (x , n, z) ∈ Ga
ϕ ⋊Z, (y,m,w) ∈ Ga

ψ ⋊Z.

We will characterize asymptotic conjugacy in terms of the Ruelle algebras with their
dual actions in the following way.

_eorem 1.2 (_eorem 6.4) Let (X , ϕ) and (Y ,ψ) be irreducible Smale spaces. _en
the following assertions are equivalent.
(i) (X , ϕ) and (Y ,ψ) are asymptotically conjugate.
(ii) _ere exists an isomorphism φ ∶ Ga

ϕ ⋊ Z → Ga
ψ ⋊ Z of étale groupoids such that

dψ ○ φ = dϕ .
(iii) _ere exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such that Φ(C(X)) =

C(Y) and Φ ○ ρϕ
t = ρψ

t ○Φ for t ∈ T.

_e asymptotic Ruelle algebra Raϕ has a translation invariant faithful tracial state
coming from amaximal measure called the Bowen measure on X. Hence, the algebra
Raϕ is never purely inûnite. In Section 7, we will introduce a unital, purely inûnite
version ofRaϕ . _e introduced C∗-algebra is denoted byRs ,u

ϕ and called the extended
asymptotic Ruelle algebra. It has a natural T2-action denoted by ρs ,u

ϕ . _e ûxed point
algebra (Rs ,u

ϕ )δϕ
of Rs ,u

ϕ under the diagonal T-action deûned by δϕ
z = ρs ,u

ϕ ,(z ,z), z ∈ T
is isomorphic to the original asymptotic Ruelle algebra Raϕ (_eorem 7.9).

In Sections 8 and 9, we will apply the above discussions to shi�s of ûnite type,
which we call topological Markov shi�s, from the view point of Cuntz–Krieger alge-
bras. For an irreducible and not permutation square matrix A with entries in {0, 1},
let us denote by (XA, σA) the associated two-sided topological Markov shi�. _e dy-
namical system is a typical example of a Smale space as in [25, 26, 33]. Consider the
asymptoticRuelle algebraRaσA and the extended asymptoticRuelle algebraRs ,u

σA for the
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topological Markov shi� (XA, σA), respectively. Let ρA
t
and ρA be the gauge actions

on the Cuntz–Krieger algebrasOAt andOA, respectively, where At is the transpose of
thematrix A. We put the diagonal gauge action δAr = ρA

t

r ⊗ ρAr , r ∈ T on OAt ⊗OA.

_eorem 1.3 (_eorem9.6 andCorollary 9.7) Let (XA, σA) be the Smale space of the
two-sided topological Markov shi� deûned by an irreducible non-permutation matrix A
with entries in {0, 1}. _en there exists a projection EA in the tensor product C∗-algebra
OAt ⊗ OA such that δAr (EA) = EA for all r ∈ T and the extended asymptotic Ruelle
algebra Rs ,u

σA is isomorphic to the C∗-algebra EA(OAt ⊗ OA)EA, denoted by Rs ,u
A . _e

asymptotic Ruelle algebra RaσA is isomorphic to the ûxed point algebra (Rs ,u
A )δA of Rs ,u

A
under the diagonal gauge action δA.

For the two-sided topological Markov shi� (XA, σA), we denote by Rs ,u
A the

extended asymptotic Ruelle algebra Rs ,u
σA , which is identiûed with the C∗-algebra

EA(OAt ⊗ OA)EA, and by RaA the asymptotic Ruelle algebra RaσA , which is identiûed
with the ûxed point algebra of EA(OAt ⊗OA)EA under the diagonal gauge action δA
by the above theorem.

In Section 10,wewill present theK-groups of the asymptoticRuelle algebrasRaϕ for
some topological Markov shi�s. In Putnam [25] and Killough and Putnam [11], the
K-theory formula for the asymptotic Ruelle algebras RaA for the topological Markov
shi� (XA, σA) has been provided. We will use Putnam’s formula in [25] to compute
the K-groups of the C∗-algebra RaA for the N × N matrix

A = [ 1 ⋅⋅⋅ 1
⋮ ⋮

1 ⋅⋅⋅ 1
]

with all entries being 1’s, so that the topological Markov shi� (XA, σA) is the full
N-shi�. Let us denote by RaN the asymptotic Ruelle algebra RaA for thematrix A. _e
C∗-algebra RaN is a simple AT-algebra of real rank zero with a unique tracial state,
written τN . We will show that K0(RaN) ≅ K1(RaN) ≅ Z[ 1

N ] (Proposition 10.3) and
τN∗(K0(RaN)) = Z[ 1

N ] (Lemma 10.4). We then see (Proposition 10.5) that two alge-
bras RaN and RaM are isomorphic if and only if Z[ 1

N ] = Z[ 1
M ]. As a result, we know

that the two-sided full 2-shi� and the two-sided full 3-shi� are not asymptotically
continuous orbit equivalent (Corollary 10.6).

In Section 11, we refer to diòerences among asymptotic continuous orbit equiva-
lence, asymptotic conjugacy and topological conjugacy of Smale spaces, and present
an open question related to their diòerences.

_roughout the paper, we denote by Z+ andN the set of nonnegative integers and
the set of positive integers, respectively.

2 Smale Spaces and their Groupoids

Let ϕ be a homeomorphism on a compact metric space (X , d) with metric d. Let us
recall the deûnition of Smale space following D. Ruelle [33, 7.1] and I. F Putnam [25,
Section 1]. Our notations diòer slightly from those of Ruelle and Putnam. For є > 0,
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we set
∆є ∶= {(x , y) ∈ X × X ∣ d(x , y) < є}.

Suppose that there exist є0 > 0 and a continuous map

[ ⋅ , ⋅ ] ∶ (x , y) ∈ ∆є0 Ð→ [x , y] ∈ X
having the following three properties called (SS1):
(i) [x , x] = x for x ∈ X ,
(ii) [[x , y], z] = [x , [y, z]] = [x , z] for (x , y), (y, z), (x , z), ([x , y], z), (x , [y, z]) ∈

∆є0 ,
(iii) [ϕ(x), ϕ(y)] = ϕ([x , y]) for (x , y), (ϕ(x), ϕ(y)) ∈ ∆є0 .
For 0 < є ≤ є0, put

X s(x , є) = {y ∈ X ∣ [y, x] = y, d(x , y) < є},
Xu(x , є) = {y ∈ X ∣ [x , y] = y, d(x , y) < є}.

We further require that there exists 0 < λ0 < 1 such that the following two properties
called (SS2) hold:

d(ϕ(y), ϕ(z)) ≤ λ0d(y, z) for y, z ∈ X s(x , є),(2.1)

d(ϕ−1(y), ϕ−1(z)) ≤ λ0d(y, z) for y, z ∈ Xu(x , є).

Deûnition 2.1 (Ruelle [33, 7.1]) A Smale space is a topological dynamical system
(X , ϕ) of a homeomorphism ϕ on a compact metric space X with a bracket [ ⋅ , ⋅ ]
satisfying (SS1) and (SS2) for suitable є0 , λ0.

By Ruelle [33, 7.1] and Putnam [25, Section 1], there exists є1 with 0 < є1 < є0 such
that for any є satisfying 0 < є < є1, the equalities

X s(x , є) = {y ∈ X ∣ d(ϕn(x), ϕn(y)) < є for all n = 0, 1, 2, . . .},
Xu(x , є) = {y ∈ X ∣ d(ϕn(x), ϕn(y)) < є for all n = 0,−1,−2, . . .}

hold.

Lemma 2.2 (Putnam [25, Section 1], Ruelle [33, 7.1]) For x , y ∈ X with (x , y) ∈ ∆є0
and d(x , [y, x]), d(y, [y, x]) < є1 ,

{[y, x]} = Xu(y, є1) ∩ X s(x , є1).
Hence, for 0 < є < є1 and x , y, z ∈ X, the equality [y, x] = z holds if and only if

d(ϕ−n(y), ϕ−n(z)) < є, d(ϕn(x), ϕn(z)) < є for all n = 0, 1, 2, . . . .

_ismeans that the bracket [ ⋅ , ⋅ ] is determined by the original dynamics (X , d , ϕ)
if it exists. _e following lemma is also useful.

Lemma 2.3 (Putnam [25, Section 1], Ruelle [33, 7.1]) For any є with 0 < є ≤ є0 and
x ∈ X, we have
(i) ϕ(X s(x , є)) ⊂ X s(ϕ(x), є)),
(ii) ϕ−1(Xu(x , є)) ⊂ Xu(ϕ−1(x), є)).
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Following Putnam [25, Section 1], for x ∈ X, we put
X s(x) = {y ∈ X ∣ lim

n→∞
d(ϕn(x), ϕn(y)) = 0},

Xu(x) = {y ∈ X ∣ lim
n→∞

d(ϕ−n(x), ϕ−n(y)) = 0},

Xa(x) = X s(x) ∩ Xu(x).
We note that the inclusion relations X s(x , є0) ⊂ X s(x) and Xu(x , є0) ⊂ Xu(x) were
shown in [25]. _e following lemma is from [25,33].

Lemma 2.4 (Putnam [25, Section 1], Ruelle [33, 7.1]) For any є with 0 < є ≤ є0 and
x ∈ X, we have
(i) X s(x) = ⋃∞n=0 ϕ−n(X s(ϕn(x), є)).
(ii) Xu(x) = ⋃∞n=0 ϕn(Xu(ϕ−n(x), є)).

Following Putnam [25, Section 1], we put

Gs ,0
ϕ = {(x , y) ∈ X × X ∣ y ∈ X s(x , є0)},

Gu ,0
ϕ = {(x , y) ∈ X × X ∣ y ∈ Xu(x , є0)},

Ga ,0
ϕ = Gs ,0

ϕ ∩Gu ,0
ϕ ,

and for n ∈ N,
Gs ,n

ϕ = (ϕ × ϕ)−n(Gs ,0
ϕ ),

Gu ,n
ϕ = (ϕ × ϕ)n(Gu ,0

ϕ ),
Ga ,n

ϕ = Gs ,n
ϕ ∩Gu ,n

ϕ .

All are given the relative topology of X × X.
Since [y, x] = y if and only if [x , y] = x, one sees that y ∈ X s(x , є0) if and only if

x ∈ X s(y, є0). Hence, (x , y) ∈ G∗,n
ϕ if and only if (y, x) ∈ G∗,n

ϕ for ∗ = s, u, a.
We note the following lemma, which is well known and useful.

Lemma 2.5 For x , y ∈ X we have (x , y) ∈ Ga ,0
ϕ if and only if x = y. Hence we may

identify Ga ,0
ϕ with X as a topological space.

Proof Take an arbitrary (x , y) ∈ Ga ,0
ϕ . As (x , y) ∈ Gs ,0

ϕ ,we see that y ∈ X s(x , є0), so
that [y, x] = y, and also as (x , y) ∈ Gu ,0

ϕ , we see that y ∈ Xu(x , є0), so that [x , y] = y.
Hence, we have

x = [x , x] = [x , [y, x]] = [x , y] = y.

By Lemma 2.3, we know that

(2.2) G∗,n
ϕ ⊂ G∗,n+1

ϕ , ∗ = s, u, a, n = 0, 1, . . .

Following [25, Section 1], [26, Section 3], and [29, Section 2],we deûne several equiv-
alence relations on X:

Gs
ϕ =

∞

⋃
n=0

Gs ,n
ϕ , Gu

ϕ =
∞

⋃
n=0

Gu ,n
ϕ , Ga

ϕ =
∞

⋃
n=0

Ga ,n
ϕ .
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By (2.2), the set G∗

ϕ = ⋃∞n=0 G∗,n
ϕ is an inductive system of topological spaces. Each

G∗

ϕ , ∗ = s, u, a is endowed with the inductive limit topology. _e following lemma
has also been shown by Putnam.

Lemma 2.6 (Putnam [25, Section 1])

Gs
ϕ = {(x , y) ∈ X × X ∣ lim

n→∞
d(ϕn(x), ϕn(y)) = 0} .(i)

Gu
ϕ = {(x , y) ∈ X × X ∣ lim

n→∞
d(ϕ−n(x), ϕ−n(y)) = 0} .(ii)

Ga
ϕ = {(x , y) ∈ X × X ∣ lim

n→∞
d(ϕn(x), ϕn(y))(iii)

= lim
n→∞

d(ϕ−n(x), ϕ−n(y)) = 0} .

Putnam studied three equivalence relations, Gs
ϕ , Gu

ϕ , and Ga
ϕ on X, by regarding

them as principal groupoids. He pointed out that the third equivalence relation Ga
ϕ

is an étale equivalence relation whereas the ûrst two are not étale in general. He also
studied the associated groupoid C∗-algebras C∗(Gs

ϕ), C∗(Gu
ϕ), and C∗(Ga

ϕ), which
have been denoted by S(X , ϕ), U(X , ϕ), and A(X , ϕ), respectively. He has pointed
out that they are all stablyAF-algebras if (X , ϕ) is a shi� of ûnite type. He also studied
their semi-direct products by the integer group Z as groupoids

Gs
ϕ ⋊Z ={(x , n, y) ∈ X ×Z × X ∣ (ϕn(x), y) ∈ Gs

ϕ},
Gu

ϕ ⋊Z ={(x , n, y) ∈ X ×Z × X ∣ (ϕn(x), y) ∈ Gu
ϕ},

Ga
ϕ ⋊Z ={(x , n, y) ∈ X ×Z × X ∣ (ϕn(x), y) ∈ Ga

ϕ}.
Since themap

γ ∶ (x , n, y) ∈ G∗

ϕ ⋊ZÐ→ ((x , ϕ−n(y)), n) ∈ G∗

ϕ ×Z

is bijective, the topology of the groupoidG∗

ϕ ⋊Z is deûned by the product topology of
G∗

ϕ ×Z through themap γ. Let us denote by (G∗

ϕ ⋊Z)○ the unit space of the groupoid
G∗

ϕ⋊Z,which is identiûedwith that ofG∗

ϕ andnaturallyhomeomorphic to the original
space X through the correspondence (x , 0, x) ∈ (G∗

ϕ ⋊ Z)○ → x ∈ X for ∗ = s, u, a.
_e rangemap r ∶ G∗

ϕ ⋊ Z → (G∗

ϕ ⋊ Z)○ and the sourcemap s ∶ G∗

ϕ ⋊ Z → (G∗

ϕ ⋊ Z)○
are deûned by

r(x , n, y) = (x , 0, x) and s(x , n, y) = (y, 0, y).
_e groupoid operations are deûned by

(x , n, y) ⋅ (x′ ,m,w) = (x , n +m,w) if y = x′ ,
(x , n, y)−1 = (y,−n, x).

Putnam [25, 26] and Putnam and Spielberg [29] also studied their associated
groupoid C∗-algebras C∗(Gs

ϕ ⋊ Z), C∗(Gu
ϕ ⋊ Z), and C∗(Ga

ϕ ⋊ Z), which have been
written Rs , Ru , and Ra , respectively in their papers. In this paper we denote them
by Rs

ϕ , R
u
ϕ , and Raϕ , respectively, to emphasize the homeomorphism ϕ. We remark

that Putnam–Spielberg [29] (cf. Killough–Putnam [11]) also constructed other kinds
of C∗-algebras, S(X , ϕ, P),U(X , ϕ, P), and their crossed products, S(X , ϕ, P) ⋊ Z,
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U(X , ϕ, P) ⋊ Z, from a ϕ-invariant subset P ⊂ X of periodic points by using étale
groupoids deûned by restricting the stable equivalence relation Gs

ϕ , unstable equiv-
alence relations Gu

ϕ to P, respectively. In this paper, we will not deal with these
C∗-algebras S(X , ϕ, P), U(X , ϕ, P), S(X , ϕ, P) ⋊Z, U(X , ϕ, P) ⋊Z.

3 Asymptotic Continuous Orbit Equivalence

Let (X , ϕ) be a Smale space. In this section, the symbol d will beused as a two-cocycle.
It does not mean themetric on X. A sequence { fn}n∈Z of integer-valued continuous
functions on X is called a one-cocycle for ϕ if it satisûes the identity

(3.1) fn(x) + fm(ϕn(x)) = fn+m(x), x ∈ X , n,m ∈ Z.

For a continuous function f ∶ X → Z and n ∈ Z, we deûne

f n(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n−1
i=0 f (ϕ i(x)) for n > 0,

0 for n = 0,
−∑−1

i=n f (ϕ i(x)) for n < 0.

It is straightforward to prove the following lemma.

Lemma 3.1 For n,m ∈ Z, the identity
(3.2) f n(x) + f m(ϕn(x)) = f n+m(x), x ∈ X
holds. Hence, the sequence { f n}n∈Z is a one-cocycle for ϕ.

We note that a sequence of functions satisfying (3.1) is determined only by f1.
In what follows we focus on asymptotic equivalence relations Ga

ϕ . A continuous
function d ∶ Ga

ϕ → Z is called a two-cocycle if it satisûes the following equalities:

(3.3) d(x , z) + d(z,w) = d(x ,w), (x , z), (z,w), (x ,w) ∈ Ga
ϕ .

_e identity (3.3) means that d ∶ Ga
ϕ → Z is a groupoid homomorphism.

Deûnition 3.2 Smale spaces (X , ϕ) and (Y ,ψ) are said to be asymptotically contin-
uously orbit equivalent if there exist a homeomorphism h ∶ X → Y , continuous func-
tions c1 ∶ X → Z, c2 ∶ Y → Z, and two-cocycle functions d1 ∶ Ga

ϕ → Z, d2 ∶ Ga
ψ → Z

such that
(1) cm1 (x) + d1(ϕm(x), ϕm(z)) = cm1 (z) + d1(x , z), (x , z) ∈ Ga

ϕ , m ∈ Z;
(2) cm2 (y) + d2(ψm(y),ψm(w)) = cm2 (w) + d2(y,w), (y,w) ∈ Ga

ψ , m ∈ Z;
and
(i) for each n ∈ Z, the pair (ψcn1 (x)(h(x)), h(ϕn(x))), denoted by ξn1 (x), belongs

to Ga
ψ for each x ∈ X, and themap ξn1 ∶ x ∈ X → ξn1 (x) ∈ Ga

ψ is continuous;
(ii) for each n ∈ Z, the pair (ϕcn2 (y)(h−1(y)), h−1(ψn(y))), denoted by ξn2 (y), be-

longs to Ga
ϕ for each y ∈ Y , and themap ξn2 ∶ y ∈ Y → ξn2 (y) ∈ Ga

ϕ is continuous;
(iii) the pair (ψd1(x ,z)(h(x)), h(z)), denoted by η1(x , z), belongs to Ga

ψ for each
(x , z) ∈ Ga

ϕ , and themap η1 ∶ (x , z) ∈ Ga
ϕ → η1(x , z) ∈ Ga

ψ is continuous;
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(iv) the pair (ϕd2(y ,w)(h−1(y)), h−1(w)), denoted by η2(y,w), belongs to Ga
ϕ for

each (y,w) ∈ Ga
ψ , and themap η2 ∶ (y,w) ∈ Ga

ψ → η2(y,w) ∈ Ga
ϕ is continuous;

(v) cc
n
1 (x)

2 (h(x)) + d2(ψc
n
1 (x)(h(x)), h(ϕn(x))) = n, x ∈ X , n ∈ Z;

(vi) cc
n
2 (y)

1 (h−1(y)) + d1(ϕc
n
2 (y)(h−1(y)), h−1(ψn(y))) = n, y ∈ Y , n ∈ Z;

(vii) cd1(x ,z)
2 (h(x)) + d2(ψd1(x ,z)(h(x)), h(z)) = 0, (x , z) ∈ Ga

ϕ ;

(viii) cd2(y ,w)
1 (h−1(y)) + d1(ϕd2(y ,w)(h−1(y)), h−1(w)) = 0, (y,w) ∈ Ga

ψ .
In this situation, we write (X , ϕ) ∼

ACOE
(Y ,ψ).

Remark 3.3 (i) Condition (1) above is equivalent to

c1(x) + d1(ϕ(x), ϕ(z)) = c1(z) + d1(x , z), (x , z) ∈ Ga
ϕ ,

and condition (2) is similar to (1).
(ii) Conditions (i)–(iv) are equivalent to the following conditions, respectively:

(i) For each n ∈ Z, there exists a continuous function k1,n ∶ X → Z+ such that

(ψk1,n(x)+cn1 (x)(h(x)),ψk1,n(x)(h(ϕn(x)))) ∈ Gs ,0
ψ ,(3.4)

(ψ−k1,n(x)+cn1 (x)(h(x)),ψ−k1,n(x)(h(ϕn(x)))) ∈ Gu ,0
ψ .

(ii) For each n ∈ Z, there exists a continuous function k2,n ∶ Y → Z+ such that

(ϕk2,n(y)+cn2 (y)(h−1(y)), ϕk2,n(y)(h−1(ψn(y)))) ∈ Gs ,0
ϕ ,

(ϕ−k2,n(y)+cn2 (y)(h−1(y)), ϕ−k2,n(y)(h−1(ψn(y)))) ∈ Gu ,0
ϕ .

(iii) _ere exists a continuous function m1 ∶ Ga
ϕ → Z+ such that

(ψm1(x ,z)+d1(x ,z)(h(x)),ψm1(x ,z)(h(z))) ∈ Gs ,0
ψ for (x , z) ∈ Ga

ϕ ,

(ψ−m1(x ,z)+d1(x ,z)(h(x)),ψ−m1(x ,z)(h(z))) ∈ Gu ,0
ψ for (x , z) ∈ Ga

ϕ .

(iv) _ere exists a continuous function m2 ∶ Ga
ψ → Z+ such that

(ϕm2(y ,w)+d2(y ,w)(h−1(y)), ϕm2(y ,w)(h−1(w))) ∈ Gs ,0
ϕ for (y,w) ∈ Ga

ψ ,

(ϕ−m2(y ,w)+d2(y ,w)(h−1(y)), ϕ−m2(y ,w)(h−1(w))) ∈ Gu ,0
ϕ for (y,w) ∈ Ga

ψ .

In what follows, we will assume that our Smale space is irreducible, which means
that for every orderedpair of open setsU ,V ⊂ X, there existsK ∈ N such that ϕK(U)∩
V ≠ ∅.

_eorem 3.4 Suppose that Smale spaces (X , ϕ) and (Y ,ψ) are irreducible. _en the
following assertions are equivalent:
(i) (X , ϕ) and (Y ,ψ) are asymptotically continuous orbit equivalent;
(ii) the groupoids Ga

ϕ ⋊Z and Ga
ψ ⋊Z are isomorphic as étale groupoids.

Proof (ii) ⇒ (i): Suppose that the groupoids Ga
ϕ ⋊ Z and Ga

ψ ⋊ Z are isomorphic
as étale groupoids. _ere exist homeomorphisms h ∶ (Ga

ϕ ⋊ Z)○ → (Ga
ψ ⋊ Z)○ and

φh ∶ Ga
ϕ ⋊ Z → Ga

ψ ⋊ Z that are compatible with their groupoid operations. Since the
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unit spaces (Ga
ϕ ⋊Z)○ and (Ga

ψ ⋊Z)○ are identiûed with the original spaces X and Y
as topological spaces through the identiûcations

(x , 0, x) ∈ (Ga
ϕ ⋊Z)○ Ð→ x ∈ X and (y, 0, y) ∈ (Ga

ψ ⋊Z)○ Ð→ y ∈ Y ,

respectively, we have a homeomorphism from X onto Y , which is still denoted
by h ∶ X → Y . As φh(x , n, z) ∈ Ga

ψ ⋊ Z for (x , n, z) ∈ Ga
ϕ ⋊ Z, there exists

c1(x , n, z) ∈ Z such that φh(x , n, z) = (h(x), c1(x , n, z), h(z)). In particular, we
have (x , n, ϕn(x)) ∈ Ga

ϕ ⋊ Z for z = ϕn(x), and can deûne c1,n(x) = c1(x , n, ϕn(x))
so that

(3.5) (h(x), c1,n(x), h(ϕn(x))) ∈ Ga
ψ ⋊Z.

Now for x ∈ X and n,m ∈ Z, we have

(x , n +m, ϕn+m(x)) = (x , n, ϕn(x)) ⋅ (ϕn(x),m, ϕn+m(x)) in Ga
ϕ ⋊Z,

so that

(h(x), c1,n+m(x), h(ϕn+m(x)))
=φh(x , n +m, ϕn+m(x))
=φh(x , n, ϕn(x))φh(ϕn(x),m, ϕn+m(x))
=(h(x), c1,n(x), h(ϕn(x)))(h(ϕn(x)), c1,m(ϕn(x)), h(ϕn+m(x)))
=(h(x), c1,n(x) + c1,m(ϕn(x)), h(ϕn+m(x))).

Hence we have

(3.6) c1,n+m(x) = c1,n(x) + c1,m(ϕn(x)),

so that the sequence {c1,n}n∈Z of continuous functions is a one-cocycle function on
X. By putting c1(x) ∶= c1,1(x), we see that cn1 (x) = c1,n(x) by (3.6). By (3.5), we see
that (ψcn1 (x)(h(x)), h(ϕn(x))) ∈ Ga

ψ . Since themaps below

((x , x), n) ∈ Ga
ϕ ×Z

γ−1

Ð→ (x , n, ϕn(x)) ∈ Ga
ϕ ⋊Z

φhÐ→ (h(x), cn1 (x), h(ϕn(x))) ∈ Ga
ψ ⋊Z

γÐ→ (h(x),ψ−c
n
1 (x)(h(ϕn(x))), cn1 (x)) ∈ Ga

ψ ×Z

(ψc
n
1 (x)×ψc

n
1 (x))×idÐÐÐÐÐÐÐÐÐÐ→ (ψc

n
1 (x)(h(x)), h(ϕn(x)), cn1 (x)) ∈ Ga

ψ ×Z

are all continuous, themap ξn1 ∶ x ∈ X → ξn1 (x) ∶= (ψcn1 (x)(h(x)), h(ϕn(x))) ∈ Ga
ψ is

continuous.
On the other hand, for (x , z) ∈ Ga

ϕ we see that (x , 0, z) ∈ Ga
ϕ ⋊ Z. Hence there

exists d1(x , z) ∈ Z such that φh(x , 0, z) = (h(x), d1(x , z), h(z)). Since φh ∶ Ga
ϕ⋊Z→

Ga
ψ ⋊Z is continuous, the function d1 ∶ Ga

ϕ → Z is continuous. For (x , z), (z,w) ∈ Ga
ϕ ,
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we have (x , 0,w) = (x , 0, z)(z, 0,w) ∈ Ga
ϕ , and hence

(h(x), d1(x ,w), h(w)) = φh(x , 0,w)
= φh(x , 0, z) ⋅ φh(z, 0,w)
= (h(x), d1(x , z), h(z)) ⋅ (h(z), d1(z,w), h(w))
= (h(x), d1(x , z) + d1(z,w), h(w)) ,

so that d1(x ,w) = d1(x , z)+d1(z,w)holds, and d1 ∶ Ga
ϕ → Z is a two-cocycle function.

Since themaps

((x , z), 0) ∈ Ga
ϕ ×Z

γ−1

Ð→ (x , 0, z) ∈ Ga
ϕ ⋊Z

φhÐ→ (h(x), d1(x , z), h(z)) ∈ Ga
ψ ⋊Z

γÐ→ ((h(x),ψ−d1(x ,z)(h(z)), d1(x , z)) ∈ Ga
ψ ×Z

(ψd1(x ,z)×ψd1(x ,z))×idÐÐÐÐÐÐÐÐÐÐÐ→ (ψd1(x ,z)(h(x)), h(z)), d1(x , z)) ∈ Ga
ψ ×Z

are all continuous, the map η1 ∶ (x , z) ∈ Ga
ϕ → η1(x , z) ∶= (ψd1(x ,z)(h(x)), h(z)) ∈

Ga
ψ is continuous.
For (x , n, x′), (x′ ,m, z) ∈ Ga

ϕ ⋊Z, the identity

φh((x , n, x′) ⋅ (x′ ,m, z)) = φh(x , n, x′) ⋅ φh(x′ ,m, z)
is equivalent to the identity

cm1 (ϕn(x)) + d1(ϕm+n(x), z) = cm1 (x′) + d1(ϕn(x), x′) + d1(ϕm(x′), z) ,
which implies the identity

cm1 (x) + d1(ϕm(x), ϕm(z)) = cm1 (z) + d1(x , z), (x , z) ∈ Ga
ϕ , m ∈ Z.

Similarly, we have one-cocycle function c2 ∶ Y → Z and two-cocycle function
d2 ∶ Ga

ψ → Z for the homeomorphism φ−1
h ∶ Ga

ψ ⋊Z→ Ga
ϕ ⋊Z. Since

h−1 = (φh)−1∣(Ga
ψ⋊Z)○ ∶ (G

a
ψ ⋊Z)○ = Y Ð→ (Ga

ϕ ⋊Z)○ = X ,

we see that φ−1
h = φh−1 . By the identity

(x , n, ϕn(x)) = (φ−1
h ○ φh)(x , n, ϕn(x)) for x ∈ X , n ∈ Z,

we have

(φ−1
h ○ φh)(x , n, ϕn(x))

= φ−1
h (h(x), cn1 (x), h(ϕn(x)))

= φ−1
h (h(x), cn1 (x),ψc

n
1 (x)(h(x)))φ−1

h (ψc
n
1 (x)(h(x)), 0, h(ϕn(x)))

= (x , cc
n
1 (x)

2 (h(x)), h−1(ψc
n
1 (x)(h(x)))

⋅ (h−1(ψc
n
1 (x)(h(x))) , d2(ψc

n
1 (x)(h(x)), h(ϕn(x))), ϕn(x))

= (x , cc
n
1 (x)

2 (h(x)) + d2(ψc
n
1 (x)(h(x)), h(ϕn(x))), ϕn(x)) ,
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so that the identity

cc
n
1 (x)

2 (h(x)) + d2(ψc
n
1 (x)(h(x)), h(ϕn(x))) = n

holds, and similarly

cc
n
2 (y)

1 (h−1(y)) + d1(ϕc
n
2 (y)(h−1(y)), h−1(ψn(y))) = n, y ∈ Y , n ∈ Z.

For (x , z) ∈ Ga
ϕ , the identity (x , 0, z) = (φ−1

h ○ φ)(x , 0, z) holds, so that we have

(φ−1
h ○ φh)(x , 0, z)

= φ−1
h (h(x), d1(x , z), h(z))

= φ−1
h (h(x), d1(x , z),ψd1(x ,z)(h(x)))φ−1

h (ψd1(x ,z)(h(x)), 0, h(z))

= (x , cd1(x ,z)
2 (h(x)), h−1(ψd1(x ,z)(h(x)))

⋅ (h−1(ψd1(x ,z)(h(x))) , d2(ψd1(x ,z)(h(x)), h(z)), z)

= (x , cd1(x ,z)
2 (h(x)) + d2(ψd1(x ,z)(h(x)), h(z)), z) .

Hence we have

cd1(x ,z)
2 (h(x)) + d2(ψd1(x ,z)(h(x)), h(z)) = 0, (x , z) ∈ Ga

ϕ ,

and similarly

cd2(y ,w)
1 (h−1(y)) + d1(ϕd2(y ,w)(h−1(y)), h−1(w)) = 0, (y,w) ∈ Ga

ψ .

_erefore, we see that (X , ϕ) ∼
ACOE

(Y ,ψ).
(i)⇒ (ii): Assume that (X , ϕ) ∼

ACOE
(Y ,ψ) and take a homeomorphism h ∶ X → Y ,

continuous functions c1 ∶ X → Z, c2 ∶ Y → Z, and two-cocycle functions d1 ∶ Ga
ϕ →

Z, d2 ∶ Ga
ψ → Z as in Deûnition 3.2. Let (x , n, z) ∈ Ga

ϕ ⋊Z be an arbitrary element so
that (ϕn(x), z) ∈ Ga

ϕ , and we have

(x , n, z) = (x , n, ϕn(x)) ⋅ (ϕn(x), 0, z).
Put

(3.7) φh(x , n, z) = (h(x), cn1 (x), h(ϕn(x)) ⋅ (h(ϕn(x)), d1(ϕn(x), z), h(z)) .

By Deûnition 3.2(i), (ψcn1 (x)(h(x)), h(ϕn(x))) belongs to Ga
ψ . As a consequence,

(h(x), cn1 (x), h(ϕn(x))) gives an element of Ga
ψ ⋊ Z. As (ϕn(x), z) ∈ Ga

ϕ , we see
that by Deûnition 3.2(iii), (ψd1(ϕn

(x),z)(h(ϕn(x))), h(z)) belongs to Ga
ψ , so that

(h(ϕn(x)), d1(ϕn(x), z), h(z)) gives an element of Ga
ψ ⋊ Z. Hence, φh(x , n, z) de-

ûnes an element of the groupoid Ga
ψ ⋊Z such that

φh(x , n, z) = (h(x), cn1 (x) + d1(ϕn(x), z), h(z)) .
It is straightforward to see that the equality (1) in Deûnition 3.2 implies

φh((x , n, x′) ⋅ (x′ ,m, z)) = φh(x , n, x′) ⋅ φh(x′ ,m, z)

for (x , n, x′), (x′ ,m, z) ∈ Ga
ϕ ⋊Z.
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Since x ∈ X → ξn1 (x) = (ψcn1 (x)(h(x)), h(ϕn(x))) ∈ Ga
ψ is continuous by Deûni-

tion 3.2(i) and

γ−1 ○ ((ψ−c
n
1 (x) × ψ−c

n
1 (x)) × id)( ξn1 (x), cn1 (x))

= γ−1(h(x),ψ−c
n
1 (x)(h(ϕn(x))) , cn1 (x))

= (h(x), cn1 (x), h(ϕn(x))) ,

themap φ1
h ∶ Ga

ϕ ⋊Z→ Ga
ψ ⋊Z deûned by

φ1
h(x , n, z) ∶= (h(x), cn1 (x), h(ϕn(x)))

is continuous.
And also the map η1 ∶ (x , z) ∈ Ga

ϕ → η1(x , z) = (ψd1(x ,z)(h(x)), h(z)) ∈ Ga
ψ is

continuous by Deûnition 3.2(iii) and

γ−1((ψ−d1(ϕn
(x),z) × ψ−d1(ϕn

(x),z)) × id )(η1(ϕn(x), z), d1(ϕn(x), z))
=γ−1(h(ϕn(x)),ψ−d1(ϕn

(x),z)(h(z)), d1(ϕn(x), z))
=(h(ϕn(x)), d1(ϕn(x), z), h(z)) .

Hence themap φ0
h ∶ Ga

ϕ ⋊Z→ Ga
ψ ⋊Z deûned by

φ0
h(x , n, z) ∶= (h(ϕn(x)), d1(ϕn(x), z), h(z))

is continuous. Since φh(x , n, z) = φ1
h(x , n, z)φ0

h(x , n, z) by (3.7), themap φh ∶ Ga
ϕ ⋊

Z→ Ga
ψ ⋊Z is continuous.

Similarly,we can deûne a continuous map φh−1 ∶ Ga
ψ ⋊Z→ Ga

ϕ ⋊Z from the home-
omorphism h−1 ∶ Y → X and one-cocycle function c2 ∶ Y → Z, two-cocycle function
d2 ∶ Ga

ψ → Z by setting

φh−1(y,m,w) = (h−1(y), cm2 (y)+ d2(ψm(y),w), h−1(w)) for (y,m,w) ∈ Ga
ψ ⋊Z.

For (y,m,w) ∈ Ga
ψ ⋊Z, we put

(φh−1)1(y,m,w) =(h−1(y), cm2 (y), h−1(ψm(y))) ,
(φh−1)0(y,m,w) =(h−1(ψm(y)), d2(ψm(y),w), h−1(w)) ,

so that

φh−1(y,m,w) = (φh−1)1(y,m,w) ⋅ (φh−1)0(y,m,w) for (y,m,w) ∈ Ga
ψ ⋊Z.
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We will next show that φh and φh−1 are inverses of each other. For x ∈ X , n ∈ Z, we
have

(φh−1 ○ φh)(x , n, ϕn(x))
= φh−1(h(x), cn1 (x), h(ϕn(x)))
= φh−1(h(x), cn1 (x),ψc

n
1 (x)(h(x))) ⋅ φ−1

h (ψc
n
1 (x)(h(x)), 0, h(ϕn(x)))

= (x , cc
n
1 (x)

2 (h(x)), h−1(ψc
n
1 (x)(h(x))))

⋅ (h−1(ψc
n
1 (x)(h(x))) , d2(ψc

n
1 (x)(h(x)), h(ϕn(x))) , ϕn(x))

= (x , cc
n
1 (x)

2 (h(x)) + d2(ψc
n
1 (x)(h(x)), h(ϕn(x))), ϕn(x)) .

By the condition of Deûnition 3.2(v), we have

(φh−1 ○ φh)(x , n, ϕn(x)) = (x , n, ϕn(x)).
We also have for (x , z) ∈ Ga

ϕ ,

φh−1 ○ φh(x , 0, z)
= φh−1(h(x), d1(x , z), h(z))

= (x , cd1(x ,z)
2 (h(x)), h−1(ψd1(x ,z)(h(x))))

⋅ (h−1(ψd1(x ,z)(h(x))), d2(ψd1(x ,z)(h(x)), h(z)), z)

= (x , cd1(x ,z)
2 (h(x)) + d2(ψd1(x ,z)(h(x)), h(z)), z)

By the condition of Deûnition 3.2(vii), we have

(φh−1 ○ φh)(x , 0, z) = (x , 0, z).
_erefore, we have for (x , n, z) ∈ Ga

ϕ ⋊Z,

(φh−1 ○ φh)(x , n, z)
= ((φh−1 ○ φh)(x , n, ϕn(x))) ⋅ ((φh−1 ○ φh)(ϕn(x), 0, z))
= (x , n, ϕn(x)) ⋅ (ϕn(x), 0, z) = (x , n, z).

Similarly, we have (φh ○ φh−1)(y,m,w) = (y,m,w) for (y,m,w) ∈ Ga
ψ ⋊ Z. Hence

we have φh−1 = (φh)−1 and φh gives rise to an isomorphism Ga
ϕ ⋊ Z → Ga

ψ ⋊ Z of the
étale groupoids.

Smale spaces (X , ϕ) and (Y ,ψ) are said to be stably continuous orbit equivalent
if in Deûnition 3.2, we can replace Ga

ϕ ,Ga
ψ with Gs

ϕ ,Gs
ψ , respectively, and written

(X , ϕ) ∼
SCOE

(Y ,ψ). Unstably continuous orbit equivalent is similarly deûned by re-
placingGa

ϕ ,Ga
ψ withGu

ϕ ,Gu
ψ , respectively, andwritten (X , ϕ) ∼

UCOE
(Y ,ψ). _e precise

deûnition of stably continuous orbit equivalent follows.

Deûnition 3.5 Smale spaces (X , ϕ) and (Y ,ψ) are said to be stably continuous orbit
equivalent if there exist a homeomorphism h ∶ X → Y , continuous functions c1 ∶ X →
Z, c2 ∶ Y → Z, and two-cocycle functions d1 ∶ Gs

ϕ → Z, d2 ∶ Gs
ψ → Z such that

(1) cm1 (x) + d1(ϕm(x), ϕm(z)) = cm1 (z) + d1(x , z), (x , z) ∈ Gs
ϕ , m ∈ Z.
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(2) cm2 (y) + d2(ψm(y),ψm(w)) = cm2 (w) + d2(y,w), (y,w) ∈ Gs
ψ ,m ∈ Z;

and
(i) for each n ∈ Z, there exists a continuous function k1,n ∶ X → Z+ such that

(ψk1,n(x)+cn1 (x)(h(x)),ψk1,n(x)(h(ϕn(x)))) ∈ Gs ,0
ψ ;

(ii) for each n ∈ Z, there exists a continuous function k2,n ∶ Y → Z+ such that

(ϕk2,n(y)+cn2 (y)(h−1(y)), ϕk2,n(y)(h−1(ϕn(y)))) ∈ Gs ,0
ϕ ;

(iii) there exists a continuous function m1 ∶ Gs
ϕ → Z+ such that

(ψm1(x ,z)+d1(x ,z)(h(x)),ψm1(x ,z)(h(z))) ∈ Gs ,0
ψ for (x , z) ∈ Gs

ϕ ;

(iv) there exists a continuous function m2 ∶ Gs
ψ → Z+ such that

(ϕm2(y ,w)+d2(y ,w)(h−1(y)), ϕm2(y ,w)(h−1(w))) ∈ Gs ,0
ϕ for (y,w) ∈ Gs

ψ ;

(v) cc
n
1 (x)

2 (h(x)) + d2(ψc
n
1 (x)(h(x)), h(ϕn(x))) = n, x ∈ X , n ∈ Z;

(vi) cc
n
2 (y)

1 (h−1(y)) + d1(ϕc
n
2 (y)(h−1(y)), h−1(ψn(y))) = n, y ∈ Y , n ∈ Z;

(vii) cd1(x ,z)
2 (h(x)) + d2(ψd1(x ,z)(h(x)), h(z)) = 0, (x , z) ∈ Gs

ϕ ;

(viii) cd2(y ,w)
1 (h−1(y)) + d1(ϕd2(y ,w)(h−1(y)), h−1(w)) = 0, (y,w) ∈ Gs

ψ .

If we replace Gs ,0
ϕ ,Gs ,0

ψ ,Gs
ϕ ,Gs

ψ with Gu ,0
ϕ ,Gu ,0

ψ ,Gu
ϕ ,Gu

ψ , respectively, then (X , ϕ)
and (Y ,ψ) are said to be unstably continuous orbit equivalent.

We can prove the following theorem in a similar fashion to _eorem 3.4.

_eorem 3.6 Suppose that the Smale spaces (X , ϕ) and (Y ,ψ) are irreducible. _en
the following conditions are equivalent:
(i) (X , ϕ) ∼

SCOE
(Y ,ψ) (resp. (X , ϕ) ∼

UCOE
(Y ,ψ));

(ii) the groupoids Gs
ϕ ⋊ Z and Gs

ψ ⋊ Z (resp. Gu
ϕ ⋊ Z and Gu

ψ ⋊ Z) are isomorphic as
topological groupoids.

We note that the groupoids Gs
ϕ ,Gs

ψ ,Gu
ϕ ,Gu

ψ above are the non-étale groupoids ap-
pearing in Lemma 2.6, which were deûned in [25]. We do not know whether or not
the corresponding theorem holds for étale groupoids deûned from ϕ-invariant set of
stable or unstable equivalence relations appearing in [29].

4 Asymptotic Periodic Orbits of Smale Spaces

Let (X , ϕ) be an irreducible Smale space.

Deûnition 4.1 An element x ∈ X is called an asymptotic periodic point if there exists
p ∈ Z with p ≠ 0 such that (x , ϕp(x)) ∈ Ga

ϕ . We call such p asymptotic period of x. If
∣p∣ is the least positive such number, it is said to be the least asymptotic period of x.

We note that the asymptotic period is possibly negative, and hence if p is the least
asymptotic period, then −p is also the least asymptotic period.
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We assume that (X , ϕ) ∼
ACOE

(Y ,ψ) and keep a homeomorphism h ∶ X → Y , con-
tinuous functions c1 , c2 and two-cocycle functions d1 , d2 which give rise to asymptot-
ically continuous orbit equivalence between (X , ϕ) and (Y ,ψ).

Lemma 4.2 If x ∈ X is an asymptotic periodic point with asymptotic period p, then
h(x) is also an asymptotic periodic pointwith asymptotic period cp1 (x)+d1(ϕp(x), x).

Proof Since (x , ϕp(x)) ∈ Ga
ϕ and hence (x , p, x) ∈ Ga

ϕ ⋊Z, we have

φh(x , p, x) = (h(x), cp1 (x) + d1(ϕp(x), x), h(x)) .
As (X , ϕ) ∼

ACOE
(Y ,ψ), h(x) is an asymptotic periodic point in Y with asymptotic

period cp1 (x) + d1(ϕp(x), x).

Lemma 4.3 Let x ∈ X be an asymptotic periodic point with least asymptotic period
p. Let p′ be the least asymptotic period of h(x). _en we have the equality

(4.1) cnp′
2 (h(x))+d2(ψnp′(h(x)), h(x)) = n ⋅(cp

′

2 (h(x))+d2(ψp′(h(x)), h(x)))
for all n ∈ Z.

Proof Suppose that (x , ϕp(x)) ∈ Ga
ϕ . Put y = h(x) and q′ = cp1 (x) + d1(ϕp(x), x).

By the preceding lemma,we know that y has asymptotic period q′, so that (y, p′ , y) ∈
Ga

ψ ⋊Z. Now suppose that equality (4.1) holds for n = k. Since (y, p′ , y)(y, kp′ , y) =
(y, (k + 1)p′ , y), we get
(4.2) φh−1((y, p′ , y)(y, kp′ , y)) = φh−1( y, (k + 1)p′ , y) .
_e le�-hand side of (4.2) equals

φh−1(y, p′ , y)φh−1(y, kp′ , y)

= (h−1(y), cp
′

2 (y) + d2(ψp′(y), y), h−1(y))

⋅ (h−1(y), ckp′
2 (y) + d2(ψkp′(y), y), h−1(y))

= (h−1(y), cp
′

2 (y) + d2(ψp′(y), y) + ckp′
2 (y) + d2(ψkp′(y), y), h−1(y)) .

_e right-hand side of (4.2) equals

φh−1(y, (k + 1)p′ , y) = (h−1(y), c(k+1)p′
2 (y) + d2(ψ(k+1)p′(y), y), h−1(y)),

so that we have

cp
′

2 (y)+d2(ψp′(y), y)+ ckp′
2 (y)+d2(ψkp′(y), y) = c(k+1)p′

2 (y)+d2(ψ(k+1)p′(y), y).
By induction, we obtain the desired equalities for all n ∈ N, and hence for all n ∈ Z in
a similar way.

Lemma 4.4 If x ∈ X is an asymptotic periodic point with asymptotic period p, then
h(x) is also an asymptotic periodic pointwith asymptotic period cp1 (x)+d1(ϕp(x), x).
If, in particular, p is the least asymptotic period of x, then cp1 (x) + d1(ϕp(x), x) is the
least asymptotic period of h(x).
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Proof It suõces to show the “if in particular” part. Suppose that (x , ϕp(x)) ∈ Ga
ϕ

and p is the least asymptotic period of x. We will show that cp1 (x) + d1(ϕp(x), x) is
the least asymptotic period of h(x). Let p′ be the the least asymptotic period of h(x).
Put q′ = cp1 (x) + d1(ϕp(x), x), so that q′ = n ⋅ p′ for some n ∈ Z. We will prove that
n = ±1. We have

(x , p, x) = (φh−1 ○ φh)(x , p, x)
= φh−1(h(x), q′ , h(x))

= (x , cq
′

2 (h(x)) + d2(ψq′(h(x)), h(x)), x) .

Hence, p = cq
′

2 (h(x))+d2(ψq′(h(x)), h(x)). As q′ = np′, the preceding lemma tells
us that

(4.3) p = n ⋅ (cp
′

2 (h(x)) + d2(ψp′(h(x)), h(x))) .

Since p′ is (the least) asymptotic period of h(x),we have (ψp′(h(x)), h(x)) ∈ Ga
ψ , so

that by Deûnition 3.2(iv), we have

(4.4) ϕd2(ψp′
(h(x)),h(x))(h−1(ψp′(h(x))), h−1(h(x))) ∈ Ga

ϕ .

By Deûnition 3.2(ii), we have (ϕc
p′
2 (h(x))(x), h−1(ψp′(h(x)))) ∈ Ga

ϕ and hence
(4.5)

(ϕc
p′
2 (h(x))+d2(ψp′

(h(x)),h(x))(x), ϕd2(ψp′
(h(x)),h(x))(h−1(ψp′(h(x))))) ∈ Ga

ϕ .

By (4.4) and (4.5), we have

(ϕc
p′
2 (h(x))+d2(ψp′

(h(x)),h(x))(x), x) ∈ Ga
ϕ .

As p is the least asymptotic period of x, we have

(4.6) cp
′

2 (h(x)) + d2(ψp′(h(x)), h(x)) = p ⋅m′ for some m′ ∈ Z.

By (4.3) and (4.6), we have
p = n ⋅m′ ⋅ p,

so thatwe conclude that n = ±1, andhence cp1 (x)+d1(ϕp(x), x) is the least asymptotic
period of h(x).

For an asymptotic periodic point x ∈ X with asymptotic period p, we put

cph(x) ∶= c
p
1 (x) + d1(ϕp(x), x) ∈ Z.

If p is the least asymptotic period, the preceding proposition tells us that

cnp
h (x) = n ⋅ cph(x) for n ∈ Z.

In this case, as any asymptotic period q of x is written q = m ⋅ p for some m ∈ Z with
m ≠ 0, we have cnmp

h (x) = nm ⋅ cph(x) = n ⋅ cmp
h (x), so that cnq

h (x) = n ⋅ cqh(x).
For a periodic point x ∈ X, the ûnite set {ϕn(x) ∣ n ∈ Z} is called a periodic orbit.

Let us denote by

Porb(X) ∶= the set of periodic orbits of (X , ϕ).
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A periodic point with period p is called a p-periodic point. Let Perp(X) be the set of
p-periodic points of (X , ϕ). _e following theorem due to R. Bowen tells us that the
set Perp(X) is ûnite for each p, because so is Perp(XA).

_eorem 4.5 ( [2, _eorem 3.12]) Let (X , ϕ) be an irreducible Smale space. _en
there exists an irreducible subshi� of ûnite type (XA, σA) such that there exists a ûnite-
to-one factor map φ ∶ (XA, σA)→ (X , ϕ).

For a periodic orbit γ ∈ Porb(X), take a periodic point x ∈ X such that
γ = {ϕn(x) ∣ n ∈ Z}. _e cardinality of the set {ϕn(x) ∣ n ∈ Z} is called the length of γ
andwritten ∣γ∣. Wewill show that the periodic orbits Porb(X) and Porb(Y) are related
by their cocycle functions under the condition (X , ϕ) ∼

SCOE
(Y ,ψ). A point x ∈ X is

called a stably periodic point if there exists p ∈ Zwith p ≠ 0 such that (x , ϕp(x)) ∈ Gs
ϕ .

We call such p a stable period of x. We note that Lemmas 4.2, 4.3, and 4.4 hold for
stably periodic points and stable periods under the condition (X , ϕ) ∼

SCOE
(Y ,ψ). We

provide the following lemma.

Lemma 4.6 Suppose that (X , ϕ) ∼
SCOE

(Y ,ψ). Let x ∈ X be a periodic point in X such
that ϕp(x) = x. Put q = cp1 (x) and assume q > 0, otherwise take −p. _en we have the
following:

(i) ckp
1 (x) = kq for k ∈ Z.

(ii) ψq(h(x)) ∈ Y s(h(x)) so that the limit limk→∞ ψqk(h(x)) exists in Y .
(iii) Put ηh(x) = limk→∞ ψqk(h(x)). _en

(4.7) ηh(ϕn(x)) = ψc
n
1 (x)(ηh(x)) for n ∈ Z.

In particular, ηh(x) is a q-periodic point in Y .
(iv) ηh(x) ∈ Y s(h(x)).
(v) If p is the least period of x, then cp1 (x) is the least period of ηh(x).
(vi) cq2(ηh(x)) = p.

Proof (i) Since ϕp(x) = x, we have d1(ϕp(x), x) = 0, so that cph(x) = c
p
1 (x) +

d1(ϕp(x), x) = cp1 (x). Hence, the equality c
p
1 (x) ⋅ k = c

kp
1 (x) for k ∈ Z is immediate.

(ii) We have (ψq(h(x)), h(x)) = (ψc
p
1 (x)(h(x)), h(ϕp(x))), which belongs to

Gs
ψ because of Deûnition 3.5(i), so that ψq(h(x)) ∈ Y s(h(x)). By using [29, Lemma

5.3], the element limk→∞ ψqk(h(x)) exists in Y and is a periodic point with period
q.

(iii) By Deûnition 3.5(i) with Lemma 2.6, we have

lim
k→∞

ψqk(h(ϕn(x))) = lim
k→∞

ψqk(ψc
n
1 (x)h(x))) = ψc

n
1 (x)( lim

k→∞
ψqk(h(x))) ,

so that the equality (4.7) holds.
(iv) For each n ∈ Z, we have qn = cp1 (x)n = cpn1 (x) by (i), so that the equality

lim
k→∞

ψqk(ψqn(h(x))) = lim
k→∞

ψqk(h(ϕpn(x))) = lim
k→∞

ψqk(h(x))
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holds because of Deûnition 3.5(i). It then follows that

lim
n→∞

ψqn(ηh(x)) = lim
n→∞

ψqn( lim
k→∞

ψqk(h(x)))

= lim
n→∞

( lim
k→∞

ψqn+qk(h(x)))

= lim
n→∞

( lim
k→∞

ψqk(ψqn(h(x))))

= lim
n→∞

( lim
k→∞

ψqk(h(x)))

= lim
k→∞

ψqk(h(x)) = ηh(x),

and also for j = 1, . . . , q − 1,

lim
n→∞

ψqn+ j(ηh(x)) = ψ j( lim
n→∞

ψqn(ηh(x)))

= ψ j( lim
n→∞

ψqn(h(x)))

= lim
n→∞

ψqn+ j(h(x)).

Hence, we have
lim
n→∞

d(ψn(ηh(x)),ψn(h(x))) = 0

where the above d( ⋅ , ⋅ ) is themetric on Y , so thatwe obtain that ηh(x) ∈ Y s(h(x)).
(v) Assume that p is the least period of x. We will show that q = cp1 (x) is the least

period of ηh(x). Let q0 be the least period of ηh(x), such that q = q0 ⋅ m for some
m ∈ N and ψq0(ηh(x)) = ηh(x). Hence, we have

lim
k→∞

ψqk+ j(ψq0(h(x))) = lim
k→∞

ψqk+ j(h(x)), j = 0, 1, . . . , q − 1,

so that
lim
n→∞

ψn(ψq0(h(x))) = lim
n→∞

ψn(h(x)).

By Lemma 2.6, we have that (ψq0(h(x)), h(x)) ∈ Ga
ψ , and hence q0 is a stable period

of h(x) . As q is the least stable period of h(x) by Lemma 4.4 for stably period points
and q = q0 ⋅m, we get m = 1; that is, q is the least period of ηh(x).

(vi) We will prove cq2(ηh(x)) = p, where q = cp1 (x). As the function cq2 is contin-
uous, we have

cq2(ηh(x)) = lim
k→∞

cq2(ψqk(h(x))) .

By the cocycle property (3.2) for c2 and Deûnition 3.5(v), we have

cq2(ψqk(h(x))) = cq+qk
2 (h(x)) − cqk2 (h(x))

= cc
(k+1)p
1 (x)

2 (h(x)) − cc
kp
1 (x)

2 (h(x))

= ((k + 1)p − d2(ψc
(k+1)p
1 (x)(h(x)), h(ϕ(k+1)p(x))))

− ( kp − d2(ψc
kp
1 (x)(h(x)), h(ϕkp(x))))

= p − d2(ψ(k+1)q(h(x)), h(x)) + d2(ψkp(h(x)), h(x)) .
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We then have

lim
n→∞

ψn(ψqk(h(x))) = lim
n→∞

ψn(h(ϕqk(x))) = lim
n→∞

ψn(h(x))

_is implies that ψqk(h(x)) ∈ Y s(h(x)) for all k ∈ Z. As ηh(x) ∈ Y s(h(x)) by (iv),
we have ψqk(h(x)) ∈ Y s(ηh(x)) for all k ∈ Z, so that there exists k0 ∈ N such that
for all k ≥ k0 and l ∈ N

d(ψq l(ψqk(h(x))),ψq l(ηh(x))) < є0 .

Hence for j = 1, . . . , q − 1, there exists k j ∈ N such that for all k ≥ k j and l ∈ N

d(ψq l+ j(ψqk(h(x))),ψq l+ j(ηh(x))) < є0 .

We then ûnd K ∈ N such that for all k ≥ K and n ∈ N,
d(ψn(ψqk(h(x))),ψn(ηh(x))) < є0 .

_is implies that ψqk(h(x)) ∈ Y s(ηh(x), є0) for all k ≥ K. Since

lim
k→∞

ψ(k+1)q(h(x)) = lim
k→∞

ψqk(h(x)) = ηh(x),

by the continuity of d2, we see that

lim
k→∞

d2(ψ(k+1)q(h(x)), h(x)) = lim
k→∞

d2(ψkp(h(x)), h(x)) = d2(ηh(x), h(x)) ,

thus proving limk→∞ cq2(ψqk(h(x))) = p.

For a q-periodic point y in Y , we put

ηh−1(y) = lim
m→∞

ϕc
q
2 (y)⋅m(h−1(y)).

_e above limit exists in X by a similar manner to Lemma 4.6(ii), and ηh−1(y) is
cq2(y)-periodic point in X.

Lemma 4.7 For a periodic point x in X, we have

(4.8) ηh−1(ηh(x)) = ϕ−d2(ηh(x),h(x))(x).
Hence ηh−1(ηh(x)) belongs to the periodic orbit of x under ϕ.

Proof Suppose that ϕp(x) = x. Take the constants 0 < є1 < є0 and 0 < λ0 < 1 for
the Smale space (X , ϕ) as in Deûnition 2.1 and right a�er Deûnition 2.1. By using
Deûnition 3.5(ii), we know that Lemma 4.6(iv) implies that (ηh(x), h(x)) ∈ Gs

ψ , so
that

(ϕd2(ηh(x),h(x))(h−1(ηh(x))), x) ∈ Gs
ϕ

because of Deûnition 3.5 (iv). Hence, for є > 0 with 0 < є < є1 , there exists n0 ∈ N
such that

d(ϕn(ϕn0(ϕd2(ηh(x),h(x))(h−1(ηh(x))))) , ϕn(ϕn0(x))) < є for n = 0, 1, 2, . . .

where the above d( ⋅ , ⋅ ) is themetric on X , and hence

ϕn0(ϕd2(ηh(x),h(x))(h−1(ηh(x)))) ∈ X s(ϕn0(x), є).
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For any l ∈ N, we have by (2.1)

d(ϕ l(ϕn0+d2(ηh(x),h(x))(h−1(ηh(x)))) , ϕ l(ϕn0(x)))

≤ λ l
0d(ϕn0+d2(ηh(x),h(x))(h−1(ηh(x)))), ϕn0(x))

≤ λ l
0 ⋅ є,

so that

lim
n→∞

ϕpn(ϕn0+d2(ηh(x),h(x))(h−1(ηh(x)))) = lim
n→∞

ϕpn(ϕn0(x)) = ϕn0(x).

Since

lim
n→∞

ϕpn(ϕn0+d2(ηh(x),h(x))(h−1(ηh(x)))

= ϕn0+d2(ηh(x),h(x))( lim
n→∞

ϕpn(h−1(ηh(x))))

= ϕn0+d2(ηh(x),h(x))(ηh−1(ηh(x))) ,
the equality

ϕn0+d2(ηh(x),h(x))(ηh−1(ηh(x))) = ϕn0(x)
holds, thus proving (4.8).

We thus reach the following proposition.

Proposition 4.8 Suppose that (X , ϕ) ∼
SCOE

(Y ,ψ). _en there exists a bijective map
ξh ∶ Porb(X)→ Porb(Y) such that

∣ξh(γ)∣ = ∣c∣γ∣1 (x)∣ for γ ∈ Porb(X) with γ = {ϕn(x) ∣ n ∈ Z}.

Proof For γ = {ϕn(x) ∣ n ∈ Z} ∈ Porb(X), put p = ∣γ∣ the positive least period of x.
Deûne

ξh(γ) = {ψn(ηh(x)) ∣ n ∈ Z} .

Since ηh(x) is a periodic point in Y with its least period cp1 (x), ξh(γ) is a periodic
orbit in Y such that ∣ξh(γ)∣ = ∣cp1 (x)∣. We note the corresponding statement for h−1

to Lemma 4.6 (iii) holds, so that we have the equality

(4.9) ηh−1(ψn(y)) = ϕc
n
2 (y)(ηh−1(y)) , n ∈ Z

for a periodic point y ∈ Y . By (4.7) and (4.9), we have

ηh−1(ψn(ηh(x))) = ϕc
n
2 (ηh(x))(ηh−1(ηh(x))) = ϕc

n
2 (ηh(x))−d2(ηh(x)),h(x))(x)

Hence, ηh−1(ψn(ηh(x))) belongs to γ, so that we have ξh−1(ξh(γ)) = γ. Simi-
larly, we have ξh(ξh−1(γ′)) = γ′ for γ′ ∈ Porb(Y). We thus conclude that the map
ξh ∶ Porb(X)→ Porb(Y) is bijective and satisûes the desired property.

_e zeta function ζϕ(t) for the dynamical system (X , ϕ) is deûned by

ζϕ(t) ∶= exp{
∞

∑
n=1

tn

n
∣Pern(X)∣} (cf. [2, 13,24,35]),
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where ∣Pern(X)∣ means the cardinal number of the ûnite set Pern(X). Suppose that
(X , ϕ) ∼

ACOE
(Y ,ψ).ByProposition 4.8, there is a bijectivemap ξh ∶ Porb(X)→ Porb(Y)

such that

∣ξh(γ)∣ = ∣c∣γ∣1 (x)∣ for γ ∈ Porb(X) with γ = {ϕn(x) ∣ n ∈ Z}.
We set the two kinds of dynamical zeta functions

ζξh(t) ∶= ∏
γ∈Porb(X)

(1 − t∣ξh(γ)∣)−1 ,

ζϕ ,c1(s) ∶= exp{
∞

∑
n=1

1
n ∑

x∈Pern(X)
exp ( − s∣cn1 (x)∣)} (cf. [24,35]).

By putting t = e−s , we see that

ζξh(t) = ζϕ ,c1(s)
by general theory of dynamical zeta function (cf. [24,35]).

_eorem 4.9 Suppose that (X , ϕ) ∼
SCOE

(Y ,ψ). Let h ∶ X → Y be a homeomorphism
that gives rise to a stably continuous orbit equivalence between them. _en we have

ζϕ(t) = ζξh−1 (t) and ζψ(t) = ζξh(t).

Proof _ere exists a bijection ξh ∶ Porb(X) → Porb(Y) such that ∣ξh(γ)∣ = ∣c∣γ∣1 (x)∣
for γ ∈ Porb(X) with γ = {ϕn(x) ∣ n ∈ Z}. As ξh is bijective with ∣ξh(γ)∣ = ∣c∣γ∣1 (x)∣, it
is direct to see that ζψ(t) = ζξh(t), and similarly ζϕ(t) = ζξh−1 (t).

We remark that a similar statement for UCOE holds.

5 Asymptotic Ruelle Algebras Raϕ with Dual Actions

Let us recall the construction of the groupoid C∗-algebras from étale groupoids (
[30]). Let G be an étale groupoid with rangemap r ∶ G → G○ and sourcemap s ∶ G →
G○ from G to the unit space G○ of G. In [30], “r-discrete” was used instead of “étale”.

_e (reduced) groupoid C∗-algebra C∗r (G) for an étale groupoid G is deûned in
the following way ( [30]). Let Cc(G) be the set of all continuous functions on G with
compact support that has a natural product structure of ∗-algebra given by

( f ∗ g)(u) = ∑
r(t)=r(u)

f (t)g(t−1u) = ∑
u=t1 t2

f (t1)g(t2),

f ∗(u) = f (u−1), f , g ∈ Cc(G), u ∈ G .

Let C0(G○) be the C∗-algebra of all continuous functions on the unit space G○ that
vanish at inûnity. _e algebra Cc(G) is a C0(G○)-right module, endowed with a
C0(G○)-valued inner product given by

(ξ f )(t) = ξ(t) f (s(t)), ξ ∈ Cc(G), f ∈ C0(G○), t ∈ G ,

⟨ξ, η⟩(x) = ∑
x=s(t)

ξ(t)η(t), ξ, η ∈ Cc(G), x ∈ G○ .
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Let us denote by l 2(G) the completion of the inner product C0(G○)-module Cc(G).
It is a Hilbert C∗-right module over the commutative C∗-algebra C0(G○). We de-
note by B(l 2(G)) the C∗-algebra of all bounded adjointable C0(G○)-module maps
on l 2(G). Let π be the∗-homomorphismofCc(G) into B(l 2(G)) deûned by π( f )ξ =
f ∗ ξ for f , ξ ∈ Cc(G). _en the closure of π(Cc(G)) in B(l 2(G)) is called the (re-
duced)C∗-algebra of the groupoidG,whichwe denote byC∗r (G). Ifwe endowCc(G)
with the universal C∗-norm, its completion is called the the (full) C∗-algebra of the
groupoidG,whichwe denote byC∗(G). By a general theory of groupoidC∗-algebras,
C∗r (G) is canonically isomorphic to C∗(G) if the groupoid is amenable ( [30]). An
étale groupoid G is said to be essentially principal if the interior of G′ = {γ ∈ G ∣
s(γ) = r(γ)} is G○ ( [31, Deûnition 3.1]). By Renault [30, Proposition 4.7], [31, Propo-
sition 4.2], C0(G○) is maximal abelian in C∗r (G) if and only if G is essentially princi-
pal.

Deûnition 5.1 A Smale space (X , ϕ) is said to be asymptotically essentially free if
the interior of the set of n-asymptotic periodic points {x ∈ X ∣ (ϕn(x), x) ∈ Ga

ϕ} is
empty for every n ∈ Z with n ≠ 0.

We always assume that the space X is inûnite. Recall that a Smale space (X , ϕ)
is said to be irreducible if for every ordered pair of open sets U ,V ⊂ X, there exists
K ∈ N such that ϕK(U) ∩ V ≠ ∅. It is equivalent to the condition that for every
ordered pair of open sets U ,V ⊂ X, there exists K ∈ N such that ϕ−K(U) ∩ V ≠ ∅.
_e referee kindly showed to the author the following lemma with its proof below.
_e author deeply thanks the referee.

Lemma 5.2 If a Smale space (X , ϕ) is irreducible and X is inûnite, then (X , ϕ) is
asymptotically essentially free.

Proof Let Un , n ∈ N be a countable base of open sets of the topology of X. Since
(X , ϕ) is irreducible, the set ⋃∞n=0 ϕ−n(Um) is dense in X for every m ∈ N. By Baire’s
category theorem, ⋂∞m=1⋃∞n=0 ϕ−n(Um) is dense in X . _e set ⋂∞m=1⋃∞n=0 ϕ−n(Um)
coincides with the set of points whose forward orbit is dense in X . Now suppose
that for a ûxed n ≠ 0, the interior of the set of n-asymptotic periodic points
{x ∈ X ∣ (ϕn(x), x) ∈ Ga

ϕ} contains a non-empty open set U . _ere exists a point
x ∈ U such that the forward orbit of x is dense in X. Since (ϕn(x), x) ∈ Ga

ϕ , we
have

lim
m→∞

d(ϕm(ϕn(x)), ϕm(x)) = 0,

so that ϕn(x) ∈ X s(x). By [29, Lemma 5.3], there exists limk→∞ ϕkn(x), denoted by
y, in the set of n-periodic points Pern(X). We note that although [29, Lemma 5.3]
is considering only mixing Smale spaces, the assertion [29, Lemma 5.3] holds in the
irreducible Smale space with X being inûnite. Since X is inûnite, one can ûnd a point
z /∈ {y, ϕ(y), . . . , ϕn−1(y)}. Put є = 1

4 Min{d(z, ϕ i(y)) ∣ i = 0, 1, . . . , n − 1}. Let us
denote by Nє(z) the є-neighborhood of z of open ball. We put V = ⋃n−1

i=0 Nє(ϕ i(y)),
so that we have V ∩ Nє(z) = ∅. Since X is compact, there exists δ > 0 such that for
all w1 ,w2 ∈ X , d(w1 ,w2) < δ implies d(ϕ j(w1), ϕ j(w2)) < є for all j = 0, 1, . . . , n − 1.
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In particular, for j = 0, we have δ < є. Since limk→∞ ϕkn(x) = y, there exists K ∈ N
such that d(ϕkn(x), y) < δ for all k ≥ K. Hence, we have

d(ϕ j(ϕkn(x)), ϕ j(y)) < є for all j = 0, 1, . . . , n − 1, k ≥ K ,

so that ϕkn+ j(x) ∈ Nє(ϕ j(y)) for all j = 0, 1, . . . , n−1, k ≥ K . Hencewe have ϕm(x) ∈
V for all m ≥ K ⋅ n. _is contradicts the condition that the forward orbit of x is dense
in X. We thus conclude that the interior of the set {x ∈ X ∣ (ϕn(x), x) ∈ Ga

ϕ} is
empty.

Lemma 5.3 A Smale space (X , ϕ) is asymptotically essentially free if and only if the
groupoid Ga

ϕ ⋊Z is essentially principal.

Proof As we have

(Ga
ϕ ⋊Z)′ = ⋃

n∈Z
{(x , n, z) ∈ Ga

ϕ ⋊Z ∣ x = z}

= ⋃
n∈Z

{(x , n, x) ∈ X ×Z × X ∣ (ϕn(x), x) ∈ Ga
ϕ} ,

the interior int((Ga
ϕ ⋊Z)′) of (Ga

ϕ ⋊Z)′ is

int ((Ga
ϕ ⋊Z)′) = ⋃

n∈Z
int ({(x , n, x) ∈ X ×Z × X ∣ (ϕn(x), x) ∈ Ga

ϕ}) .

For n = 0, we see that

int ({(x , 0, x) ∈ X ×Z × X ∣ (x , x) ∈ Ga
ϕ}) = (Ga

ϕ ⋊Z)○ = X .

Hence , int((Ga
ϕ ⋊Z)′) = (Ga

ϕ ⋊Z)○ if and only if

int({(x , n, x) ∈ X ×Z × X ∣ (ϕn(x), x) ∈ Ga
ϕ})

is empty for all n ∈ Z except n = 0. _is implies that (X , ϕ) is asymptotically essen-
tially free if and only if Ga

ϕ ⋊Z is essentially principal.

_e following proposition as well as Lemma 5.5 is well known to experts through
[25,_eorem 3.1]. _e proof is also direct from Renault’s result [30, Proposition 4.6].

Proposition 5.4 If a Smale space (X , ϕ) is irreducible, then the groupoid C∗-algebra
C∗r (Ga

ϕ ⋊Z) is simple.

Lemma 5.5 (cf. [29,_eorem 1.1]) _e groupoidsGa
ϕ andGa

ϕ ⋊Z are both amenable.

ByLemma 5.5, the full groupoidC∗-algebrasC∗(Ga
ϕ),C∗(Ga

ϕ⋊Z) and the reduced
groupoid C∗-algebras C∗r (Ga

ϕ),C∗r (Ga
ϕ ⋊Z) are canonically isomorphic respectively.

We do not distinguish them and write them C∗(Ga
ϕ),C∗(Ga

ϕ ⋊Z), respectively.
For an irreducible Smale space (X , ϕ), the asymptotic Ruelle algebraRaϕ is deûned

as the groupoidC∗-algebrasC∗(Ga
ϕ⋊Z) of the étale groupoidGa

ϕ⋊Z. _e algebrawas
written Ra in Putnam’s paper [25]. In this paper, we denote it by Raϕ . As in [25, 29],
the groupoid Ga

ϕ ⋊ Z is the semidirect product of the groupoid Ga
ϕ by the integer

groupZ, one knows that the algebraRaϕ isnaturally isomorphic to the crossed product
C∗-algebra C∗(Ga

ϕ) ⋊Z of the groupoid C∗-algebra C∗(Ga
ϕ) by Z.
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In the construction of the groupoid C∗-algebra C∗(Ga
ϕ ⋊ Z), we ûrst deûne the

unitary group Uϕ
t for t ∈ T = R/Z on l 2(Ga

ϕ ⋊Z) by setting

(5.1) [Uϕ
t ξ](x , n, z) = exp (2π

√
−1nt)ξ(x , n, z)

for ξ ∈ l 2(Ga
ϕ ⋊ Z), (x , n, z) ∈ Ga

ϕ ⋊ Z. _e automorphisms Ad(Uϕ
t ), t ∈ T on

B(l 2(Ga
ϕ ⋊ Z)) leave Raϕ globally invariant, and yield an action of T on Raϕ . Let us

denote by ρϕ
t the action Ad(Uϕ

t ), t ∈ T on Raϕ . It is direct to see that the action is
exactly corresponds to the dual action of the crossed product C∗(Ga

ϕ) ⋊Z.
A continuous function f ∶ Ga

ϕ ⋊Z→ Z is called a continuous homomorphism if it
satisûes

f (γ1γ2) = f (γ1) + f (γ2) for γ1 , γ2 ∈ Ga
ϕ ⋊Z.

It deûnes a one-parameter unitary group Ut( f ), t ∈ T on l 2(Ga
ϕ ⋊Z) by setting

[Ut( f )ξ](x , n, z) = exp (2π
√
−1 f (x , n, z)t)ξ(x , n, z)

for ξ ∈ l 2(Ga
ϕ ⋊ Z), (x , n, z) ∈ Ga

ϕ ⋊ Z. In particular, for the continuous homomor-
phism dϕ(x , n, z) = n, we have Ut(dϕ) = Uϕ

t by (5.1).
Now suppose that (X , ϕ) ∼

ACOE
(Y ,ψ). Let φh ∶ Ga

ϕ ⋊ Z → Ga
ψ ⋊ Z be the isomor-

phism of the étale groupoids and let h ∶ X → Y be the homeomorphism that gives
rise to the asymptotic continuous orbit equivalence between them. We deûne two
unitaries

Vh ∶ l 2(Ga
ψ ⋊Z)Ð→ l 2(Ga

ϕ ⋊Z) and Vh−1 ∶ l 2(Ga
ϕ ⋊Z)Ð→ l 2(Ga

ψ ⋊Z),

by setting

[Vhζ](x , n, z) = ζ(φh(x , n, z)) , ζ ∈ l 2(Ga
ψ ⋊Z), (x , n, z) ∈ Ga

ϕ ⋊Z,(5.2)

[Vh−1 ξ](y,m,w) = ξ(φh−1(y,m,w)) , ξ ∈ l 2(Ga
ϕ ⋊Z), (y,m,w) ∈ Ga

ψ ⋊Z.

Since the unit space (Ga
ϕ ⋊ Z)○ is identiûed with the original space X through the

correspondence (x , 0, x) ∈ (Ga
ϕ ⋊ Z)○ → x ∈ X and (Ga

ϕ ⋊ Z)○ is clopen in Ga
ϕ ⋊ Z,

we regard C(X) as a subalgebra ofRaϕ . Similarly, C(Y) is regarded as a subalgebra of
Raψ .

Proposition 5.6 Suppose that (X , ϕ) ∼
ACOE

(Y ,ψ), and keep the above notation. Let
φh ∶ Ga

ϕ⋊Z→ Ga
ψ⋊Z be the isomorphismof the étale groupoids giving rise to (X , ϕ) ∼

ACOE

(Y ,ψ). Let f ∶ Ga
ϕ⋊Z→ Z and g ∶ Ga

ψ⋊Z→ Z be continuous homomorphisms satisfying
f = g ○ φh . _en there exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such that
Φ(C(X)) = C(Y) and

(5.3) Φ ○Ad (Ut( f )) = Ad (Ut(g)) ○Φ, for t ∈ T.

Proof We set Φ = Ad(Vh−1). It satisûes Φ(Cc(Ga
ϕ ⋊ Z)) = Cc(Ga

ψ ⋊ Z), and hence
Φ(Raϕ) = Raψ , and Φ(C(X)) = C(Y). For ζ ∈ l 2(Ga

ψ ⋊ Z), (y,m,w) ∈ Ga
ψ ⋊ Z and
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a ∈ Cc(Ga
ϕ ⋊Z), we have the following equalities:

[(Φ ○Ad(Ut( f )))(a)ζ](y,m,w)
= [Vh−1Ut( f )aUt( f )∗Vhζ](y,m,w)
= [Ut( f )aUt( f )∗Vhζ](φ−1

h (y,m,w))
= exp (2π

√
−1 f (φ−1

h (y,m,w))t)[a ∗ (Ut( f )∗Vhζ)](φ−1
h (y,m,w))

= exp (2π
√
−1 f (φ−1

h (y,m,w))t)

⋅ ( ∑
r(γ)=r(φ−1

h (y ,m ,w))
a(γ)(Ut( f )∗Vhζ)(γ−1φ−1

h (y,m,w)))

= exp (2π
√
−1 f (φ−1

h (y,m,w))t)

⋅ ( ∑
r(γ)=h−1(y)

a(γ) exp (−2π
√
−1 f (γ−1φ−1

h (y,m,w))t)

⋅ (Vhζ)(γ−1φ−1
h (y,m,w)))

= exp (2π
√
−1 f (φ−1

h (y,m,w))t)

⋅ ( ∑
r(γ)=h−1(y)

a(γ) exp ( − 2π
√
−1( f (γ−1) + f (φ−1

h (y,m,w)))t)

⋅ (Vhζ)(γ−1φ−1
h (y,m,w)))

= ∑
r(γ)=h−1(y)

a(γ) exp ( − 2π
√
−1 f (γ−1)t) ζ(φh(γ−1) ⋅ (y,m,w))

and

[(Ad(Ut(g)) ○Φ)(a)ζ](y,m,w)
= [Ut(g)Vh−1aVhUt(g)∗ζ](y,m,w)
= exp (2π

√
−1g(y,m,w)t)[Vh−1aVhUt(g)∗ζ](y,m,w)

= exp (2π
√
−1g(y,m,w)t)[aVhUt(g)∗ζ](φ−1

h (y,m,w))
= exp (2π

√
−1g(y,m,w)t)

⋅ ( ∑
r(γ)=r(φ−1

h (y ,m ,w))
a(γ)(VhUt(g)∗ζ)(γ−1φ−1

h (y,m,w)))

= exp (2π
√
−1g(y,m,w)t)

⋅ ( ∑
r(γ)=h−1(y)

a(γ)(Ut(g)∗ζ)(φh(γ−1φ−1
h (y,m,w))))

= exp (2π
√
−1g(y,m,w)t)

⋅ ( ∑
r(γ)=h−1(y)

a(γ) exp ( − 2π
√
−1g(φh(γ−1) ⋅ (y,m,w))t)

⋅ ζ(φh(γ−1) ⋅ (y,m,w)))
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= ∑
r(γ)=h−1(y)

a(γ) exp ( − 2π
√
−1g(φh(γ−1))t) ζ(φh(γ−1) ⋅ (y,m,w)) .

By assumption, we see that f (γ−1) = g(φh(γ−1)), so thatwe obtain Φ ○Ad(Ut( f )) =
Ad(Ut(g)) ○Φ.

We assume that (X , ϕ) ∼
ACOE

(Y ,ψ). Let h ∶ X → Y be a homeomorphism that
gives rise to the asymptotic continuous orbit equivalence between them. Take the
continuous functions c1 ∶ X → Z, c2 ∶ Y → Z and two-cocycle functions d1 ∶ Ga

ϕ →
Z, d2 ∶ Ga

ψ → Z satisfying Deûnition 3.2 of asymptotic continuous orbit equivalence.
We set two functions

cϕ(x , n, z) = cn1 (x) + d1(ϕn(x), z), (x , n, z) ∈ Ga
ϕ ⋊Z,(5.4)

cψ(y,m,w) = cm2 (y) + d2(ψm(y),w), (y,m,w) ∈ Ga
ψ ⋊Z.

_ey satisfy

cϕ(γ1γ2) = cϕ(γ1) + cϕ(γ2) for γ1 , γ2 ∈ Ga
ϕ ⋊Z,

cψ(γ′1γ′2) = cψ(γ′1) + cψ(γ′2) for γ′1 , γ′2 ∈ Ga
ψ ⋊Z,

and hence they are continuous homomorphisms satisfying

φh(x , n, z) = (h(x), cϕ(x , n, z), h(z)) , (x , n, z) ∈ Ga
ϕ ⋊Z,

φh−1(y,m,w) = (h−1(y), cψ(y,m,w), h−1(w)) , (y,m,w) ∈ Ga
ψ ⋊Z.

We note that the following identities hold:

dψ(φh(x , n, z)) = cϕ(x , n, z), dϕ(φ−1
h (y,m,w)) = cψ(y,m,w),(5.5)

cψ(φh(x , n, z)) = dϕ(x , n, z) = n, cϕ(φ−1
h (y,m,w)) = dψ(y,m,w) = m.

_eorem 5.7 Suppose that Smale spaces (X , ϕ) and (Y ,ψ) are irreducible. _en the
following assertions are equivalent:
(i) (X , ϕ) and (Y ,ψ) are asymptotically continuous orbit equivalent.
(ii) _ere exists an isomorphism Raϕ → Raψ of C∗-algebras such that Φ(C(X)) =

C(Y) and

Φ ○ ρϕ
t = Ad(Ut(cψ)) ○Φ, Φ ○Ad(Ut(cϕ)) = ρψ

t ○Φ for t ∈ T

for some continuous homomorphisms cϕ ∶ Ga
ϕ ⋊Z→ Z and cψ ∶ Ga

ψ ⋊Z→ Z.

Proof (i)⇒ (ii): Take f = dϕ , g = cψ in equality (5.3). We then have Ad(Ut(dϕ)) =
ρϕ
t and cψ ○ φh = dϕ by (5.5). Hence by (5.3), we obtain

(5.6) Φ ○ ρϕ
t = Ad(Ut(cψ)) ○Φ, t ∈ T.

Take f = cϕ , g = dψ in equality (5.3). We then have Ad(Ut(dψ)) = ρψ
t and cϕ ○

(φh)−1 = dψ by (5.5). Hence by (5.3), we obtain

(5.7) Φ ○Ad(Ut(cϕ)) = ρψ
t ○Φ, t ∈ T.

1269

https://doi.org/10.4153/CJM-2018-012-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-012-x


K. Matsumoto

(ii)⇒ (i): Since the Smale spaces (X , ϕ) and (Y ,ψ) are both asymptotically es-
sentially free, the étale groupoids Ga

ϕ ⋊ Z and Ga
ψ ⋊ Z are both essentially princi-

pal by Lemma 5.3. By Renault [31, Proposition 4.11], an isomorphism Raϕ → Raψ of
C∗-algebras such that Φ(C(X)) = C(Y) yields an isomorphism of the underlying
étale groupoids Ga

ϕ ⋊ Z and Ga
ψ ⋊ Z. Hence by _eorem 3.4, we see the implication

(ii)⇒ (i).

Remark 5.8 Similar discussions to _eorem 5.7 for topological Markov shi�s with
continuous orbit equivalence are seen in several papers (cf. [5,6, 14–17,21], etc. ).

6 Asymptotic Conjugacy

In this section, we will introduce a notion of asymptotic conjugacy between Smale
spaces and describe the asymptotic conjugacy in terms of the Ruelle algebras with its
dual actions. Smale spaces (X , ϕ) in this section are assumed to be irreducible and
the space X to be inûnite.

Deûnition 6.1 Smale spaces (X , ϕ) and (Y ,ψ) are said to be asymptotically con-
jugate if they are asymptotically continuously orbit equivalent such that we can take
their cocycle functions such as c1 ≡ 1, c2 ≡ 1 and d1 ≡ 0, d2 ≡ 0 in Deûnition 3.2.

In this situation, we write (X , ϕ)≅
a
(Y ,ψ). Namely, we have (X , ϕ) and (Y ,ψ)

are said to be asymptotically conjugate if and only if there exists a homeomorphism
h ∶ X → Y that satisûes the following four conditions:

(a) _ere exists a continuous function k1,n ∶ X → Z+ for each n ∈ Z such that

(ψk1,n(x)+n(h(x)),ψk1,n(x)(h(ϕn(x)))) ∈ Gs ,0
ψ ,

(ψ−k1,n(x)+n(h(x)),ψ−k1,n(x)(h(ϕn(x)))) ∈ Gu ,0
ψ .

(b) _ere exists a continuous function k2,n ∶ Y → Z+ for each n ∈ Z such that

(ϕk2,n(y)+n(h−1(y)), ϕk2,n(y)(h−1(ψn(y)))) ∈ Gs ,0
ϕ ,

(ϕ−k2,n(y)+n(h−1(y)), ϕ−k2,n(y)(h−1(ψn(y)))) ∈ Gu ,0
ϕ .

(c) _ere exists a continuous function m1 ∶ Ga
ϕ → Z+ such that

(ψm1(x ,z)(h(x)),ψm1(x ,z)(h(z))) ∈ Gs ,0
ψ for (x , z) ∈ Ga

ϕ ,

(ψ−m1(x ,z)(h(x)),ψ−m1(x ,z)(h(z))) ∈ Gu ,0
ψ for (x , z) ∈ Ga

ϕ .

(d) _ere exists a continuous function m2 ∶ Ga
ψ → Z+ such that

(ϕm2(y ,w)(h−1(y)), ϕm2(y ,w)(h−1(w))) ∈ Gs ,0
ϕ for (y,w) ∈ Ga

ψ ,

(ϕ−m2(y ,w)(h−1(y)), ϕ−m2(y ,w)(h−1(w))) ∈ Gu ,0
ϕ for (y,w) ∈ Ga

ψ .

Recall that theRuelle algebraRaϕ is deûned as the groupoid C∗-algebra C∗(Ga
ϕ⋊Z) of

the étale groupoidGa
ϕ⋊Z. It is naturally isomorphic to the crossed product C∗(Ga

ϕ)⋊
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Z of the C∗-algebra C∗(Ga
ϕ) by the automorphism ϕ∗ on C∗(Ga

ϕ) induced by the
formula

ϕ∗( f )(x , z) = f (ϕ(x), ϕ(z)) for f ∈ Cc(Ga
ϕ), (x , z) ∈ Ga

ϕ .

Deûne the unitary Uϕ on l 2(Ga
ϕ ⋊Z) by setting

(6.1) (Uϕ ξ)(x , n, z) = ξ(ϕ(x), n − 1, z) for ξ ∈ l 2(Ga
ϕ ⋊Z), (x , n, z) ∈ Ga

ϕ ⋊Z.

It is direct to see that

Uϕ fU∗

ϕ = ϕ∗( f ) for f ∈ Cc(Ga
ϕ),

where

f (x ,m, z) =
⎧⎪⎪⎨⎪⎪⎩

f (x , z) if m = 0,
0 otherwise,

for (x , z) ∈ Ga
ϕ .

Now we assume that (X , ϕ) is irreducible, so that the C∗-algebra Raϕ is simple
by Proposition 5.4. Hence we know that Raϕ is isomorphic to the C∗-algebra
C∗(C∗(Ga

ϕ),Uϕ) generated by the its subalgebra C∗(Ga
ϕ) and the unitary Uϕ . _e

following lemma follows directly from J. Renault’s result [31, Proposition 4.11].

Lemma 6.2 Let (X , ϕ) and (Y ,ψ) be irreducible Smale spaces. _e following asser-
tions are equivalent:
(i) _ere exists an isomorphism φ ∶ Ga

ϕ ⋊ Z → Ga
ψ ⋊ Z of étale groupoids such that

φ(Ga
ϕ) = Ga

ψ and φ(Ga ,0
ϕ ) = Ga ,0

ψ ;
(ii) there exists an isomorphismΦ ∶ Raϕ → Raψ of C∗-algebras such thatΦ(C∗(Ga

ϕ)) =
C∗(Ga

ψ) and Φ(C(X)) = C(Y).

Proof By Lemma 2.5, the spaces Ga ,0
ϕ ,Ga ,0

ψ are identiûed with X ,Y respectively as
topological spaces. _ey are also identiûedwith the unit spaces (Ga

ϕ⋊Z)○ , (Ga
ψ⋊Z)○ ,

respectively. Since (X , ϕ) and (Y ,ψ) are irreducible and hence asymptotically essen-
tially free, the étale groupoids Ga

ϕ ⋊ Z and Ga
ψ ⋊ Z are both essentially principal by

Lemma 5.3. _e implication (i)⇒ (ii) is direct. By Renault [31, Proposition 4.11], an
isomorphismRaϕ → Raψ of C∗-algebras such that Φ(C(X)) = C(Y) yields an isomor-
phism φ of the underlying étale groupoids Ga

ϕ ⋊Z andGa
ψ ⋊Z. By the construction of

the isomorphism φ of the étale groupoids, we see that φ(Ga
ϕ) = Ga

ψ by the additional
condition Φ(C∗(Ga

ϕ)) = C∗(Ga
ψ), thus proving the implication (ii)⇒ (i).

Proposition 6.3 Let (X , ϕ) and (Y ,ψ) be irreducible Smale spaces. Suppose that
there exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such that Φ(C(X)) = C(Y)
and

Φ ○ ρϕ
t = ρψ

t ○Φ, t ∈ T.
_en there exists a homeomorphism h ∶ X → Y that gives rise to an asymptotic contin-
uous orbit equivalence between (X , ϕ) and (Y ,ψ) such that its cocycle functions satisfy

c1 ≡ 1, c2 ≡ 1, d1 ≡ 0, d2 ≡ 0.

Namely, (X , ϕ) and (Y ,ψ) are asymptotically conjugate.
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Proof Suppose that there exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such
that Φ(C(X)) = C(Y) and Φ ○ ρϕ

t = ρψ
t ○ Φ, t ∈ T. We will ûrst show that d1 ≡ 0,

d2 ≡ 0. Since the ûxed point algebra (Raϕ)
ρϕ

of Raϕ under ρϕ is canonically isomor-
phic to the groupoid C∗-subalgebra C∗(Ga

ϕ), the isomorphism Φ ∶ Raϕ → Raψ satisûes
Φ(C∗(Ga

ϕ)) = C∗(Ga
ψ). By Lemma 6.2, we then ûnd a homeomorphism h ∶ X → Y

and a groupoid isomorphism φh ∶ Ga
ϕ ⋊Z→ Ga

ψ ⋊Z such that φh(Ga
ϕ) = Ga

ψ , φh ∣Ga ,0
ϕ

=
h and Φ( f ) = f ○ h−1 for f ∈ C(X). For (x , z) ∈ Ga

ϕ , we have

φh(x , 0, z) = (h(x), cϕ(x , 0, z), h(z)) = (h(x), d1(x , z), h(z)) .

As φh(x , 0, z) ∈ Ga
ψ , we know that d1(x , z) = 0, and d2(y,w) = 0 for (y,w) ∈ Ga

ψ .
We will next show that c1 ≡ 1, c2 ≡ 1. Since the isomorphism Φ ∶ Raϕ → Raψ satisûes

Φ(C(X)) = C(Y), the groupoid isomorphism φh ∶ Ga
ϕ ⋊ Z → Ga

ψ ⋊ Z with home-
omorphism h ∶ X → Y yields an asymptotic continuous orbit equivalence between
them. _ey also satisfy the equalities

φh(x , n, z) = (h(x), cϕ(x , n, z), h(z)) , (x , n, z) ∈ Ga
ϕ ⋊Z,(6.2)

φh−1(y,m,w) = (h−1(y), cψ(y,m,w), h−1(w)) , (y,m,w) ∈ Ga
ψ ⋊Z.

Let Vh be the unitary deûned in (5.2). As in the proof of Proposition 5.6, by putting
Φh = Ad(Vh−1), we have an isomorphism Φh ∶ Raϕ → Raψ such that Φh(C(X)) =
C(Y) and

Φh ○ ρϕ
t = Ad(Ut(cψ)) ○Φh , Φh ○Ad(Ut(cϕ)) = ρψ

t ○Φh .

Let Uϕ be the unitary deûned in (6.1), which corresponds to the implementing uni-
tary of the positive generator of the group representation of Z in the crossed product
C∗(Ga

ϕ) ⋊ Z. It satisûes the equality Uϕ fU∗

ϕ = f ○ ϕ for f ∈ C(X). For f ∈ C(X), as
Φ( f ) = Φh( f ), we see that

Φ(Uϕ)Φh( f )Φ(U∗

ϕ) = Φ( f ○ ϕ) = Φh( f ○ ϕ) = Φh(Uϕ)Φh( f )Φh(U∗

ϕ),

so that
Φ−1

h (Φ(Uϕ)) fΦ−1
h (Φ(U∗

ϕ)) = Uϕ fU∗

ϕ .

Hence, we have

U∗

ϕΦ
−1
h (Φ(Uϕ)) f = fU∗

ϕΦ
−1
h (Φ(Uϕ)) for all f ∈ C(X).

Since (X , ϕ) is irreducible and hence asymptotically essentially free, the groupoid
Ga

ϕ ⋊ Z is essentially principal by Lemma 5.3. By [30, Proposition 4.7] or [31, Propo-
sition 4.2], C(X) = C((Ga

ϕ ⋊Z)○) is amaximal abelian C∗-subalgebra ofRaϕ . Hence,
there exists a unitary f0 ∈ C(X) such that U∗

ϕΦ
−1
h (Φ(Uϕ)) = f0, so that

(6.3) Φ(Uϕ) = Φh(Uϕ f0).

Since Φ ○ ρϕ
t = ρψ

t ○ Φ and Φh ○ Ad(Ut(cϕ)) = ρψ
t ○ Φh , we get the following by

equality (6.3):

(6.4) Φ ○ ρϕ
t (Uϕ) = (Φh ○Ad(Ut(cϕ)))(Uϕ f0).
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As ρϕ
t (Uϕ) = exp(2π

√
−1t)Uϕ , the equality (6.4) becomes

(6.5) exp (2π
√
−1t)Φ(Uϕ) = Φh(Ut(cϕ)Uϕ f0Ut(cϕ)∗) .

As f0 ∈ C(X) and Ut(cϕ)∗ = Ut(−cϕ), we have the following for ξ ∈ l 2(Ga
ϕ ⋊Z) and

(x , n, z) ∈ Ga
ϕ ⋊Z:

[Ut(−cϕ) f0ξ](x , n, z) = exp (2π
√
−1(−cϕ(x , n, z))t)[ f0ξ](x , n, z)

= f0(x) exp (2π
√
−1(−cϕ(x , n, z))t) ξ(x , n, z)

= [ f0(x)Ut(−cϕ)ξ](x , n, z),
so that Ut(cϕ)∗ f0 = f0Ut(cϕ)∗. Hence, equation (6.5) implies

exp (2π
√
−1t)Φ(Uϕ) = Φh(Ut(cϕ)UϕUt(cϕ)∗ f0) ,

which becomes by (6.3),

exp (2π
√
−1t)Φh(Uϕ) = Φh(Ut(cϕ)UϕUt(cϕ)∗) ,

so that

(6.6) exp (2π
√
−1t)Uϕ = Ut(cϕ)UϕUt(cϕ)∗ .

For ξ ∈ l 2(Ga
ϕ ⋊Z) and (x , n, z) ∈ Ga

ϕ ⋊Z, we have the equalities

[Ut(cϕ)UϕUt(cϕ)∗ξ](x , n, z)
= exp (2π

√
−1cϕ(x , n, z)t)[UϕUt(−cϕ)ξ](x , n, z)

= exp (2π
√
−1cϕ(x , n, z)t)[Ut(−cϕ)ξ](ϕ(x), n − 1, z)

= exp (2π
√
−1(cϕ(x , n, z) − cϕ(ϕ(x), n − 1, z))t) ξ(ϕ(x), n − 1, z).

On the other hand,

[exp (2π
√
−1t)Uϕ ξ](x , n, z) = exp (2π

√
−1t)ξ(ϕ(x), n − 1, z).

By (6.6), we have
cϕ(x , n, z) − cϕ(ϕ(x), n − 1, z) = 1.

By (5.4), we see that

cϕ(x , n, z) − cϕ(ϕ(x), n − 1, z)
= { cn1 (x) + d1(ϕn(x), z)} − { cn−1

1 (ϕ(x)) + d1(ϕn−1(ϕ(x)), z)}
= c1(x).

_erefore, we have c1(x) = 1 for all x ∈ X, and c2(y) = 1 for all y ∈ Y similarly.

Recall that dϕ(x , n, z) = n for (x , n, z) ∈ Ga
ϕ ⋊ Z deûnes a continuous homomor-

phism dϕ ∶ Ga
ϕ ⋊Z→ Z.

_eorem 6.4 Let (X , ϕ) and (Y ,ψ) be irreducible Smale spaces. _en the following
assertions are equivalent:
(i) (X , ϕ) and (Y ,ψ) are asymptotically conjugate: (X , ϕ) ≅

a
(Y ,ψ).
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(ii) _ere exists an isomorphism φ ∶ Ga
ϕ ⋊ Z → Ga

ψ ⋊ Z of étale groupoids such that
dψ ○ φ = dϕ .

(iii) _ere exists an isomorphism Φ ∶ Raϕ → Raψ of C∗-algebras such that

Φ(C(X)) = C(Y) and Φ ○ ρϕ
t = ρψ

t ○Φ, t ∈ T.

Proof _e implication (iii)⇒ (i) follows fromProposition 6.3. In theproofofPropo-
sition 6.3, we showed that there exists an isomorphism of groupoids φh ∶ Ga

ϕ ⋊ Z →
Ga

ψ ⋊Z such that c1 ≡ 1, c2 ≡ 1 and d1 ≡ 0, d2 ≡ 0. Hence we have

cϕ(x , n, z) = cn1 (x) + d1(ϕn(x), z) = n for (x , n, z) ∈ Ga
ϕ ⋊Z

and cψ(y,m,w) = m, similarly. _is implies that cϕ = dϕ and cψ = dψ . By (6.2), we
obtain dψ ○ φ = dϕ . _is argument shows that the implications (iii)⇒ (ii)⇒ (i) hold.

We will show the implication (i) ⇒ (iii). Suppose that (X , ϕ) and (Y ,ψ) are
asymptotically conjugate. Take a homeomorphism h ∶ X → Y , which gives rise to the
asymptotic conjugacy. In the proof of (i)⇒ (ii) of_eorem 5.7,we know that cϕ = dϕ
and cψ = dψ , because cϕ(x , n, z) = n for (x , n, z) ∈ Ga

ϕ ⋊ Z and cψ(y,m,w) = m for
(y,m,w) ∈ Ga

ψ ⋊ Z, similarly, which come from the conditions c1 ≡ 1, c2 ≡ 1, d1 ≡ 0,
d2 ≡ 0. Hence, we have

Ad (Ut(cϕ)) = Ad (Ut(dϕ)) = ρϕ
t and Ad (Ut(cψ)) = Ad (Ut(dψ)) = ρψ

t .

We thus obtain the equality Φh ○ ρϕ
t = ρψ

t ○Φh by (5.6) or (5.7).

7 Extended Ruelle Algebras Rs,u
ϕ

In this section, we will introduce an extended Ruelle algebra Rs ,u
ϕ from a certain

amenable étale groupoid of a Smale space (X , ϕ). _e introduced C∗-algebra con-
tains the asymptotic Ruelle algebra Raϕ as a ûxed point subalgebra under some circle
action. _e extended Ruelle algebras will be useful in the following sections to inves-
tigate the asymptotic Ruelle algebra Raϕ for topological Markov shi�s from the view
points of Cuntz–Krieger algebras.

We ûrst introduce the following groupoid Gs ,u
ϕ ⋊Z2 for a Smale space (X , ϕ) that

will be proved to be étale and amenable:

Gs ,u
ϕ ⋊Z2 = {(x , p, q, y) ∈ X ×Z ×Z × X ∣ (ϕp(x), y) ∈ Gs

ϕ , (ϕq(x), y) ∈ Gu
ϕ}.

_e following lemma is straightforward.

Lemma 7.1 For (x , p, q, y), (x′ , p′ , q′ , y′) ∈ Gs ,u
ϕ ⋊Z2, we have

(i) (x , p + p′ , q + q′ , y′) ∈ Gs ,u
ϕ ⋊Z2 if y = x′;

(ii) (y,−p,−q, x) ∈ Gs ,u
ϕ ⋊Z2.
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Two elements (x , p, q, y), (x′ , p′ , q′ , y′) ∈ Gs ,u
ϕ ⋊Z2 are composable if and only if

y = x′. _emultiplication and the inverse in Gs ,u
ϕ ⋊Z2 are given by

(x , p, q, y) ⋅ (x′ , p′ , q′ , y′) = (x , p + p′ , q + q′ , y′) if y = x′ ,
(x , p, q, y)−1 = (y,−p,−q, x).

We write the unit space (Gs ,u
ϕ ⋊Z2)○ of Gs ,u

ϕ ⋊Z2 as

(Gs ,u
ϕ ⋊Z2)○ = {(x , 0, 0, x) ∣ x ∈ X} ,

which is identiûed with X. Deûne the rangemap, sourcemap

r, s ∶ Gs ,u
ϕ ⋊Z2 Ð→ (Gs ,u

ϕ ⋊Z2)○

by
r(x , p, q, y) = (x , 0, 0, x), s(x , p, q, y) = (y, 0, 0, y).

For p, q ∈ Z and n = 0, 1, . . . , we set

Gs ,u ,n
ϕ (p, q) = {(x , y) ∈ X × X ∣ (ϕp(x), y) ∈ Gs ,n

ϕ , (ϕq(x), y) ∈ Gu ,n
ϕ } ,

Gs ,u
ϕ (p, q) = {(x , y) ∈ X × X ∣ (ϕp(x), y) ∈ Gs

ϕ , (ϕq(x), y) ∈ Gu
ϕ} .

For each n, the set Gs ,u ,n
ϕ (p, q) is endowed with the relative topology from X × X.

Since G∗,n
ϕ ⊂ G∗,n+1

ϕ for ∗ = s, u and n = 0, 1, . . . , we have

(7.1) Gs ,u ,n
ϕ (p, q) ⊂ Gs ,u ,n+1

ϕ (p, q) and Gs ,u
ϕ (p, q) =

∞

⋃
n=0

Gs ,u ,n
ϕ (p, q).

We can endow Gs ,u
ϕ (p, q) with inductive limit topology from the inductive system

(7.1) of the topological spaces {Gs ,u ,n
ϕ (p, q)}n∈Z+ . Since we can identify Gs ,u

ϕ ⋊ Z2

with the disjoint union ⊔(p,q)∈Z2Gs ,u
ϕ (p, q), the groupoid Gs ,u

ϕ ⋊ Z2 has the topology
deûned from the topology of the disjoint union ⊔(p,q)∈Z2Gs ,u

ϕ (p, q). We then have the
following proposition.

Proposition 7.2 Gs ,u
ϕ ⋊Z2 is an étale groupoid.

Proof We will show that the range map r ∶ (x , p, q, y) ∈ Gs ,u
ϕ ⋊ Z2 → (x , 0, 0, x) ∈

Gs ,u
ϕ ⋊Z2 is a local homeomorphism. Take an arbitrary point (x , p, q, y) ∈ Gs ,u

ϕ ⋊Z2 .
Since Gs ,u

ϕ ⋊Z2 = ⊔(p,q)∈Z2Gs ,u
ϕ (p, q) and Gs ,u

ϕ (p, q) = ⋃∞n=0 Gs ,u ,n
ϕ (p, q), we assume

that (x , y) belongs to Gs ,u ,N
ϕ (p, q) for some N ∈ Z+, so that

(ϕp(x), y) ∈ Gs ,N
ϕ , (ϕq(x), y) ∈ Gu ,N

ϕ

which imply that

(7.2) (ϕN+p(x), ϕN(y)) ∈ Gs ,0
ϕ , (ϕ−(N−q)(x), ϕ−N(y)) ∈ Gu ,0

ϕ

and

d(ϕN+p+n(x), ϕN+n(y)) < є0 , d(ϕ−(N−q+n)(x), ϕ−(N+n)(y)) < є0
for all n = 0, 1, 2, . . . . Take z ∈ X such that d(ϕN(y), ϕN+p(z)) < є0 and d(x , z) is
small enough so that (ϕN(y), ϕN+p(z)) ∈ ∆є0 . Hence, the point [ϕN(y), ϕN+p(z)]
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deûnes an element of X, andwe have an element ϕ−N([ϕN(y), ϕN+p(z)]) in X. Since
we can assume that [ϕN(y), ϕN+p(z)] ∈ Xu(ϕN(y), є0), we have

d( y, ϕ−N([ϕN(y), ϕN+p(z)])) = d(ϕ−N(ϕN(y)), ϕ−N([ϕN(y), ϕN+p(z)]))
< λN

0 d(ϕN(y), [ϕN(y), ϕN+p(z)])
< λN

0 є0 .

Similarly we have an element

[ϕ−(N−q)(z), ϕ−N(y)] ∈ X and ϕN([ϕ−(N−q)(z), ϕ−N(y)]) ∈ X

such that
d( y, ϕN([ϕ−(N−q)(z), ϕ−N(y)])) < λN

0 є0 .

We can also assume that λN
0 < 1

2 by taking N large enough, so that

d(ϕN([ϕ−(N−q)(z), ϕ−N(y)]), ϕ−N([ϕN(y), ϕN+p(z)]))
<d( y, ϕN([ϕ−(N−q)(z), ϕ−N(y)])) + d( y, ϕ−N([ϕN(y), ϕN+p(z)]))
<2λN

0 є0 < є0 .

Hence we have

(ϕN([ϕ−(N−q)(z), ϕ−N(y)]) , ϕ−N([ϕN(y), ϕN+p(z)])) ∈ ∆є0 ,

so that the element

(7.3) γ(z) ∶= [ϕN([ϕ−(N−q)(z), ϕ−N(y)]) , ϕ−N([ϕN(y), ϕN+p(z)])]

is deûned in X. _emap γ is deûned on a small neighborhood of x and gives rise to
a continuous map on the neighborhood. _e conditions in (7.2) imply

[ϕN(y), ϕN+p(x)] = ϕN(y), [ϕ−(N−q)(x), ϕ−N(y)] = ϕ−N(y).

Hence, for z = x in (7.3), we have

γ(x) = [ϕN([ϕ−(N−q)(x), ϕ−N(y)]) , ϕ−N([ϕN(y), ϕN+p(x)])]
= [ϕN(ϕ−N(y)) , ϕ−N(ϕN(y))]
= [y, y] = y.

We will next show that γ is injective. Suppose that γ(z) = γ(z′) for z, z′ in a small
neighborhood of x. Since

ϕ−N(γ(z)) = [ [ϕ−(N−q)(z), ϕ−N(y)], ϕ−2N([ϕN(y), ϕN+p(z)])](7.4)

= [ϕ−(N−q)(z), ϕ−2N([ϕN(y), ϕN+p(z)])]

and similarly

ϕ−N(γ(z′)) = [ϕ−(N−q)(z′), ϕ−2N([ϕN(y), ϕN+p(z′)])] .(7.5)
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We then have by (7.4), (7.5)

ϕ−(N−q)(z) = [ [ϕ−(N−q)(z), ϕ−2N([ϕN(y), ϕN+p(z)])], ϕ−(N−q)(z)]
= [ϕ−N(γ(z)), ϕ−(N−q)(z)]
= [ϕ−N(γ(z′)), ϕ−(N−q)(z)]
= [ [ϕ−(N−q)(z′), ϕ−2N([ϕN(y), ϕN+p(z′)])], ϕ−(N−q)(z)]
= [ϕ−(N−q)(z′), ϕ−(N−q)(z)],

so that

(7.6) ϕ−(N−q)(z) = [ϕ−(N−q)(z′), ϕ−(N−q)(z)] .
Since z, z′ are in a small neighborhood of x, we can assume that

(7.7) d(ϕ−(N−q)(z′), ϕ−(N−q)(z)) < є0 .

By (7.6) and (7.7), we know

ϕ−(N−q)(z′) ∈ Xu(ϕ−(N−q)(z), є0) ,
so that

(7.8) d(ϕ−(N−q+n)(z′), ϕ−(N−q+n)(z)) < є0 for all n = 0, 1, 2, . . . .

As z, z′ are in a small neighborhood of x, we can assume that

d(ϕ−n(x), ϕ−n(z)) < є0
2
, d(ϕ−n(x), ϕ−n(z′)) < є0

2
for all n = 0, 1, . . . ,N − q.

Hence, we have

(7.9) d(ϕ−n(z′), ϕ−n(z)) < є0 for all n = 0, 1, . . .N − q.

By (7.8) and (7.9), we obtain

d(ϕ−n(z′), ϕ−n(z)) < є0 for all n = 0, 1, 2, . . .

and hence z′ ∈ Xu(z, є0).
We similarly observe that

d(ϕn(z′), ϕn(z)) < є0 for all n = 0, 1, 2, . . .

and hence z′ ∈ X s(z, є0) , so that

z′ ∈ Xu(z, є0) ∩ X s(z, є0)
and z′ = [z, z] = z. _is shows that γ is injective on a small neighborhood of x and
locally a homeomorphism by the deûnition of γ. As a consequence, the groupoid
Gs ,u

ϕ ⋊Z2 is étale.

Lemma 7.3 _e étale groupoid Gs ,u
ϕ ⋊Z2 is amenable.

Proof Consider the groupoid homomorphism η ∶ (x , p, q, y) ∈ Gs ,u
ϕ ⋊Z2 → (p, q) ∈

Z2. _e kernel is Gs
ϕ ∩ Gu

ϕ = Ga
ϕ , which is amenable by Lemma 5.5. Hence by [1,

Proposition 5.1.2], we conclude that Gs ,u
ϕ ⋊Z2 is amenable.
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Deûnition 7.4 A Smale space (X , ϕ) is said to be (s,u)-essentially free if the interior
of the set {x ∈ X ∣ (ϕp(x), x) ∈ Gs

ϕ , (ϕq(x), x) ∈ Gu
ϕ} is empty for each (p, q) ∈ Z×Z

with (p, q) ≠ (0, 0).

_e following lemma, which was kindly suggested by the referee, is proved in a
similar way to Lemma 5.2

Lemma 7.5 If (X , ϕ) is irreducible and X is inûnite, then (X , ϕ) is (s,u)-essentially
free.

Proof Suppose that the set

int{x ∈ X ∣ (ϕp(x), x) ∈ Gs
ϕ , (ϕq(x), x) ∈ Gu

ϕ}
contains a non-empty open set U for a ûxed (p, q) ∈ Z × Z with (p, q) ≠ (0, 0). We
can assume that p ≠ 0. Since

int{x ∈ X ∣ (ϕp(x), x) ∈ Gs
ϕ , (ϕq(x), x) ∈ Gu

ϕ} ⊂ int{x ∈ X ∣ (ϕp(x), x) ∈ Gs
ϕ} ,

we have a non-empty open set U such that

U ⊂ int{x ∈ X ∣ (ϕp(x), x) ∈ Gs
ϕ}

for a ûxed p ≠ 0. By the same argument as the proof of Lemma 5.2, we have a contra-
diction, thus proving (X , ϕ) is (s,u)-essentially free.

Lemma 7.6 A Smale space (X , ϕ) is (s,u)-essentially free if and only if the étale
groupoid Gs ,u

ϕ ⋊Z2 is essentially principal.

Proof As we have

(Gs ,u
ϕ ⋊Z2)′

= ⋃
p,q∈Z

{(x , p, q, y) ∈ Gs ,u
ϕ ⋊Z2 ∣ x = y}

= ⋃
p,q∈Z

{(x , p, q, x) ∈ X ×Z ×Z × X ∣ (ϕp(x), x) ∈ Gs
ϕ , (ϕq(x), x) ∈ Gu

ϕ} ,

the interior int((Gs ,u
ϕ ⋊Z2)′) of Gs ,u

ϕ ⋊Z2 is

int ((Gs ,u
ϕ ⋊Z2)′) =

⋃
p,q∈Z

int ({(x , p, q, x) ∈ X ×Z ×Z × X ∣ (ϕp(x), x) ∈ Gs
ϕ , (ϕq(x), x) ∈ Gu

ϕ}) .

For p = q = 0, we see that

int ({(x , 0, 0, x) ∈ X ×Z ×Z × X ∣ (x , x) ∈ Gs
ϕ , (x , x) ∈ Gu

ϕ}) = (Gs ,u
ϕ ⋊Z2)○ = X .

Hence, int((Gs ,u
ϕ ⋊Z2)′) = (Gs ,u

ϕ ⋊Z2)○ if and only if the interior of

{(x , p, q, x) ∈ X ×Z ×Z × X ∣ (ϕp(x), x) ∈ Gs
ϕ , (ϕq(x), x) ∈ Gu

ϕ}
is empty for all p, q ∈ Z except p = q = 0. _is implies that (X , ϕ) is (s,u)-essentially
free if and only if Gs ,u

ϕ ⋊Z2 is essentially principal.
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Deûnition 7.7 _e groupoidC∗-algebraC∗(Gs ,u
ϕ ⋊Z2) of the étale amenable group-

oidGs ,u
ϕ ⋊Z2 for a Smale space (X , ϕ) is called the extended asymptotic Ruelle algebra

or simply the extended Ruelle algebra and written Rs ,u
ϕ .

Since Gs ,u
ϕ ⋊ Z2 is amenable, the C∗-algebra Rs ,u

ϕ is identiûed with the reduced
groupoid C∗-algebra C∗r (Gs ,u

ϕ ⋊Z2) on l 2(Gs ,u
ϕ ⋊Z2) in a canonical way.

Similarly to Proposition 5.4, we obtain the following.

Proposition 7.8 If a Smale space (X , ϕ) is irreducible and X is inûnite, then the
C∗-algebra Rs ,u

ϕ is simple.

We note that the above proposition also follows from [29, _eorem 1.4] through
Proposition 7.10, which will be shown later.

Let Uz1 ,z2 , (z1 , z2) ∈ T2 = {(z1 , z2) ∈ C × C ∣ ∣z i ∣ = 1} be an action of T2 to the
unitary group of B(l 2(Gs ,u

ϕ ⋊Z2)) deûned by

(Uz1 ,z2 ξ)(x , p, q, y) = zp
1 z

−q
2 ξ(x , p, q, y)

for ξ ∈ l 2(Gs ,u
ϕ ⋊Z2), (x , p, q, y) ∈ Gs ,u

ϕ ⋊Z2 . It is easy to see that the automorphisms
Ad(Uz1 ,z2) of B(l 2(Gs ,u

ϕ ⋊ Z2)) for (z1 , z2) ∈ T2 leave Rs ,u
ϕ globally invariant. _ey

give rise to an action ofT2 onRs ,u
ϕ , denoted by ρs ,u

ϕ . Let us denote by δϕ
z = ρs ,u

ϕ ,(z ,z) , z ∈
T the action ofT, called the diagonal action. Recall that the asymptotic Ruelle algebra
Raϕ is deûned by the groupoid C∗-algebra C∗(Ga

ϕ ⋊Z) of the étale groupoid Ga
ϕ ⋊ Z.

We then have the following theorem.

_eorem 7.9 Assume that a Smale space (X , ϕ) is irreducible and X is inûnite. _en
the ûxed point algebra (Rs ,u

ϕ )δϕ
of Rs ,u

ϕ under the diagonal action δϕ is isomorphic to
the asymptotic Ruelle algebra Raϕ .

Proof _e étale groupoid Ga
ϕ ⋊Z is identiûed with the subgroupoid

{(x , p, p, y) ∈ X ×Z ×Z × X ∣ (ϕp(x), y) ∈ Gs
ϕ , (ϕp(x), y) ∈ Gu

ϕ} ⊂ Gs ,u
ϕ ⋊Z2

ofGs ,u
ϕ ⋊Z2,which iswritten (Gs ,u

ϕ ⋊Z2)D . Since (Gs ,u
ϕ ⋊Z2)D is clopen inGs ,u

ϕ ⋊Z2,
we have a natural inclusion relationCc((Gs ,u

ϕ ⋊Z2)D) ⊂ Cc(Gs ,u
ϕ ⋊Z2) of the algebras.

For f ∈ Cc((Gs ,u
ϕ ⋊Z2)D), we put

Eϕ( f )(x , p, q, y) =
⎧⎪⎪⎨⎪⎪⎩

f (x , p, p, y) if p = q,
0 if p ≠ q.

_en Eϕ deûnes a continuous linear map from Cc(Gs ,u
ϕ ⋊ Z2) to Cc((Gs ,u

ϕ ⋊ Z2)D)
and extends to Rs ,u

ϕ by the formula

Eϕ( f ) = ∫
T
δϕ
z ( f )dz for f ∈ Rs ,u

ϕ ,

so thatwe have a conditional expectation fromRs ,u
ϕ ontoRaϕ . It is routine to check that

Eϕ(Rs ,u
ϕ ) is the ûxed point algebra (Rs ,u

ϕ )δϕ
ofRs ,u

ϕ under the diagonal action δϕ .
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_e author would like to thank the referee who kindly suggested the following
proposition.

Proposition 7.10 _e extended Ruelle algebra Rs ,u
ϕ is stably isomorphic to the tensor

product Rs
ϕ ⊗Ru

ϕ of the stable Ruelle algebra Rs
ϕ and the unstable Ruelle algebra Ru

ϕ .

Proof It is easy to see that the correspondence

(x , p, z) × (y, q,w) ∈ (Gs
ϕ ⋊Z) × (Gu

ϕ ⋊Z)Ð→
((x , z) × (y,w), (p, q)) ∈ (Gs

ϕ ×Gu
ϕ) ⋊Z2

yields an isomorphism of étale groupoids between (Gs
ϕ ⋊ Z) × (Gu

ϕ ⋊ Z) and
(Gs

ϕ ×Gu
ϕ) ⋊Z2 . Hence we have

Rs
ϕ ⊗Ru

ϕ = C∗((Gs
ϕ ⋊Z) × (Gu

ϕ ⋊Z)) ≅ C∗((Gs
ϕ ×Gu

ϕ) ⋊Z2) .

As in the proof of [25, _eorem 3.1], the diagonal ∆ = {((x , z) × (x , z), (p, q)) ∈
(Gs

ϕ×Gu
ϕ)⋊Z2} is an abstract transversal in the sense ofMuhly,Renault, andWilliams

[23]. Since the reduction of (Gs
ϕ ×Gu

ϕ)⋊Z2 to ∆ is clearly isomorphic to Gs ,u
ϕ ⋊Z2 as

étale groupoids, we see by [23,_eorem 2.8] that C∗(Gs ,u
ϕ ⋊Z2) is stably isomorphic

to C∗((Gs
ϕ ×Gu

ϕ)⋊Z2), so that the extended Ruelle algebraRs ,u
ϕ is stably isomorphic

to the tensor product Rs
ϕ ⊗Ru

ϕ .

8 Asymptotic Continuous Orbit Equivalence in Topological Markov
Shifts

In the ûrst part of this section, we will deal with topological Markov shi�s, which are
o�en called shi�s of ûnite type, as examples of Smale spaces. _ey have been studied
by Ruelle, Putnam and Putnam-Spielberg, etc. from the view point of Smale spaces.
_e following description follows from Putnam’s lecture note [26, Section 1].

Let A = [A(i , j)]Ni , j=1 be an N × N matrix with entries A(i , j) in {0, 1} for i , j =
1, . . . ,N such that none of its rows or columns is zero. We assume that N ≥ 2 and the
matrix A is irreducible and not any permutation matrix. Let us denote by XA the shi�
space of the two-sided topological Markov shi� (XA, σA), which is deûned by

XA = {(xn)n∈Z ∈ {1, . . . ,N}Z ∣ A(xn , xn+1) = 1 for all n ∈ Z}

with shi� transformation σA deûned by σA((xn)n∈Z) = (xn+1)n∈Z . We note that the
assumption that A is irreducible and not any permutationmatrix implies that the shi�
space XA is inûnite and hence homeomorphic to a Cantor discontinuum.

Take and ûx an arbitrary real number λ0 with 0 < λ0 < 1. _e space XA is endowed
with themetric d deûned by

d((xn)n∈Z , (yn)n∈Z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if (xn)n∈Z = (yn)n∈Z,
1 if x0 ≠ y0 ,
(λ0)k+1 if k = Max{∣n∣ ∣ x i = y i for all i; ∣i∣ ≤ n}.
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With thismetric d, the space XA is a compactHausdorò space such that the topologi-
cal dynamical system (XA, σA) is called the two-sided topological Markov shi� deûned
by A. For k ∈ Z+, we set

Bk(XA) = {(xn)k
n=1 ∈ {1, . . . ,N}k ∣ A(xn , xn+1) = 1, n = 1, . . . , k − 1}

and B∗(XA) = ⋃∞k=0 Bk(XA), where B0(XA) denotes the empty word ∅. Each mem-
ber of Bk(XA) is called an admissible word of length k.

We will view the topological Markov shi� as a Smale space in the following way.
Take є0 = 1, so that we have (x , y) ∈ ∆є0 if and only if x0 = y0. Hence, the bracket
[x , y] = ([x , y]n)n∈Z ∈ XA for (x , y) ∈ ∆є0 can be deûned by

[x , y]n =
⎧⎪⎪⎨⎪⎪⎩

xn if n ≤ 0,
yn if n ≥ 0.

Since x0 = y0, ([x , y]n)n∈Z deûnes an element of XA. We then have

X s
A(x , є0) = {y ∈ XA ∣ yn = xn for n = 0, 1, 2, . . .},

Xu
A(x , є0) = {y ∈ XA ∣ yn = xn for n = 0,−1,−2, . . .}.

As in Putnam’s lecture note [26, Section 1], the two-sided topological Markov shi�
(XA, σA) with themetric d becomes a Smale space for є0 = 1 and λ0 itself.
For n = 0, 1, 2, . . . , we write

Gs ,n
A = Gs ,n

σA , Gu ,n
A = Gu ,n

σA , Ga ,n
A = Ga ,n

σA .

Since

Gs ,0
A = {(x , y) ∈ XA × XA ∣ y i = x i for all i = 0, 1, 2, . . . } ,

Gu ,0
A = {(x , y) ∈ XA × XA ∣ y i = x i for all i = 0,−1,−2, . . . } ,

Ga ,0
A = Gs ,0

A ∩Gu ,0
A = {(x , y) ∈ XA × XA ∣ x = y} ,

we know for n = 0, 1, 2, . . . ,

Gs ,n
A = {(x , y) ∈ XA × XA ∣ y i = x i for all i = n, n + 1, n + 2, . . . } ,

Gu ,n
A = {(x , y) ∈ XA × XA ∣ y i = x i for all i = −n,−n − 1,−n − 2, . . . } ,

Ga ,n
A = Gs ,n

A ∩Gu ,n
A = {(x , y) ∈ XA × XA ∣ y i = x i for all ∣i∣ = n, n + 1, n + 2, . . . } .

All of them are given the relative topology of XA × XA. Each of them deûnes an
equivalence relation on XA. We set

Gs
A =

∞

⋃
n=0

Gs ,n
A , Gu

A =
∞

⋃
n=0

Gu ,n
A , Ga

A =
∞

⋃
n=0

Ga ,n
A ,

and they are endowedwith the inductive limit topology, respectively. Putnam studied
these three equivalence relations Gs

A, Gu
A, and Ga

A on XA by regarding them as topo-
logical groupoids. He studied the associated groupoidC∗-algebras C∗(Gs

A), C∗(Gu
A),

andC∗(Ga
A)which have been denoted by S(XA, σA),U(XA, σA), andA(XA, σA), re-

spectively. He pointed out that they are all stably AF-algebras. He investigated their
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semi-direct products as groupoids

Gs
A ⋊Z = {(x , n, y) ∈ XA ×Z × XA ∣ (σ n

A(x), y) ∈ Gs
A} ,

Gu
A ⋊Z = {(x , n, y) ∈ XA ×Z × XA ∣ (σ n

A(x), y) ∈ Gu
A} ,

Ga
A ⋊Z = {(x , n, y) ∈ XA ×Z × XA ∣ (σ n

A(x), y) ∈ Ga
A} .

Putnam has also deeply studied the associated groupoid C∗-algebras C∗(Gs
A ⋊ Z),

C∗(Gu
A ⋊ Z), and C∗(Ga

A ⋊ Z) which have been written Rs , Ru , and Ra , respectively
in his papers. In this paper, we denote them by Rs

A, R
u
A, and RaA, respectively, to

emphasize thematrix A. We note that the irreducibility of the Smale space (XA, σA)
corresponds to the irreducibility of thematrix A, and the condition that XA is inûnite
corresponds to the property that thematrix A is not any permutation matrix.

In the second part of this section, we study asymptotic continuous orbit equiva-
lence deûned for Smale spaces in Section 3 focusing on topological Markov shi�s.

Let (XA, σA) and (XB , σB) be topological Markov shi�s. We will regard them as
Smale spaces and consider conditions under which they become asymptotic contin-
uous orbit equivalence.

Lemma 8.1 Conditions (i) and (ii) in Remark 3.3 are equivalent to the following
conditions (i) and (ii), respectively.
(i) _ere exists a continuous function k1 ∶ XA → Z+ such that

(σ k1(x)+c1(x)
B (h(x)), σ k1(x)

B (h(σA(x)))) ∈ Gs ,0
B ,(8.1)

(σ−k1(x)+c1(x)
B (h(x)), σ−k1(x)

B (h(σA(x)))) ∈ Gu ,0
B .

(ii) _ere exists a continuous function k2 ∶ XB → Z+ such that

(σ k2(y)+c2(y)
A (h−1(y)) , σ k2(y)

A (h−1(σB(y)))) ∈ Gs ,0
A ,

(σ−k2(y)+c2(y)
A (h−1(y)) , σ−k2(y)

A (h−1(σB(y)))) ∈ Gu ,0
A .

Proof (i) We will prove that equality (8.1) implies (3.4) by putting k1,n(x) = kn
1 (x).

Suppose that there exists a continuous function k1 ∶ XA → Z+ satisfying equality (8.1).
Since

Gs ,0
B = {(x , y) ∈ XB × XB ∣ y i = x i for all i = 0, 1, 2, . . . } ,

Gs ,0
B is an equivalence relation in XB × XB . In equality (8.1), we have

σ k1(x)
B (h(σA(x))) ∈ XB(σ k1(x)+c1(x)

B (h(x)), є0) ,

so that by Lemma 2.3, for any m ∈ N,

(8.2) σm
B (σ

k1(x)
B (h(σA(x)))) ∈ XB(σm

B (σ
k1(x)+c1(x)
B (h(x))), є0) ,

and hence

(σm+k1(x)+c1(x)
B (h(x)), σm+k1(x)

B (h(σA(x)))) ∈ Gs ,0
B .
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Take m = k1(σA(x)) + c1(σA(x)) so that we have

(σ k1(σA(x))+c1(σA(x))+k1(x)+c1(x)
B (h(x)),

σ k1(σA(x))+c1(σA(x))+k1(x)
B (h(σA(x)))) ∈ Gs ,0

B ,

that is

(8.3) (σ k2
1 (x)+c

2
1 (x)

B (h(x)), σ c1(σA(x))+k2
1 (x)

B (h(σA(x)))) ∈ Gs ,0
B .

By replacing x with σA(x) in the equality (8.1) and (8.2), we have

(σ k1(σA(x))+c1(σA(x))
B (h(σA(x))) , σ k1(σA(x))

B (h(σ 2
A(x)))) ∈ Gs ,0

B ,

σm
B (σ k1(σA(x))

B (h(σ 2
A(x)))) ∈ XB(σm

B (σ k1(σA(x))+c1(σA(x))
B (h(σA(x)))) , є0) ,

so that

(σm+k1(σA(x))+c1(σA(x))
B (h(σA(x))) , σm+k1(σA(x))

B (h(σ 2
A(x)))) ∈ Gs ,0

B .

Take m = k1(x) so that we have

(σ k1(x)+k1(σA(x))+c1(σA(x))
B (h(σA(x))) , σ k1(x)+k1(σA(x))

B (h(σ 2
A(x)))) ∈ Gs ,0

B ,

that is

(8.4) (σ k2
1 (x)+c1(σA(x))
B (h(σA(x))) , σ k2

1 (x)
B (h(σ 2

A(x)))) ∈ Gs ,0
B .

By (8.3) and (8.4), we have

(σ k2
1 (x)+c

2
1 (x)

B (h(x)), σ k2
1 (x)
B (h(σ 2

A(x)))) ∈ Gs ,0
B .

_is proves (3.4) for n = 2. We can prove (3.4) inductively for general n in a similar
fashion, and we can see (i). Assertion (ii) is shown in a similar way to (i).

For x = (xn)n∈Z ∈ XA, we put

x− = (x−n)∞n=0 , x+ = (xn)∞n=0 .

Hencewe have (x , z) ∈ Gs ,0
A (resp. (x , z) ∈ Gu ,0

A ) if and only if x+ = z+ (resp. x− = z−).
By Remark 3.3 with Lemma 8.1, we can reformulate asymptotic continuous orbit

equivalence in topological Markov shi�s in the following way.

Proposition 8.2 Topological Markov shi�s (XA, σA) and (XB , σB) are asymp-
totically continuous orbit equivalent if and only if there exist a homeomorphism
h ∶ XA → XB , continuous functions c1 ∶ XA → Z, c2 ∶ XB → Z, and two-cocycle func-
tions d1 ∶ Ga

A → Z, d2 ∶ Ga
B → Z, such that

(1) cm1 (x) + d1(σm
A (x), σm

A (z)) = cm1 (z) + d1(x , z), (x , z) ∈ Ga
A, m ∈ Z,

(2) cm2 (y) + d2(σm
B (y), σm

B (w)) = cm2 (w) + d2(y,w), (y,w) ∈ Ga
B ,m ∈ Z,

and
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(i) there exists a continuous function k1 ∶ XA → Z+ such that

σ k1(x)+c1(x)
B (h(x))+ = σ k1(x)

B (h(σA(x)))+ ,

σ−k1(x)+c1(x)
B (h(x))− = σ−k1(x)

B (h(σA(x)))−;

(ii) there exists a continuous function k2 ∶ XB → Z+ such that

σ k2(y)+c2(y)
A (h−1(y))+ = σ k2(y)

A (h−1(σB(y)))+ ,

σ−k2(y)+c2(y)
A (h−1(y))− = σ−k2(y)

A (h−1(σB(y)))−;

(iii) there exists a continuous function m1 ∶ Ga
A → Z+ such that

σm1(x ,z)+d1(x ,z)
B (h(x))+ = σm1(x ,z)

B (h(z))+ for (x , z) ∈ Ga
A,

σ−m1(x ,z)+d1(x ,z)
B (h(x))− = σ−m1(x ,z)

B (h(z))− for (x , z) ∈ Ga
A;

(iv) there exists a continuous function m2 ∶ Ga
B → Z+ such that

σm2(y ,w)+d2(y ,w)
A (h−1(y))+ = σm2(y ,w)

A (h−1(w))+ for (y,w) ∈ Ga
B ,

σ−m2(y ,w)+d2(y ,w)
A (h−1(y))− = σ−m2(y ,w)

A (h−1(w))− for (y,w) ∈ Ga
B ;

(v) cc
n
1 (x)

2 (h(x)) + d2(σ c
n
1 (x)
B (h(x)), h(σ n

A(x))) = n, x ∈ XA, n ∈ Z;
(vi) cc

n
2 (y)

1 (h−1(y)) + d1(σ c
n
2 (y)
A (h−1(y)), h−1(σ n

B(y))) = n, y ∈ XBn ∈ Z;
(vii) cd1(x ,z)

2 (h(x)) + d2(σ d1(x ,z)
B (h(x)), h(z)) = 0, (x , z) ∈ Ga

A;
(viii) cd2(y ,w)

1 (h−1(y)) + d1(σ d2(y ,w)
A (h−1(y)), h−1(w)) = 0, (y,w) ∈ Ga

B .

9 Approach from Cuntz–Krieger Algebras

Let A = [A(i , j)]Ni , j=1 be an irreducible square matrix with entries in {0, 1}. We as-
sume that A is not any permutation matrix. Let {S i ∣ i = 1, . . . ,N} be the canonical
generating partial isometries of the Cuntz–Krieger algebra OA deûned by thematrix
A, and similarly let {Tj ∣ j = 1, . . . ,N} be the canonical generating partial isometries
of the Cuntz–Krieger algebra OAt deûned by the transposed matrix At of A ( [7]).
_ey are the universal unique C∗-algebras subject to the following operator relations,
respectively

N
∑
j=1

S jS∗j = 1, S∗i S i =
N
∑
j=1
A(i , j)S jS∗j , i = 1, . . . ,N ,

N
∑
j=1

TjT∗

j = 1, T∗

i Ti =
N
∑
j=1
At(i , j)TjT∗

j , i = 1, . . . ,N .

In the algebra OA, the automorphisms ρAt ∈ Aut(OA), t ∈ T = R/Z deûned by
ρAt (S i) = e2π

√

−1tS i , i = 1, . . . ,N yield an action of T onOA is called the gauge action.
It iswell known that the ûxed point algebra (OA)ρA ofOA under the gauge action ρA is
an AF-algebra written FA, whosemaximal abelian C∗-subalgebra consisting of diag-
onal elements iswrittenDA. For an admissibleword µ = (µ1 , . . . , µm) ∈ Bm(XA), we
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denote by Sµ the partial isometry Sµ1 ⋅ ⋅ ⋅ Sµm . _e C∗-algebra FA is generated by par-
tial isometries of the form SµS∗ν for µ, ν ∈ Bm(XA),m = 1, 2, . . . , and the C∗-algebra
DA is generated by projections of the form SµS∗µ for µ ∈ B∗(XA). Let XA be the shi�
space of the right one-sided topological Markov shi� (XA, σA), which is deûned by
the compact Hausdorò space

XA = {(xn)n∈N ∈ {1, . . . ,N}N ∣ A(xn , xn+1) = 1, n ∈ N}
with shi� transformation σA((xn)n∈N) = (xn+1)n∈N . As in [7, Section 7], the C∗-alge-
bra DA is canonically isomorphic to the commutative C∗-algebra C(XA) of all con-
tinuous functions on XA.

We similarly write the partial isometry Tξ = Tξk ⋅ ⋅ ⋅Tξ1 for ξ = (ξk , . . . , ξ1) ∈
Bk(XAt) and the C∗-subalgebras FAt ,DAt of OAt for the transposed matrix At , re-
spectively.

Let us consider the tensor product C∗-algebraOAt ⊗OA. In the algebraOAt ⊗OA,
we deûne the projections

EA =
N
∑
j=1

TjT∗

j ⊗ S∗j S j , EAt =
N
∑
j=1

T∗

j Tj ⊗ S jS∗j .

_e projection EA appeared in Kaminker–Putnam [9, Section 4] in the study of K-
theoretic duality between OA and OAt .

Lemma 9.1 (cf. [9, Section 4])

(9.1) EA = EAt .

Proof We have

EA =
N
∑
i=1

TiT∗

i ⊗ S∗i S i =
N
∑
i=1

TiT∗

i ⊗ (
N
∑
j=1
A(i , j)S jS∗j ) =

N
∑
i=1

N
∑
j=1
A(i , j)TiT∗

i ⊗ S jS∗j ,

EAt =
N
∑
j=1

T∗

j Tj ⊗ S jS∗j =
N
∑
j=1

(
N
∑
i=1
At( j, i)TiT∗

i ) ⊗ S jS∗j =
N
∑
i=1

N
∑
j=1
At( j, i)TiT∗

i ⊗ S jS∗j ,

thus proving (9.1).

Deûnition 9.2 (_e extended Ruelle algebra for topological Markov shi�) We de-
ûne the C∗-algebra Rs ,u

A by

Rs ,u
A = EA(OAt ⊗OA)EA

as a C∗-subalgebra of the tensor product C∗-algebra OAt ⊗OA.

We also deûne C∗-subalgebras
Ds ,u
A = EA(DAt ⊗DA)EA, Fs ,u

A = EA(FAt ⊗ FA)EA.
_erefore, we have C∗-subalgebras of Rs ,u

A

Ds ,u
A ⊂ Fs ,u

A ⊂ Rs ,u
A .

For an admissible word ξ = (ξ1 , . . . , ξk) ∈ Bk(XA), we denote by ξ the admissible
word (ξk , . . . , ξ1) in XAt , obtained by reversing the symbols of theword (ξ1 , . . . , ξk).
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Lemma 9.3 For µ = (µ1 , . . . , µm), ν = (ν1 , . . . , νn) ∈ B∗(XA), ξ = (ξk , . . . , ξ1), and
η = (η l , . . . , η1) ∈ B∗(XAt), the following two conditions are equivalent:
(i) EA(TξT

∗

η ⊗ SµS∗ν )EA = TξT
∗

η ⊗ SµS∗ν ;
(ii) A(ξk , µ1) = A(η l , ν1) = 1.

Proof We have the following equalities:

EA(TξT
∗

η ⊗ SµS∗ν ) =
N
∑
i=1

T∗

i TiTξT
∗

η ⊗ S iS∗i SµS∗ν

= T∗

µ1
Tµ1TξT

∗

η ⊗ Sµ1S
∗

µ1
SµS∗ν

= At(µ1 , ξk)TξT
∗

η ⊗ SµS∗ν
= A(ξk , µ1)TξT

∗

η ⊗ SµS∗ν .

Similarly, we have

(TξT
∗

η ⊗ SµS∗ν )EA = A(η l , ν1)TξT
∗

η ⊗ SµS∗ν .

Hence the equality EA(TξT
∗

η ⊗SµS∗ν )EA = TξT
∗

η ⊗SµS∗ν holds if andonly ifA(ξk , µ1) =
A(η l , ν1) = 1.

Let us denote by R○

A the ∗-subalgebra of Rs ,u
A linearly spanned by the operators of

the form

TξT
∗

η ⊗ SµS∗ν for A(ξk , µ1) = A(η l , ν1) = 1,

where

µ = (µ1 , . . . , µm), ν = (ν1 , . . . , νn) ∈ B∗(XA),
ξ = (ξk , . . . , ξ1), η = (η l , . . . , η1) ∈ B∗(XAt).

Lemma 9.4 R○

A is dense in Rs ,u
A .

Proof Let PA be the ∗-algebra linearly spanned by the operators of the form SµS∗ν
for µ, ν ∈ B∗(XA). As in [7, Section 2], the algebra PA becomes a dense ∗-subalgebra
of OA. We denote by PAt ⊗PA the linear span of elements

TξT
∗

η ⊗ SµS∗ν for µ, ν ∈ B∗(XA), ξ, η ∈ B∗(XAt).

It becomes a dense ∗-subalgebra of the C∗-algebra of tensor products OAt ⊗OA. For
any Y ∈ Rs ,u

A ⊂ OAt ⊗OA, take Yn ∈ PAt ⊗PA such that ∥Y −Yn∥→ 0 as n →∞. Since

∥Y − EAYnEA∥ = ∥EAYEA − EAYnEA∥ ≤ ∥Y − Yn∥Ð→ 0

as n →∞, and EAYnEA belongs to R○

A, we conclude that R○

A is dense in Rs ,u
A .

Lemma 9.5 Ds ,u
A is canonically isomorphic to C(XA).
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Proof For µ = (µ1 , . . . , µm), ξ = (ξ1 , . . . , ξk) ∈ B∗(XA) with A(ξk , µ1) = 1, denote
by ξµ the admissibleword (ξ1 , . . . , ξk , µ1 , . . . , µm) ∈ B∗(XA). LetUξµ be the cylinder
set of XA deûned by

Uξµ = {(xn)n∈Z ∈ XA ∣ x−(k−1) = ξ1 , . . . , x−1 = ξk−1 , x0 = ξk , x1 = µ1 , . . . , xm = µm} .

SinceDs ,u
A = EA(DAt ⊗DA)EA and

DA = C∗(SµS∗µ ∣ µ ∈ B∗(XA)), DAt = C∗(TξT
∗

ξ ∣ ξ ∈ B∗(XAt)),

it is straightforward to see that the correspondence

TξT
∗

ξ ⊗ SµS∗µ ∈Ds ,u
A Ð→ χUξµ ∈ C(XA)

yields an isomorphism between Ds ,u
A and C(XA).

Consider the automorphisms γA
(r ,s) = ρA

t

r ⊗ ρAs , (r, s) ∈ T2 on OAt ⊗ OA for the
gauge actions ρA

t
on OAt and ρA on OA. Since γA(r ,s)(EA) = EA, we have an action γA

ofT2 onRs ,u
A ._e diagonal action δAt , t ∈ T onRs ,u

A is deûned by δAt = γA
(t ,t) , t ∈ T. On

the other hand, the groupoid C∗-algebra Rs ,u
σA = C∗(Gs ,u

A ⋊Z2) of the étale amenable
groupoid Gs ,u

A ⋊ Z2 has an action ρs ,u
σA of T2 deûned in the paragraph right before

_eorem 7.9. Its diagonal action δσA ofT onRs ,u
σA is deûned by δσA

t = ρs ,u
σA ,(t ,t) . Its ûxed

point algebra (Rs ,u
σA )

δσA is isomorphic to the asymptotic Ruelle algebra RaσA written
RaA. For the structure of the algebra Rs ,u

A , we have the following theorem.

_eorem 9.6 Let A be an irreducible and non-permutation matrix with entries in
{0, 1}. _en the C∗-algebra Rs ,u

A is a unital, simple, purely inûnite, nuclear C∗-algebra
isomorphic to the groupoid C∗-algebra Rs ,u

σA of the étale groupoid Gs ,u
A ⋊ Z2. More pre-

cisely, there exists an isomorphism Φ ∶ Rs ,u
A → Rs ,u

σA of C∗-algebras such that

(9.2) Φ(Ds ,u
A ) = C(XA) and Φ ○ γA

(r ,s) = ρs ,u
σA ,(r ,s) ○Φ, (r, s) ∈ T2 .

In particular, we have Φ ○ δAt = δσA
t ○Φ for t ∈ T.

Proof Since A is irreducible and not any permutation matrix, the Cuntz–Krieger
algebras OA,OAt are both unital, simple, purely inûnite and nuclear ( [7, _eorem
2.14]). Hence, so is the algebra EA(OAt ⊗ OA)EA = Rs ,u

A . We will construct an iso-
morphism Φ ∶ Rs ,u

A → Rs ,u
σA having the desired properties (9.2). As in [19, 30–32], the

right one-sided topological Markov shi� (XA, σA) gives rise to an étale groupoid GA,
which is deûned by

GA = {((x i)∞i=1 , n, (y j)∞j=1) ∈ XA ×Z × XA ∣ n = l − k, x i+k = y i+l , i = 1, 2, . . . } .

We have the groupoid GAt for the transposed matrix At in a similar way. It is well
known that the groupoidsGA,GAt are amenable and étale such that their C∗-algebras
C∗(GA),C∗(GAt) are isomorphic to the Cuntz–Krieger algebras OA,OAt , respec-
tively. Let GAt × GA be the direct product of the groupoids so that C∗(GAt × GA)
is isomorphic to the tensor product C∗(GAt)⊗C∗(GA) of the groupoid C∗-algebras.
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Hence we have a natural isomorphism Φ ∶ OAt ⊗OA → C∗(GAt ×GA). For elements
((x i)∞i=1 , n, (y i)∞i=1) ∈ GA with n = l − k, x i+k = y i+l for i ∈ N,

((x′j)∞j=1 , n′ , (y′j)∞j=1) ∈ GA with n′ = l ′ − k′ , x′j+k′ = y′j+l ′ for j ∈ N

of the groupoid GA, we assume that A(x′1 , x1) = A(y′1 , y1) = 1. Put x = (x i)∞i=1 , y =
(y i)∞i=1 and x′ = (x′j)∞j=1 , y′ = (y′j)∞j=1 . We deûne a bi-inûnite sequence π(x′ , x) =
(π(x′ , x)i)i∈Z by setting

π(x′ , x)i =
⎧⎪⎪⎨⎪⎪⎩

x i if i ≥ 1,
x′
−i+1 if i ≤ 0.

_en π(x′ , x), and similarly π(y′ , y), belong to XA. Put N = Max{l + 1, l ′} and
p = −n, q = n′. Since

σ p
A(π(x

′ , x))i = π(y′ , y)i , i ≥ N ,
σ q
A(π(x

′ , x))i = π(y′ , y)i , i ≤ −N ,
we have

(π(x′ , x), p, q, π(y′ , y)) ∈ Gs ,u
A ⋊Z2 .

Deûne the subgroupoid GAt ×A GA of GAt ×GA by

GAt ×A GA = {((x′ , n′ , y′), (x , n, y)) ∈ GAt ×GA ∣ A(x′1 , x1) = A(y′1 , y1) = 1} .

It is easy to see that the correspondence

((x′ , n′ , y′), (x , n, y)) ∈ GAt ×A GA Ð→ (π(x′ , x),−n, n′ , π(y′ , y)) ∈ Gs ,u
A ⋊Z2

yields an isomorphismof étale groupoids, so thatwe can identifyGAt×AGA andGs ,u
A ⋊

Z2 as étale groupoids through the above correspondence. SinceGAt ×AGA is a clopen
subset of GAt × GA, the characteristic function χGAt×AGA of GAt ×A GA on GAt × GA
belongs to the C∗-algebra C∗(GAt × GA), which is denoted by PA. It then follows
that the isomorphism Φ ∶ OAt ⊗ OA → C∗(GAt × GA) satisûes Φ(EA) = PA. Hence
the restriction of Φ to the subalgebra EA(OAt ⊗OA)EA gives rise to an isomorphism
EA(OAt ⊗OA)EA → PAC∗(GAt ×GA)PA,which is still denoted byΦ. As PAC∗(GAt ×
GA)PA is identiûedwithC∗(Gs ,u

A ⋊Z2),we have an isomorphismΦ ∶ Rs ,u
A → Rs ,u

σA . It is
also described in the following way. For µ = (µ1 , . . . , µm), ν = (ν1 , . . . , νn) ∈ B∗(XA)
and ξ = (ξk , . . . , ξ1), η = (η l , . . . , η1) ∈ B∗(XAt) with A(ξk , µ1) = A(η l , ν1) = 1, we
know that

(ϕm−n(x), y) ∈ Gs ,∣m−n∣
A , (ϕ l−k(x), y) ∈ Gu ,∣l−k∣

A for x ∈ Uξµ , y ∈ Uην .

Let χξµ ,ην ∈ Cc(Gs ,u
A ⋊Z2) be the characteristic function of the clopen set

Uξµ ,ην = {(x ,m − n, l − k, y) ∈ Gs ,u
A ⋊Z2 ∣ x ∈ Uξµ , y ∈ Uην ,

(σm
A (x), σ n

A(y)) ∈ Gs ,0
A , (σ−k

A (x), σ−l
A (y)) ∈ Gu ,0

A } .

It is not diõcult to see that the correspondence

(9.3) TξT
∗

η ⊗ SµS∗ν ∈ Rs ,u
A Ð→ χξµ ,ην ∈ Cc(Gs ,u

A ⋊Z2)
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gives rise to the isomorphism Φ ∶ Rs ,u
A → C∗(Gs ,u

A ⋊ Z2)(= Rs ,u
σA ). By (9.3), we easily

see that Φ satisûes (9.2).

Corollary 9.7 _e ûxed point algebra (Rs ,u
A )δA of Rs ,u

A under the diagonal gauge
action δA is isomorphic to the asymptotic Ruelle algebra RaA.

Proof _e ûxed point algebra (Rs ,u
σA )

δσA of Rs ,u
σA under δσA is isomorphic to the as-

ymptotic Ruelle algebra RaA by _eorem 7.9. Hence the assertion follows from _eo-
rem 9.6.

Put U i = T∗

i ⊗ S i in OAt ⊗OA for i = 1, . . . ,N . We set UA = ∑N
i=1 U i in OAt ⊗OA.

Lemma 9.8 UA is a unitary in Rs ,u
A , that is, UAU∗

A = U∗

AUA = EA.

Proof We have

EAU i = (
N
∑
j=1

T∗

j Tj ⊗ S jS∗j )U i =
N
∑
j=1

T∗

j TjT∗

i ⊗ S jS∗j S i = T∗

i ⊗ S i

and similarly U iEA = U i , so that we have U i ∈ Rs ,u
A . Since we have U iU∗

i = T∗

i Ti ⊗
S iS∗i and U∗

i U i = TiT∗

i ⊗ S∗i S i , we see that

U iU∗

i ⋅U jU∗

j = U∗

i U i ⋅U∗

j U j = 0 if i ≠ j.
It then follows that

U∗

AUA =
N
∑
i=1

U∗

i U i =
N
∑
i=1

TiT∗

i ⊗ S∗i S i = EA.

We have UAU∗

A = EA similarly.

Deûne the inner automorphism αA of Rs ,u
A by setting αA = Ad(UA).

Proposition 9.9 Let Φ ∶ Rs ,u
A → Rs ,u

σA (= C
∗(Gs ,u

A ⋊Z2)) be the isomorphism deûned
in _eorem 9.6. _en the restriction Φ∣Ds ,u

A
∶ Ds ,u

A → C(XA) of Φ to the commutative
C∗-subalgebraDs ,u

A satisûes the relation:
Φ ○ αA = σ∗A ○Φ

where σ∗A( f ) = f ○ σA for f ∈ C(XA).

Proof For µ = (µ1 , . . . , µm), ξ = (ξ1 , . . . , ξk) ∈ B∗(XA) with A(ξk , µ1) = 1, we have

UA(TξT
∗

ξ ⊗ SµS∗µ)U∗

A =
N
∑
i , j=1

T∗

i TξT
∗

ξ Tj ⊗ S iSµS∗µS∗j

= T∗

ξ1Tξ1Tξk−1 ⋅⋅⋅ξ1T
∗

ξk−1 ⋅⋅⋅ξ1T
∗

ξ1Tξ1 ⊗ Sξk µS
∗

ξk µ

= Tξk−1 ⋅⋅⋅ξ1T
∗

ξk−1 ⋅⋅⋅ξ1 ⊗ Sξk µS
∗

ξk µ .

_is shows that the equality Φ ○ αA = σ∗A ○Φ holds on Ds ,u
A .

We note that the unitary Φ(UA) in Rs ,u
σA belongs to the asymptotic Ruelle algebra

RaσA and it is nothing but the unitary UσA for (X , ϕ) = (XA, σA) deûned in (6.1).
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Remark 9.10 In [8, Proposition 6.7], C. G. Holton proved that if two primitive
matrices A and B are shi� equivalent (cf. [13]), then the asymptotic Ruelle algebras
RaA and RaB are isomorphic by showing that the automorphism αA induced by the
original transformation σA on the AF-algebra C∗(Ga

A) has the Rohlin property.

10 K-theory for the Asymptotic Ruelle Algebras for Full Shifts

In this ûnal section, we will compute the K-groups and the trace values of the as-
ymptotic Ruelle algebras RaA for some topological Markov shi�s. In [25](cf. [11]), the
K-theory formula for the asymptotic Ruelle algebras RaA for the topological Markov
shi� (XA, σA) has been provided. In particular, ring andmodule structure of the K-
groups were deeply studied in [11]. We will see the K-groups of the C∗-algebra RaA
in a concrete way for full shi�s by using the Putnam’s formula in [25] which we will
describe below. Let A be an N × N irreducible matrix with entries in {0, 1}. Let us
consider the abelian group H(A) of the inductive limit

(10.1) ZN ⊗ZN At
⊗AÐ→ ZN ⊗ZN At

⊗AÐ→ ⋅ ⋅ ⋅ .

Under a natural identiûcation between ZN ⊗ ZN and the N × N matrices MN(Z)
over Z, we set Hk(A) = MN(Z) for k = 1, 2, . . . . _en themap At ⊗ A in (10.1) goes
to the map ιk ∶ Hk(A) → Hk+1(A) deûned by ιk([T , k]) = [ATA, k + 1] for [T , k] ∈
Hk(A) with T ∈ MN(Z). Deûne the homomorphism αk ∶ Hk(A) → Hk+1(A) by
αk([T , k]) = [A2T , k + 1] for [T , k] ∈ Hk(A), which extends to an endomorphism
α ∶ H(A) → H(A). Putnam showed the following K-theory formula by using the
six-term exact sequence for K-theory of the C∗-algebra RaA.

Proposition 10.1 (Putnam [25, p. 192])

K0(RaA) = Coker ( id−α ∶ H(A)Ð→ H(A)) ,
K1(RaA) = Ker ( id−α ∶ H(A)Ð→ H(A)) .

We will compute the groups K∗(RaA) for the N × N matrix A = [ 1 ⋅⋅⋅ 1
⋮ ⋮

1 ⋅⋅⋅ 1
] with all

entries being 1’s, so that the topological Markov shi� (XA, σA) is the full N-shi�writ-
ten (XN , σN). Let us denote by RaN the asymptotic Ruelle algebra RaA for the matrix
A. For a natural number n, Z[ 1

n ] means the subgroup { m
nk ∈ R ∣ m, k ∈ Z} of the

additive group R. We provide the following lemma.

Lemma 10.2 _ere exists an isomorphism ξ ∶ H(A)→ Z[ 1
N2 ] of abelian groups such

that the diagram

H(A) αÐÐÐÐ→ H(A)

ξ
×××Ö

×××Ö
ξ

Z[ 1
N2 ]

idÐÐÐÐ→ Z[ 1
N2 ]

is commutative. Hence α = id on H(A).

1290

https://doi.org/10.4153/CJM-2018-012-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-012-x


Asymptotic Continuous Orbit Equivalence of Smale Spaces and Ruelle Algebras

Proof For a matrix T = [t i j]Ni , j=1 ∈ MN(Z), deûne sN(T) = ∑N
i , j=1 t i j . As ATA =

sN(T)A, the map sN ∶ MN(Z)(= Hk(A)) → Z deûnes a homomorphism such that
ιk([T , k]) = [sN(T)A, k + 1] for T ∈ MN(Z). For [T , k], [S , k] ∈ Hk(A), [T , k]
and [S , k] deûne the same element in H(A) if and only if sN(T) = sN(S). Deûne
s̃N ∶ Hk(A)→ Z by setting s̃N([T , k]) = sN(T) for [T , k] ∈ Hk(A). Since

s̃N(ιk([T , k])) = sN(sN(T)A) = sN(T)N2 = N2 s̃N([T , k]),

we have the sequences of commutative diagrams:

H1(A)
ι1ÐÐÐÐ→ H2(A)

ι2ÐÐÐÐ→ H3(A)
ι3ÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ H(A)

s̃N
×××Ö

s̃N
×××Ö

s̃N
×××Ö

×××Ö
Z ×N2

ÐÐÐÐ→ Z ×N2

ÐÐÐÐ→ Z ×N2

ÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ Z[ 1
N2 ]

and

H1(A)
ι1ÐÐÐÐ→ H2(A)

ι2ÐÐÐÐ→ H3(A)
ι3ÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ H(A)

s̃N
×××Ö

1
N2 s̃N

×××Ö
1

N4 s̃N
×××Ö

×××Ö
R idÐÐÐÐ→ R idÐÐÐÐ→ R idÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ R.

Hence, we can deûne an isomorphism ξ ∶ H(A)→ Z[ 1
N2 ] ⊂ R by setting

ξ([T , k]) = 1
(N2)k−1 s̃N([T , k]) = 1

N2k−2 sN(T) ∈ Z[ 1
N2 ] for [T , k] ∈ Hk(A).

Since α([T , k]) = [A2T , k + 1] and sN(A2T) = N2sN(T), we have

ξ(α([T , k])) = 1
(N2)k sN(A2T) = 1

(N2)k−1 sN(T) = ξ([T , k]),

so that the isomorphism ξ ∶ H(A) → Z[ 1
N2 ] satisûes ξ ○ α = ξ, and hence we have

α = id on H(A).

As id−α is the zero map on H(A) with Z[ 1
N2 ] = Z[ 1

N ] in R, thus by the formula
of Proposition 10.1, we have the following proposition.

Proposition 10.3 (cf. [11, Section 3.3]) K0(RaN) ≅ K1(RaN) ≅ H(A) ≅ Z[ 1
N ].

C. G. Holton proved that if an N × N matrix A is aperiodic, then the shi� σ∗N on
the AF-algebra C∗(Ga

A) has the Rohlin property [8, _eorem 6.1]. For the N × N
matrix A = [ 1 ⋅⋅⋅ 1

⋮ ⋮

1 ⋅⋅⋅ 1
], the algebra C∗(Ga

N), which is the C∗-algebra of the groupoid Ga
A

is the UHF algebra of type N∞, so that the crossed product RaN = C∗(Ga
N) ⋊σ∗N Z

is a simple AT-algebra of real rank zero with a unique tracial state by [4, _eorem
1.1], [12,_eorem 1.3]. _e unique tracial state onRaN is denoted by τN . It arises from
the Parrymeasure on the full N-shi� (XN , σN) (Putnam [25,_eorem 3.3]). We can
determine the trace values of the K0-group in the following way.
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Lemma 10.4 τN∗(K0(RaN)) = Z[ 1
N ] in R.

Proof By Corollary 9.7, the algebra RaN is realized as the ûxed point algebra of Rs ,u
N

under the diagonal gauge action. It is easy to see that RaN is generated by linear
span of operators of the form TξT

∗

η ⊗ SµS∗ν for µ = (µ1 , . . . , µm), ν = (ν1 , . . . , νn) ∈
B∗(XA), ξ = (ξk , . . . , ξ1), η = (η l , . . . , η1) ∈ B∗(XAt) such that k +m = l + n. Since
the tracial state τN on RaN comes from the Parry measure on XN , we have

τN(TξT
∗

η ⊗ SµS∗ν ) =
⎧⎪⎪⎨⎪⎪⎩

1
N k+m if ξ = η, µ = ν,
0 otherwise.

_rough the six-term exact sequence

K0(C∗(Ga
N)) id−αÐÐÐÐ→ K0(C∗(Ga

N)) idÐÐÐÐ→ K0(RaN)
Õ×××

×××Ö
K1(RaN) id←ÐÐÐÐ K1(C∗(Ga

N)) id−α←ÐÐÐÐ K1(C∗(Ga
N))

for the crossed productRaN = C∗(Ga
N)⋊Z with the fact K1(C∗(Ga

N)) = 0 and α = id,
all elements of K0(RaN) come from those of K0(C∗(Ga

N)) = H(A). We thus conclude
that τN∗(K0(RaN)) = Z[ 1

N ].

For two natural numbers 1 < M ,N ∈ N, let M = pk1
1 ⋅ ⋅ ⋅ pkm

m , N = q l1
1 ⋅ ⋅ ⋅ q ln

n
be the prime factorizations of M ,N such that p1 < ⋅ ⋅ ⋅ < pm , q1 < ⋅ ⋅ ⋅ < qn and
k1 , . . . , km , l1 , . . . , ln ∈ N, respectively.

Proposition 10.5 Keeping the above notation, the following assertions are equivalent.
(i) _e Ruelle algebras RaM and RaN are isomorphic.
(ii) Z[ 1

M ] = Z[ 1
N ] as subsets of values of R.

(iii) {p1 , . . . , pm} = {q1 , . . . , qn}, that is, m = n and p1 = q1 , . . . , pm = qn .

Proof (i) ⇒ (ii): Since the Ruelle algebras RaM and RaN have unique tracial state,
respectively, the assertion follows from the preceding lemma.

(ii)⇒ (i):_e algebrasRaM ,R
a
N are bothAT-algebras of real rank zerowith unique

tracial state. _e condition Z[ 1
M ] = Z[ 1

N ] implies that their K-theoretic dates

(K0(RaM),K0(RaM)+ , [1],K1(RaM)) = (K0(RaN),K0(RaN)+ , [1],K1(RaN))

coincide because of Proposition 10.3 and Lemma 10.4. By a general classiûcation the-
ory of simple AT-algebras of real rank zero, we conclude that the Ruelle algebrasRaM
and RaN are isomorphic.

_e equivalence (ii)⇔ (iii) is easy.

We have the following corollary.
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Corollary 10.6 Let M = pk1
1 ⋅ ⋅ ⋅ pkm

m and N = q l1
1 ⋅ ⋅ ⋅ q ln

n be the prime factorizations
of M ,N as in the above proposition. If the sets {p1 , . . . , pm} and {q1 , . . . , qn} do not
coincidewith each other, then the two-sided full shi�s (XM , σM) and (XN , σN) are not
asymptotically continuous orbit equivalent.

Proof Suppose that {p1 , . . . , pm} ≠ {q1 , . . . , qn}. By the above proposition, the Ru-
elle algebras RaN ,R

a
M are not isomorphic. Since the isomorphism class of the Ruelle

algebra is invariant under asymptotic continuous orbit equivalence by _eorem 5.7,
we know that (XM , σM) and (XN , σN) are not asymptotically continuous orbit equiv-
alent.

11 Concluding Remarks

Before ending the paper, we refer to diòerences among asymptotic continuous orbit
equivalence, asymptotic conjugacy and topological conjugacy of Smale spaces. It can
be proved that topological conjugacy implies asymptotic conjugacy, which implies
asymptotic continuous orbit equivalence. For an irreducible Smale space (X , ϕ), its
inverse system (X , ϕ−1) automatically becomes an irreducible Smale space by deûni-
tion. We then see the following proposition.

Proposition 11.1 An irreducible Smale space (X , ϕ) is asymptotically continuous orbit
equivalent to its inverse (X , ϕ−1).

Proof InDeûnition 3.2,we setY = X ,ψ = ϕ−1 and take h = id, c1 ≡ −1, c2 ≡ −1, d1 ≡
0, d2 ≡ 0. We then see that cn1 (x) = −n for all x ∈ X and cn2 (y) = −n for all y ∈ Y . It
is direct to see that all conditions in Deûnition 3.2 hold for these c1 , c2 , d1 , d2, so that
(X , ϕ) is asymptotically continuous orbit equivalent to its inverse (X , ϕ−1).

We can easily explain the above situation in terms of C∗-algebras. We actually
see that the identity map id ∶ X → X induces an isomorphism Φ ∶ Raϕ → Raϕ−1 of
C∗-algebras such that

Φ(C(X)) = C(X) and Φ ○ ρϕ
t = ρϕ−1

−t ○Φ,

because in _eorem 1.1(iii), wemay have.

Ad (Ut(cϕ−1)) = ρϕ−1

−t , Ad (Ut(cϕ)) = ρϕ
t .

Corollary 11.2 _ere exists a pair (X , ϕ) and (Y ,ψ) of irreducible Smale spaces such
that they are asymptotically continuous orbit equivalent but not topologically conjugate.

Proof As in [13, Example 7.4.19], the matrix A = [ 19 5
4 1 ] is not shi� equivalent to its

transpose At = [ 19 4
5 1 ]. Let (X , ϕ) and (Y ,ψ) be the shi�s of ûnite type deûned by

thematrices A and At , respectively. Since (Y ,ψ) is naturally topologically conjugate
to (X , ϕ−1), the Smale spaces (X , ϕ) and (Y ,ψ) are asymptotically continuous orbit
equivalent by the preceding proposition. As shi� equivalence relation of matrices is
weaker than strong shi� equivalence, by Williams’ theorem [38] the shi�s of ûnite
type (X , ϕ) and (Y ,ψ) are not topologically conjugate.
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In the recent paper [18],which is a continuation of this paper, the author shows that
two-sided topological Markov shi�s are topologically conjugate if and only if they are
asymptotically conjugate. Hence the example in the proof of Corollary 11.2 shows us
that there exists a pair (X , ϕ) and (Y ,ψ) of irreducible Smale spaces such that they
are asymptotically continuous orbit equivalent but not asymptotically conjugate. For
a general irreducible Smale space, however, we do not know whether or not the as-
ymptotic conjugacy implies topological conjugacy. _is is an open question probably
being aõrmative.

We ûnally remark the following. We know that if two irreducible topological Mar-
kov shi�s are asymptotically continuous orbit equivalent, then their asymptotic Ru-
elle algebras are isomorphic by _eorem 5.7, since these asymptotic Ruelle algebras
RaA have unique tracial states τA coming from the Parrymeasures on the shi� spaces.
Hence, the trace values τA∗(K0(RaA)) are invariant under asymptotic continuous or-
bit equivalence. For two matrices

A = [1 1
1 1] and B = [1 1

1 0]

it is straightforward to see that τA∗(K0(RaA)) ≠ τB∗(K0(RaB)) as subsets ofR, because
τB∗(K0(RaB)) contains the trace values of the dimension group of the AF-algebra
deûned by thematrix B. Hencewe know that the two-sided topological Markov shi�s
(XA, σA) and (XB , σB) are not asymptotically continuous orbit equivalent, whereas
their one-sided topological Markov shi�s (XA, σA) and (XB , σB) are continuous orbit
equivalent as in [14, Section 5].
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