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Abstract
We consider a two-stage service system with two types of servers, namely subordinates who perform the first-stage
service and supervisors who have their own responsibilities in addition to collaborating with the subordinates on the
second-stage service. Rewards are earned when first- or second-stage service is completed and when supervisors
finish one of their own responsibilities. Costs are incurred when impatient customers abandon without completing
the second-stage service. Our problem is to determine how the supervisors should distribute their time between
their joint work with the subordinates and their own responsibilities. Under the assumptions that service times at
both stages are exponentially distributed and that the customers waiting for second-stage service abandon after an
exponential amount of time, we prove that one of two policies will maximize the long-run average profit. Namely, it
is optimal for supervisors to start collaborating with subordinates either when subordinates can no longer serve new
customers or as soon as there is a customer ready for second-stage service. Furthermore, we show that the optimality
condition is a simple threshold on the system parameters. We conclude by proving that pooling supervisors (and their
associated subordinates) improves system performance, but with limited returns as more supervisors are pooled.

1. Introduction

Consider a system with 𝑁 ≥ 1 subordinates and 1 ≤ 𝑀 ≤ 𝑁 supervisors. Assume that there is
an unlimited supply of work, that each customer requires two stages of service, and that customers
are impatient and can leave without receiving the service at the second stage. The first service stage is
completed by an assigned subordinate, whereas the second service stage (also referred to as the advanced
service) is completed jointly by the assigned subordinate and a supervisor. The subordinate can only
start work on a new customer when her previously assigned customer departs. Thus, the subordinate will
serve the customer on her own (the first-stage service), wait for a supervisor together with the customer,
and then serve the customer together with a supervisor (the second-stage service) if the customer does
not leave before the second-stage service starts. In addition to their work with the subordinates, the
supervisors have an unlimited supply of their own responsibilities to attend to. Therefore, supervisors
may not immediately attend to waiting customers. Our problem is to determine how the supervisors
should dynamically divide their time between their joint work with the subordinates and their own
responsibilities. Rewards are incurred both when first- and second-stage service is completed for a
customer and also when supervisors finish one of their own responsibilities. However, a cost is incurred
when customers depart without completing the second-stage service. Our objective is to maximize the
long-run average profit per unit time.

Our research is motivated by situations where supervisors must sign off on the work of their sub-
ordinates. However, this type of queueing systems may arise in other real-life situations. For example,
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consider some government service where people need to fill out forms or take other actions by themselves
as the first stage. The second stage involves being served by the officials. The limited place for people to
finish the self-service can be regarded as the limited number of (subordinate) servers in the first stage.
Since there are typically fewer officials than people needing service, and since the officials may have
other responsibilities, customers may get impatient and leave while waiting for officials. The assumption
on unlimited supply of work for both the first-stage service and the supervisors is consistent with real-life
observations and common assumptions in the literature on modern service and manufacturing systems.
Specifically, in healthcare facilities, for example, emergency rooms, it is widely acknowledged that over-
crowding is prevalent at all times (see, e.g., [12,13,28]), indicating the rationality of the assumption on
the unlimited supply of patients in such healthcare facilities. Similarly, in make-to-stock manufacturing
systems, it is common to assume ample availability of raw materials (see, e.g., [21,27,31]).

We assume that the amount of time that it takes a supervisor to switch from one activity to the other
is negligible. Furthermore, we assume that the service times of each customer in the first stage are
exponential random variables with rate 𝜇1 > 0. The patience time of a customer for the second-stage
service is exponentially distributed with rate 𝜃 > 0. The corresponding abandonment cost is 𝑐. We first
assume that abandonments can only occur when the customers are waiting for the second-stage service.
Later, we extend the problem to the case where abandonments may also occur during the first- and/or
second-stage service. The second-stage service time is exponentially distributed with rate 𝜇2 > 0. The
amounts of time that the supervisors spend on their own responsibilities have an exponential distribution
with rate 𝜇𝑠 > 0. We assume that supervisors can switch between tasks in a preemptive manner (rather
than only upon completing a task). Finally, all random variables are independent. There is a reward of
𝑟1 ≥ 0 when a subordinate completes the first-stage service and a reward of 𝑟2 ≥ 0 when a supervisor
and a subordinate complete the second-stage service together. There is also a reward of 𝑟𝑠 ≥ 0 when
a supervisor finishes one of her own responsibilities. The abandonment cost 𝑐 is not restricted to be
positive; when 𝑐 is negative, it can be regarded as the reward for a customer who left the system with
the first-stage service only. Note that without loss of generality, we can always set 𝑟1 = 0 since the case
where 𝑟1 > 0 is equivalent to the case where 𝑟 ′1 = 0, 𝑐′ = 𝑐 − 𝑟1, and 𝑟 ′2 = 𝑟1 + 𝑟2. The remainder of this
paper considers the case where 𝑟1 = 0.

For this service system, we are interested in determining the dynamic assignment of the supervisors
to their two tasks with the objective of maximizing the long-run average profit. Controlling flexible
servers in tandem queueing systems has been studied in many papers. For example, Duenyas et al. [16]
considered the optimal control of a tandem queueing system with setups where there is only one flexible
server and Ahn et al. [1] studied the optimal control of two flexible servers in a two-stage tandem queueing
system to minimize holding costs. Andradóttir and Ayhan [2] characterized the optimal assignment of
𝑀 flexible servers to two stations in a tandem queueing system with the objective to maximize the
long-run average throughput, and Andradóttir et al. [4] considered the assignment of flexible servers in
a tandem queueing network with 𝑁 stations and several dedicated servers. Berman and Sapna-Isotupa
[8] studied the optimal server allocation between the front and back rooms of a service facility when
the work in the back room is generated by the service provided in the front room and the servers are
cross-skilled. The above server assignment problems mainly focus on how to assign servers between
different stations within the queueing system, while our work considers the server assignment problem
between the queue and other responsibilities.

Moreover, server assignment problems are also seen in call centers with call blending, as well as in
other practical applications. Motivated by a Bell Canada call center, Deslauriers et al. [14] proposed
five Markovian models with inbound and outbound calls where there are two types of servers, that is,
inbound-only and blend servers, and compared these models with a benchmark model using simulation.
When there are two types of jobs served by a common pool of servers and there is a waiting time
constraint on one type of jobs, Bhulai and Koole [9] showed that a trunk reservation policy is optimal
for the case where the service rates are the same for the two types of jobs. That is, the optimal server
assignment policy is a threshold policy on the number of available servers. Furthermore, Bhulai et al.
[10] extended the assignment problem in call centers to the case where there is no specific condition
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on the service rates, and proposed a stochastic approximation algorithm to find the optimal balanced
policy. Pang and Perry [22] proposed a logarithmic safety-staffing rule, combined with a threshold
policy, under which the server utilization can be close to 1. Wang et al. [24] analyzed an 𝑀/𝑀/𝑐 queue
with two priority classes by reducing the two-dimensional Markov chain to a one-dimensional Markov
chain. Meanwhile, in the setting of assigning homecare employees to patients, Koeleman et al. [19]
showed that a trunk reservation heuristic is close to optimal. Compared with the above work on server
assignment, our work involves a tandem queueing system, where a customer and a subordinate will wait
together for the second-stage service with a supervisor, and the customer may abandon while waiting.

Abandonment is a natural and ubiquitous phenomenon in queueing systems. We include customer
abandonments in our model to reflect this common phenomenon. For example, Garnett et al. [17]
pointed out that customer abandonment is a key factor for call center operations. Weerasinghe and
Mandelbaum [26] studied the trade-off between abandonment and blocking in a one-stage, many-server
queue where customers may abandon while waiting for service and will balk once the queue is full.
Batt and Terwiesch [7] conducted an empirical study on queue abandonments in a hospital emergency
department and identified that the abandonment is correlated with the queue length and queue flows
during the waiting exposure.

Abandonment is also considered in two-station tandem queues. For example, Khudyakov et al. [18]
considered a two-stage queueing system in a call center with Interactive Voice Response (IVR). The
customer is served by an IVR processor in the first stage and may leave the system with probability
1 − 𝑝 before proceeding to the second stage. Operational performance measures are approximated in
an asymptotic Quality and Efficiency Driven regime. Wang et al. [25] evaluated the performance of a
tandem queueing network with abandonment using an exact numerical method. Zayas-Cabán et al. [29]
investigated the server assignment problem between the two stations of a tandem service system with
abandonment in both stations. Zayas-Caban et al. [30] modeled the triage and treatment processes in
an emergency department as a two-phase service system where patients may leave the system without
treatment. They provided numerical examples to analyze the rewards and patient waiting times under
the policy that treatment is prioritized unless there are 𝐾 or more patients in triage. However, none
of the above works on tandem queueing systems with abandonment characterized the optimal policy
explicitly, while we provide an optimal threshold policy with respect to the abandonment cost for a
tandem queueing system. Additionally, Atar et al. [6] considered a multi-class queueing system with
homogeneous servers and abandonment, and provided a server-scheduling policy that is asympotically
optimal for minimizing the long-run average holding cost. Ansari et al. [5] studied a multi-class
queueing system with a single server and abandonment, and characterized the conditions under which
the asymptotically optimal policy of Atar et al. [6] is indeed optimal. Down et al. [15] identified the
optimal server control in a two-class service system with abandonments, where they considered two
models with different reward/cost structures. However, Atar et al. [6], Ansari et al. [5], and Down et al.
[15] all considered single-stage queueing systems, whereas our model is a two-stage service system.

Moreover, most of the related work focuses on allocating flexible servers over time to different
stations while we focus on the assignment of the supervisors who have other responsibilities in addition
to serving the queueing system. In our model, the supervisors work together with the subordinates in the
second stage. Motivated by a healthcare application, Andradóttir and Ayhan [3] considered a two-stage
service system where the first stage is the examination of patients done by residents and the second stage
is the consultation between residents and their (one) attending physician. By comparison, we consider
multiple supervisors, customer abandonments, and a different cost structure (abandonment costs rather
than holding costs). The comparison between dedicated versus pooled systems has also been investigated
and quantified in many research papers. Cattani and Schmidt [11] reviewed and summarized the related
work regarding the effects of pooling. We study the performance of dedicated versus pooled systems
in this setting (with collaboration between subordinates and supervisors and abandonments) and show
that pooling supervisors (and their subordinates) improves performance.

The remainder of this paper is organized as follows. In Section 2, we provide a Markov decision
process formulation of the problem and translate the continuous-time optimization problem into a
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Figure 1. State-transition diagram for the two-stage service system.

discrete-time Markov decision process problem. In Section 3, we show that one of two policies is
optimal and the optimal policy is defined by a threshold on the abandonment cost 𝑐. We also determine
the limit of this threshold as the abandonment rate becomes small or large. In Section 4, we prove
that pooling supervisors (and their associated subordinates) improves the system performance, but the
improvement per pooled supervisor is bounded. Section 5 concludes the paper.

2. Problem formulation

In this section, we consider the stochastic process {X𝜋 (𝑡) : 𝑡 ≥ 0} where Π is the set of possible
supervisor assignment policies, 𝜋 ∈ Π, and X𝜋 (𝑡) = 𝑥 ∈ 𝑋 = {0, 1, . . . , 𝑁} is the number of customers
who have been served by a subordinate and are waiting for a supervisor at time 𝑡 under policy 𝜋. We
assume that Π consists of all Markovian stationary deterministic policies corresponding to the state
space 𝑋 of the stochastic process {X𝜋 (𝑡)}. The policy 𝜋 ∈ Π specifies if each supervisor is serving
the customers or working on her own responsibilities as a function of the current state 𝑥 ∈ 𝑋 (i.e., the
number of customers who are waiting for the supervisor). We note that {X𝜋 (𝑡)} is a birth-and-death
process with finite state space 𝑋 and there exists a finite scalar 𝑞 such that the transition rates {𝑞𝜋 (𝑥, 𝑥 ′)}
of {X𝜋 (𝑡)} satisfy

∑
𝑥′ ∈𝑋,𝑥′≠𝑥 𝑞𝜋 (𝑥, 𝑥

′) ≤ 𝑞 for all 𝑥 ∈ 𝑋 and 𝜋 ∈ Π. This indicates that {X𝜋 (𝑡)} is
uniformizable for all 𝜋 ∈ Π. Let {𝑌𝜋 (𝑘)} denote the corresponding discrete-time Markov chain, so that
{𝑌𝜋 (𝑘)} has the same state space 𝑋 as {X𝜋 (𝑡)} and transition probabilities 𝑝𝜋 (𝑥, 𝑥 ′) = 𝑞𝜋 (𝑥, 𝑥 ′)/𝑞 if
𝑥 ′ ≠ 𝑥 and 𝑝𝜋 (𝑥, 𝑥) = 1 −

∑
𝑥′ ∈𝑋,𝑥′≠𝑥 𝑞𝜋 (𝑥, 𝑥

′)/𝑞 for all 𝑥 ∈ 𝑋 . We then translate the continuous-time
optimization problem to a discrete-time Markov decision problem (see, e.g., [20]). That is to say, we
can generate sample paths of {X𝜋 (𝑡)}, where 𝜋 ∈ Π, by generating a Poisson process {𝐾 (𝑡)} with rate
𝑞 = 𝑁𝜇1 + 𝑁𝜃 + 𝑀𝜇2 < ∞ and at the times of events of {𝐾 (𝑡)}, the next state of {X𝜋 (𝑡)} is generated
using the transition probabilities of {𝑌𝜋 (𝑘)}.

Let 𝑎 ∈ 𝐴 = {0, 1, . . . , 𝑀} denote the assignment of supervisors, where 𝑎 represents the number of
supervisors who are working with the subordinates and 𝐴 is the action space. Let 𝐴𝑥 and 𝑎𝑥 denote
the set of allowable actions in state 𝑥 ∈ 𝑋 . Note that 𝐴0 = {0}, representing that supervisors can only
work on their own responsibilities when there are no customers waiting for the second-stage service,
and 𝐴𝑁 = {1, . . . , 𝑀}, representing that we have at least one supervisor serving the customers if the
number of customers who are waiting for supervisors attains the maximum (since it would be unethical
for supervisors not to serve customers when all the first-stage servers cannot serve any more customers).
For 1 ≤ 𝑥 ≤ 𝑁 − 1, we have 𝐴𝑥 = {0, 1, . . . ,min{𝑥, 𝑀}}. Figure 1 illustrates the corresponding rate
diagram when action 𝑎𝑥 ∈ 𝐴𝑥 is selected in state 𝑥 ∈ 𝑋 .

For the discrete-time Markov decision process problem with uniformization constant 𝑞, we have, for
all 𝑎𝑥 ∈ 𝐴𝑥 , the following one-step transition probabilities:

𝑝(𝑥 ′ | 𝑥, 𝑎𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑁 − 𝑥)𝜇1

𝑞
for 𝑥 ∈ {0, . . . , 𝑁 − 1}, 𝑥 ′ = 𝑥 + 1,

(𝑥 − 𝑎𝑥)𝜃 + 𝑎𝑥𝜇2

𝑞
for 𝑥 ∈ {1, . . . , 𝑁}, 𝑥 ′ = 𝑥 − 1,

1 −
(𝑁 − 𝑥)𝜇1 + (𝑥 − 𝑎𝑥)𝜃 + 𝑎𝑥𝜇2

𝑞
for 𝑥 ∈ {0, . . . , 𝑁}, 𝑥 ′ = 𝑥,

0 otherwise.

(1)
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Furthermore, for all 𝑥 ∈ 𝑋 and 𝑎𝑥 ∈ 𝐴𝑥 , we specify the immediate reward 𝑟 (𝑥, 𝑎𝑥) of choosing action
𝑎𝑥 in state 𝑥:

𝑟 (𝑥, 𝑎𝑥) =
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥𝑟2𝜇2 − (𝑥 − 𝑎𝑥)𝑐𝜃

𝑞
.

Note that due to the abandonments, this Markov decision process problem is unichain. Since 𝑋 is
finite, 𝐴𝑥 is finite for each 𝑥 ∈ 𝑋 , and 𝑟 (𝑥, 𝑎𝑥) is bounded, there exists a stationary long-run average
optimal policy (see [23], Theorem 8.4.5).

For any policy 𝜋 ∈ Π, let 𝑔𝜋𝑁 ,𝑀 denote the gain (long-run average reward) of the continuous-time
problem under policy 𝜋 for a system with 𝑁 subordinates and 𝑀 supervisors. Note that 𝑔𝜋𝑁 ,𝑀/𝑞 is the
gain for the corresponding discrete-time problem. The objective is to identify the optimal policy 𝜋∗ ∈ Π
that attains the optimal gain 𝑔∗𝑁 ,𝑀 , that is, find 𝜋∗ such that

𝑔𝜋
∗

𝑁 ,𝑀 = 𝑔∗𝑁 ,𝑀 = max
𝜋∈Π

𝑔𝜋𝑁 ,𝑀 .

3. Optimal policy

In this section, we show that one of two policies is always optimal and characterize the conditions under
which each policy is optimal. Note that a Markovian deterministic decision rule 𝑑 : 𝑋 → 𝐴 specifies
which action 𝑑 (𝑥) ∈ 𝐴𝑥 to choose in each state 𝑥 ∈ 𝑋 . Thus, a stationary policy 𝜋 can be defined using
the corresponding decision rule 𝑑 which will be denoted as 𝜋 = 𝑑∞.

Define 𝜋S = (𝑑S)
∞, where

𝑑S (𝑥) =

{
0 for 𝑥 = 0, . . . , 𝑁 − 1,
1 for 𝑥 = 𝑁.

Similarly, define 𝜋C = (𝑑C)
∞ where 𝑑C (𝑥) = min{𝑥, 𝑀} for all 𝑥 ∈ {0, . . . , 𝑁}. Thus, 𝜋S gives priority

to the Supervisors’ own responsibilities and 𝜋C gives priority to the Customers. The following theorem
completely characterizes the optimal policy.

Theorem 1. (i) If 𝑐 ≤ 𝑐0 := [(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/[(𝜇1 + 𝜇2)𝜃], then 𝜋S is optimal;
(ii) If 𝑐 ≥ 𝑐0, then 𝜋C is optimal.

Remark 2. It immediately follows from the proof of Theorem 1 that even if the supervisors are not
required to serve the customers when there are 𝑁 customers waiting (i.e., 𝐴𝑁 = 𝐴 = {0, 1, . . . , 𝑀}),
a result similar to Theorem 1 remains true. That is to say, if 𝑐 ≤ 𝑐0, it is optimal for all supervisors to
always work on their own responsibilities (even in state 𝑁); if 𝑐 ≥ 𝑐0, it is optimal for supervisors to
start serving customers as soon as there is a customer waiting.

Proof of Theorem 1 and Remark 2. It follows from 1 ≤ 𝑀 ≤ 𝑁 that 𝑁 = 1 implies 𝑀 = 1, in which
case 𝑋 = {0, 1}, 𝐴0 = {0}, and 𝐴1 = {1}. Thus, there is only one feasible policy when 𝑁 = 1 and
𝜋S = 𝜋C are both optimal. Therefore, we assume 𝑁 ≥ 2 in the rest of the proof.

Without loss of generality, we assume that 𝑞 = 1 and use the value iteration algorithm for unichain
Markov decision process problems (see p. 364 of [23]).

To prove the optimality of 𝜋S and 𝜋C under different conditions, for all 𝑥 = 0, . . . , 𝑁 , we set

𝑣0(𝑥) = (𝑁 − 𝑥 − 1) ×
𝑟𝑠𝜇𝑠 − 𝑟2𝜇2

𝜇1 + 𝜇2
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and compute 𝑣𝑛 (𝑥) = max𝑎𝑥 ∈𝐴𝑥
𝑣𝑎𝑥𝑛 (𝑥) for 𝑛 ≥ 1, where for 𝑥 ∈ 𝑋 and 𝑎𝑥 ∈ 𝐴𝑥 ,

𝑣𝑎𝑥𝑛 (𝑥) = (𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥𝑟2𝜇2 − (𝑥 − 𝑎𝑥)𝑐𝜃 + (𝑁 − 𝑥)𝜇1𝑣𝑛−1 (𝑥 + 1)
+ [(𝑥 − 𝑎𝑥)𝜃 + 𝑎𝑥𝜇2]𝑣𝑛−1 (𝑥 − 1)
+ [1 − (𝑁 − 𝑥)𝜇1 − (𝑥 − 𝑎𝑥)𝜃 − 𝑎𝑥𝜇2]𝑣𝑛−1 (𝑥). (2)

Note that since 𝐴0 = {0}, 𝑣𝑛 (0) = 𝑣0
𝑛 (0) follows. For 𝑎1

𝑥 , 𝑎
2
𝑥 ∈ 𝐴𝑥 and 𝑥 ∈ {1, . . . , 𝑁}, define

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) = 𝑣𝑎
1
𝑥
𝑛 (𝑥) − 𝑣

𝑎2
𝑥
𝑛 (𝑥) = (𝑎2

𝑥 − 𝑎
1
𝑥)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃 + (𝜃 − 𝜇2) [𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥)]). (3)

We first prove part (i). We will show that Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≥ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁} and
𝑎1
𝑥 < 𝑎2

𝑥 ∈ 𝐴𝑥 , which implies that 𝑣𝑛 (𝑥) = 𝑣0
𝑛 (𝑥) for all 𝑥 ∈ {1, . . . , 𝑁 − 1} and 𝑣𝑛 (𝑁) = 𝑣1

𝑛 (𝑁)
(𝑣𝑛 (𝑁) = 𝑣0

𝑛 (𝑁) in Remark 2). First assume 𝜃 = 𝜇2. We then have:

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) = (𝑎2
𝑥 − 𝑎

1
𝑥)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃) ≥ 0

for all 𝑛 ≥ 1 and 𝑥 ∈ {1, . . . , 𝑁} as long as 𝑐 ≤ (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/𝜃 = 𝑐0.
Next assume 𝜃 ≠ 𝜇2. We use induction to prove that Δ𝑎

1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑠) ≥ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁}, and
𝑎1
𝑥 < 𝑎

2
𝑥 ∈ 𝐴𝑥 . For 𝑛 = 1 and 𝑥 ∈ {1, . . . , 𝑁}, (3) yields

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

1 (𝑥) = (𝑎2
𝑥 − 𝑎

1
𝑥)

[
(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)

𝜇1 + 𝜇2
− 𝑐𝜃

]
≥ 0, (4)

where the inequality follows since 𝑐 ≤ 𝑐0. Now assume that Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑘 (𝑥) ≥ 0 for 𝑘 = 1, . . . , 𝑛 − 1,
𝑥 ∈ {1, . . . , 𝑁} and 𝑎1

𝑥 < 𝑎2
𝑥 (i.e., for 𝑘 = 1, . . . , 𝑛 − 1, 𝑣𝑘 (𝑥) = 𝑣0

𝑘 (𝑥) for all 𝑥 ∈ {0, . . . , 𝑁 − 1} and
𝑣𝑘 (𝑁) = 𝑣1

𝑘 (𝑁) in Theorem 1; 𝑣𝑘 (𝑁) = 𝑣0
𝑘 (𝑁) in Remark 2) as long as 𝑐 ≤ 𝑐0. We will show that the

same assertion holds for 𝑘 = 𝑛. From the induction hypothesis, we have

𝑣𝑛−1 (𝑥) = 𝑀𝑟𝑠𝜇𝑠 − 𝑥𝑐𝜃 + (𝑁 − 𝑥)𝜇1𝑣𝑛−2 (𝑥 + 1) + 𝑥𝜃𝑣𝑛−2 (𝑥 − 1) + [1 − (𝑁 − 𝑥)𝜇1 − 𝑥𝜃]𝑣𝑛−2 (𝑥)

for 𝑥 ∈ {0, . . . , 𝑁 − 1} (𝑥 ∈ {0, . . . , 𝑁} in Remark 2), and

𝑣𝑛−1 (𝑁) = (𝑀 − 1)𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 − (𝑁 − 1)𝑐𝜃 + [(𝑁 − 1)𝜃 + 𝜇2]𝑣𝑛−2 (𝑁 − 1)
+ [1 − (𝑁 − 1)𝜃 − 𝜇2]𝑣𝑛−2 (𝑁).

Furthermore, it follows from Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛−1 (𝑥) ≥ 0 and (3) that for 𝑥 = 1, . . . , 𝑁 ,

𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃 + (𝜃 − 𝜇2) [𝑣𝑛−2 (𝑥 − 1) − 𝑣𝑛−2 (𝑥)] ≥ 0,

which implies that

(𝜃 − 𝜇2) [𝑣𝑛−2 (𝑥 − 1) − 𝑣𝑛−2 (𝑥)] ≥ −𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃. (5)

Note that for 𝑥 ∈ {1, . . . , 𝑁 − 1} (𝑥 ∈ {1, . . . , 𝑁} in Remark 2),

𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥) = 𝑐𝜃 + (𝑁 − 𝑥)𝜇1 [𝑣𝑛−2 (𝑥) − 𝑣𝑛−2 (𝑥 + 1)]
+ (𝑥 − 1)𝜃 [𝑣𝑛−2 (𝑥 − 2) − 𝑣𝑛−2 (𝑥 − 1)]
+ [1 − (𝑁 − 𝑥 + 1)𝜇1 − 𝑥𝜃] [𝑣𝑛−2 (𝑥 − 1) − 𝑣𝑛−2 (𝑥)] (6)
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and

𝑣𝑛−1 (𝑁 − 1) − 𝑣𝑛−1 (𝑁) = 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 + (𝑁 − 1)𝜃 [𝑣𝑛−2 (𝑁 − 2) − 𝑣𝑛−2 (𝑁 − 1)]
+ [1 − (𝑁 − 1)𝜃 − 𝜇1 − 𝜇2] [𝑣𝑛−2 (𝑁 − 1) − 𝑣𝑛−2 (𝑁)] . (7)

Note that since 𝑞 = 𝑁𝜇1 + 𝑁𝜃 + 𝑀𝜇2 and we assumed, without loss of generality, that 𝑞 = 1, we have
that 1 − (𝑁 − 𝑥 + 1)𝜇1 − 𝑥𝜃 and 1 − (𝑁 − 1)𝜃 − 𝜇1 − 𝜇2 are positive for 𝑥 ∈ {1, . . . , 𝑁}.

Observe that the multipliers (𝑁−𝑥)𝜇1 and (𝑥−1)𝜃 of 𝑣𝑛−2 (𝑥)−𝑣𝑛−2 (𝑥+1) and 𝑣𝑛−2 (𝑥−2)−𝑣𝑛−2 (𝑥−1)
equal zero when 𝑥 = 𝑁 and 𝑥 = 1, respectively. Equations (5), (6), and (7) yield

(𝜃 − 𝜇2) [𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥)] ≥ 𝑐𝜃 (𝜃 − 𝜇2) + (1 − 𝜃 − 𝜇1)(−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (1 − 𝜇1 − 𝜇2)𝜃𝑐 + (𝜃 + 𝜇1 − 1)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)

for 𝑥 ∈ {1, . . . , 𝑁 − 1} (𝑥 ∈ {1, . . . , 𝑁} in Remark 2), and

(𝜃 − 𝜇2) [𝑣𝑛−1 (𝑁 − 1) − 𝑣𝑛−1 (𝑁)] ≥ (𝜃 − 𝜇2)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) + (1 − 𝜇1 − 𝜇2)(−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (1 − 𝜇1 − 𝜇2)𝜃𝑐 + (𝜃 + 𝜇1 − 1)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2).

Now Eq. (3) yields that for all 𝑥 = 1, . . . , 𝑁 and 𝑎1
𝑥 < 𝑎

2
𝑥 ∈ 𝐴𝑥 ,

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≥ (𝑎2
𝑥 − 𝑎

1
𝑥) [𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃 + (1 − 𝜇1 − 𝜇2)𝜃𝑐 + (𝜃 + 𝜇1 − 1)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)]

= (𝑎2
𝑥 − 𝑎

1
𝑥) [−(𝜇1 + 𝜇2)𝑐𝜃 + (𝜃 + 𝜇1)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)] ≥ 0 (8)

as long as 𝑐 ≤ 𝑐0.
From (8), we have Δ𝑎

1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≥ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁}, and 𝑎1
𝑥 < 𝑎

2
𝑥 when 𝑐 ≤ 𝑐0. Therefore,

𝑣𝑛 (𝑥) = 𝑣0
𝑛 (𝑥) for 𝑥 = 0, . . . , 𝑁 − 1 (𝑥 = 0, . . . , 𝑁 in Remark 2) and 𝑣𝑛 (𝑁) = 𝑣1

𝑛 (𝑁) for all 𝑛 ≥ 1 when
𝑐 ≤ 𝑐0. Since we have a finite state space 𝑋 and 𝐴𝑥 is finite for all 𝑥, 𝑟 (𝑥, 𝑎𝑥) is bounded and the model
is unichain, there exists a stationary long-run average optimal policy (see [23], Theorem 8.4.5). Note
that from (1) and 𝑞 = 𝑁𝜇1 + 𝑁𝜃 + 𝑀𝜇2 = 1, regardless of the action 𝑎𝑥 chosen in each state 𝑥, we have
𝑝(𝑥 | 𝑥, 𝑎𝑥) = 1− [(𝑁 − 𝑥)𝜇1 + (𝑥 − 𝑎𝑥)𝜃 + 𝑎𝑥𝜇2]/𝑞 = 𝑥𝜇1+ (𝑁−𝑥+𝑎𝑥)𝜃+ (𝑀−𝑎𝑥)𝜇2 > 0 for∀𝑥 ∈ 𝑋
and 𝑎𝑥 ∈ 𝐴𝑥 , which indicates that the transition matrix for any feasible stationary policy is aperiodic.
Therefore, since the stationary policies are unichain and every optimal policy has an aperiodic transition
matrix, it follows from Theorems 8.5.4 and 8.5.6 of Puterman [23] that for any 𝜖 > 0, value iteration will
stop after a finite number of iterations with an 𝜖-optimal policy. Furthermore, since 𝜖 is arbitrary and the
state and action spaces are finite, an 𝜖-optimal policy (for 𝜖 small enough) is indeed an optimal policy.

For part (ii), it follows from the proof of part (i) that Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≤ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁},
and 𝑎1

𝑥 < 𝑎2
𝑥 ∈ 𝐴𝑥 , when 𝑐 ≥ 𝑐0 and 𝜃 = 𝜇2. When 𝜃 ≠ 𝜇2, we again use induction to prove that

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≤ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁}, and 𝑎1
𝑥 < 𝑎

2
𝑥 ∈ 𝐴𝑥 . From (4), we know that Δ𝑎

1
𝑥 ,𝑎

2
𝑥

1 (𝑥) ≤ 0
for 𝑥 ∈ {1, . . . , 𝑁} and 𝑎1

𝑥 < 𝑎
2
𝑥 ∈ 𝐴𝑥 . Assume that Δ𝑎

1
𝑥 ,𝑎

2
𝑥

𝑘 (𝑥) ≤ 0 for 𝑘 = 1, . . . , 𝑛 − 1, 𝑥 ∈ {1, . . . , 𝑁},
and 𝑎1

𝑥 < 𝑎
2
𝑥 ∈ 𝐴𝑥 . Therefore, we have 𝑣𝑛−1 (𝑥) = 𝑣

min{𝑥,𝑀 }

𝑛−1 (𝑥) for 𝑥 ∈ {0, . . . , 𝑁}.
Note that from Δ𝑎

1
𝑥 ,𝑎

2
𝑥

𝑛−1 (𝑥) ≤ 0 and (3), for 𝑥 = 1, . . . , 𝑁 , we have

(𝜃 − 𝜇2) [𝑣𝑛−2 (𝑥 − 1) − 𝑣𝑛−2 (𝑥)] ≤ −𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃. (9)
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Furthermore, for 𝑥 ∈ {1, . . . , 𝑁}, (2) yields

𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥)

= 𝑣min{𝑥−1,𝑀 }

𝑛−1 (𝑥 − 1) − 𝑣min{𝑥,𝑀 }

𝑛−1 (𝑥)

= (𝑀 − min{𝑥 − 1, 𝑀})𝑟𝑠𝜇𝑠 + min{𝑥 − 1, 𝑀}𝑟2𝜇2 − (𝑥 − 1 − min{𝑥 − 1, 𝑀})𝑐𝜃

+ (𝑁 − 𝑥 + 1)𝜇1𝑣𝑛−2 (𝑥) + [(𝑥 − 1 − min{𝑥 − 1, 𝑀})𝜃 + min{𝑥 − 1, 𝑀}𝜇2]𝑣𝑛−2 (𝑥 − 2)
+ [1 − (𝑁 − 𝑥 + 1)𝜇1 − (𝑥 − 1 − min{𝑥 − 1, 𝑀})𝜃 − min{𝑥 − 1, 𝑀}𝜇2]𝑣𝑛−2 (𝑥 − 1)
− (𝑀 − min{𝑥, 𝑀})𝑟𝑠𝜇𝑠 − min{𝑥, 𝑀}𝑟2𝜇2 + (𝑥 − min{𝑥, 𝑀})𝑐𝜃

− (𝑁 − 𝑥)𝜇1𝑣𝑛−2 (𝑥 + 1) − [(𝑥 − min{𝑥, 𝑀})𝜃 + min{𝑥, 𝑀}𝜇2]𝑣𝑛−2 (𝑥 − 1)
− [1 − (𝑁 − 𝑥)𝜇1 − (𝑥 − min{𝑥, 𝑀})𝜃 − min{𝑥, 𝑀}𝜇2]𝑣𝑛−2 (𝑥)

= 𝑐𝜃 + (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃) × 1{𝑥≤𝑀 } + (𝑁 − 𝑥)𝜇1 [𝑣𝑛−2 (𝑥) − 𝑣𝑛−2 (𝑥 + 1)]
+ [(𝑥 − 1 − min{𝑥 − 1, 𝑀})𝜃 + min{𝑥 − 1, 𝑀}𝜇2] × [𝑣𝑛−2 (𝑥 − 2) − 𝑣𝑛−2 (𝑥 − 1)]
+ [1 − (𝑁 − 𝑥 + 1)𝜇1 − (𝑥 − min{𝑥, 𝑀})𝜃 − min{𝑥, 𝑀}𝜇2] × [𝑣𝑛−2 (𝑥 − 1) − 𝑣𝑛−2 (𝑥)],

where 1{𝑥≤𝑀 } is an indicator function defined as

1{𝑥≤𝑀 } =

{
1 when 𝑥 ≤ 𝑀,
0 when 𝑥 > 𝑀.

Since 𝑞 = 𝑁𝜇1 + 𝑁𝜃 + 𝑀𝜇2 and we assumed, without loss of generality, that 𝑞 = 1, we have that
1 − (𝑁 − 𝑥 + 1)𝜇1 − (𝑥 − min{𝑥, 𝑀})𝜃 − min{𝑥, 𝑀}𝜇2 is positive for 𝑥 ∈ {1, . . . , 𝑁}. Therefore, for
𝑥 ∈ {1, . . . , 𝑀}, (9) yields

(𝜃 − 𝜇2) [𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥)] ≤ (𝜃 − 𝜇2)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) + (𝑁 − 𝑥)𝜇1 × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

+ (𝑥 − 1)𝜇2 × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

+ [1 − (𝑁 − 𝑥 + 1)𝜇1 − 𝑥𝜇2] × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (𝜃 − 𝜇2)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) + (1 − 𝜇1 − 𝜇2)(−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (1 − 𝜇1 − 𝜇2)𝑐𝜃 − (1 − 𝜇1 − 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2),

and for 𝑥 ∈ {𝑀 + 1, . . . , 𝑁}, we have

(𝜃 − 𝜇2) [𝑣𝑛−1 (𝑥 − 1) − 𝑣𝑛−1 (𝑥)] ≤ (𝜃 − 𝜇2)𝑐𝜃 + (𝑁 − 𝑥)𝜇1 × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

+ [(𝑥 − 1 − 𝑀)𝜃 + 𝑀𝜇2] × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

+ [1 − (𝑁 − 𝑥 + 1)𝜇1 − (𝑥 − 𝑀)𝜃 − 𝑀𝜇2] × (−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (𝜃 − 𝜇2)𝑐𝜃 + (1 − 𝜇1 − 𝜃)(−𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 + 𝑐𝜃)

= (1 − 𝜇1 − 𝜇2)𝑐𝜃 − (1 − 𝜇1 − 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2).

Now for all 𝑥 = 1, . . . , 𝑁 and 𝑎1
𝑥 < 𝑎

2
𝑥 ∈ 𝐴𝑠, Eq. (3) yields that

Δ𝑎
1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≤ (𝑎2
𝑥 − 𝑎

1
𝑥) [𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 − 𝑐𝜃 + (1 − 𝜇1 − 𝜇2)𝑐𝜃 − (1 − 𝜇1 − 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)]

= (𝑎2
𝑥 − 𝑎

1
𝑥) [−(𝜇1 + 𝜇2)𝑐𝜃 + (𝜃 + 𝜇1)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)] ≤ 0 (10)

as long as 𝑐 ≥ 𝑐0.
Equation (10) shows that Δ𝑎

1
𝑥 ,𝑎

2
𝑥

𝑛 (𝑥) ≤ 0 for all 𝑛 ≥ 1, 𝑥 ∈ {1, . . . , 𝑁}, and 𝑎1
𝑥 < 𝑎2

𝑥 ∈ 𝐴𝑥 when
𝑐 ≥ 𝑐0. Therefore, we have 𝑣𝑛 (𝑥) = 𝑣min{𝑥,𝑀 }

𝑛 (𝑥) for all 𝑥 ∈ {0, . . . , 𝑁}. The remaining proof of part (ii)
regarding the 𝜖-optimality of the policy generated from value iteration is identical to the corresponding
arguments in part (i). �
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The threshold 𝑐0 increases in 𝑟𝑠, 𝜇𝑠 and decreases in 𝑟2, 𝜇2. That is to say, the threshold on
the abandonment cost where the supervisors switch from focusing on their own responsibilities to
focusing on the customers increases with the rewards and processing rate of the supervisor on their own
responsibilities, and decreases when the rewards or processing rate of the supervisors on the customers
increase. This is because larger 𝑟𝑠, 𝜇𝑠 and smaller 𝑟2, 𝜇2 all imply relatively greater rewards when
the supervisors are working on their own responsibilities. The fact that 𝑐0 does not depend on 𝑀, 𝑁
reflects the linearity of the rewards and lack of switching times and costs, as well as the fact that each
supervisor’s choices on whether to work with a subordinate or not has limited immediate impact on
other supervisors and subordinates.

Moreover, when 𝑟𝑠𝜇𝑠 > 𝑟2𝜇2, i.e., 𝜋C is ineffective from the perspective of immediate revenue, then
𝑐0 decreases when 𝜃 increases. This means that when the supervisors earn greater rewards per unit time
working on their own responsibilities, then as the abandonment rate 𝜃 increases, the supervisors switch
from prioritizing their own responsibilities to prioritizing customers earlier (for lower abandonment
costs). The condition 𝜇2 > 𝜃 determines whether the rate of supervisors finishing the second-stage
is larger than the abandonment rate. Therefore, if 𝜇2 > 𝜃, then 𝜋C is effective in reducing future
abandonments. If 𝜇2 < 𝜃, then 𝑐0 decreases in 𝜇1. In this case, 𝜋C is ineffective in both increasing
immediate revenue and reducing future abandonments, and if 𝜋C is optimal for a particular 𝜇1, then
Policy 𝜋C will remain optimal for a larger 𝜇1. However, if 𝜇2 > 𝜃, then 𝑐0 increases in 𝜇1. In this case,
𝜋C is of mixed effectiveness in improving immediate revenue and reducing future abandonments, and
if 𝜋S is optimal for a particular 𝜇1, then Policy 𝜋S will remain optimal for a larger 𝜇1.

When 𝑟𝑠𝜇𝑠 < 𝑟2𝜇2, i.e., 𝑐0 is negative, then 𝑐0 increases in 𝜃. When 𝑐0 is negative, 𝜋C is always
optimal if there is a cost when a customer leaves the system without the second-stage service. However,
when there is a reward for each customer leaving the system with the completion of the first-stage service
only, an increase in the abandonment rate can lead supervisors to switch to serving the customers earlier
(for lower abandonment rewards). If 𝜇2 > 𝜃, then 𝑐0 decreases in 𝜇1 and if 𝜇2 < 𝜃, then 𝑐0 increases
in 𝜇1. This is because if 𝑟𝑠𝜇𝑠 < 𝑟2𝜇2 and 𝜇2 > 𝜃, then Policy 𝜋C is effective in both increasing
immediate revenues and reducing future abandonments, which leads to the conclusion that when Policy
𝜋C is optimal for a specific 𝜇1, it will remain optimal for larger 𝜇1. Conversely, if 𝑟𝑠𝜇𝑠 < 𝑟2𝜇2 and
𝜇2 < 𝜃, then Policy 𝜋C is effective in increasing immediate revenues but ineffective in reducing future
abandonments. In this case, if 𝜋S is optimal for a particular 𝜇1, then Policy 𝜋S will remain optimal for
a larger 𝜇1.

Remark 3. If 𝑐 = 0, the two extreme policies are still optimal. In particular, if 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 ≥ 0,
supervisors prioritize their own responsibilities; otherwise, they prioritize the customers. Thus, if there
is no abandonment cost, the supervisors will focus on optimizing immediate revenue whenever they can.

Remark 4. If 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 = 0, i.e., 𝑐0 = 0, the optimality of 𝜋S (𝜋C) depends on the whether 𝑐 is
negative (positive) only. When 𝑟𝑠𝜇𝑠 = 𝑟2𝜇2, the rewards per unit time do not depend on the chosen
action. Therefore, the optimal assignment of the supervisors only depends on whether there is a cost or
a reward when a customer leaves the system without the second-stage service.

The next corollary specifies the optimal policy when the abandonment rate 𝜃 is small or large.

Corollary 5. When 𝜃 ↘ 0, 𝜋S is optimal if 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 > 0 and 𝜋C is optimal if 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 < 0. When
𝜃 ↗ ∞, 𝜋S is optimal if 𝑐 ≤ (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/(𝜇1 + 𝜇2) and 𝜋C is optimal if 𝑐 ≥ (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/(𝜇1 + 𝜇2).

Proof. Theorem 1 introduces optimal policies with a threshold 𝑐0 on 𝑐. We have

𝑐0 =
(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)

(𝜇1 + 𝜇2)𝜃
=
𝑟𝑠𝜇𝑠 − 𝑟2𝜇2

𝜇1 + 𝜇2
+
(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)𝜇1

(𝜇1 + 𝜇2)𝜃
,
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which leads to:

lim
𝜃→0

𝑐0 =

⎧⎪⎪⎨⎪⎪⎩
+∞ when 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 > 0,
0 when 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 = 0,
−∞ when 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 < 0,

lim
𝜃→∞

𝑐0 =
𝑟𝑠𝜇𝑠 − 𝑟2𝜇2

𝜇1 + 𝜇2
.

�

Corollary 5 indicates that when the abandonment rate approaches 0, the optimal policy (whether
a supervisor prioritizes her own responsibilities or serving customers) will maximize the immediate
reward associated with the action. On the other hand, when the abandonment rate approaches infinity,
the optimal policy still depends on how the abandonment cost 𝑐 compares with a threshold. To bet-
ter understand the value of the threshold, consider the case where 𝑁 > 𝑀 = 1 as an example. When
𝜋S is adopted, in the limit all customers will abandon and the long-run average reward of the sys-
tem approaches 𝑟𝑠𝜇𝑠 − 𝑁𝑐𝜇1. When 𝜋C is adopted, in the limit the system behaves as a birth-death
process with states 0, 1, birth rate 𝑁𝜇1, death rate 𝜇2, and the long-run average reward approaches
(𝜇2𝑟𝑠𝜇𝑠 + 𝑁𝜇1 [𝑟2𝜇2 − (𝑁 − 1)𝑐𝜇1])/(𝜇2 + 𝑁𝜇1). The comparison of the long-run average rewards of
the two systems leads to a threshold of (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/(𝜇1 + 𝜇2) for the parameter 𝑐.

The next proposition shows the closed-form expressions of the gains for policies 𝜋S and 𝜋C .

Proposition 6. For 1 ≤ 𝑀 ≤ 𝑁 , the gains of 𝜋S and 𝜋C are

𝑔𝜋
S

𝑁 ,𝑀 =

∑𝑁−1
𝑗=0

(𝑁
𝑗

)
𝜃𝑁− 𝑗𝜇 𝑗1 [𝜇2 + (𝑁 − 1)𝜃] (𝑀𝑟𝑠𝜇𝑠 − 𝑗𝑐𝜃)

+𝑁𝜃𝜇𝑁1 [(𝑀 − 1)𝑟𝑠𝜇𝑠 + 𝑟2𝜇2 − (𝑁 − 1)𝑐𝜃]
(𝜃 + 𝜇1)𝑁 [𝜇2 + (𝑁 − 1)𝜃] + 𝜇𝑁1 (𝜃 − 𝜇2)

(11)

and

𝑔𝜋
C

𝑁 ,𝑀 =
1∑𝑀

𝑘=0
(𝑁
𝑘

)
(
𝜇1
𝜇2
)𝑘 +

∑𝑁
𝑘=𝑀+1

∏𝑘
𝑖=1 [ (𝑁+1−𝑖)𝜇1 ]

𝑀 !𝜇𝑀
2 (Π𝑘

𝑙=𝑀+1 [𝑀𝜇2+(𝑙−𝑀 ) 𝜃 ])

×

{
𝑀∑
𝑘=0

(
𝑁

𝑘

) (
𝜇1

𝜇2

) 𝑘
[(𝑀 − 𝑘)𝑟𝑠𝜇𝑠 + 𝑘𝑟2𝜇2]

+

𝑁∑
𝑘=𝑀+1

∏𝑘
𝑖=1 [(𝑁 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]
[𝑀𝑟2𝜇2 − (𝑘 − 𝑀)𝑐𝜃]

}
, (12)

respectively (with the convention that the summation over an empty set is 0).

Proof. The long-run average rewards 𝑔𝜋C

𝑁 ,𝑀 and 𝑔𝜋S

𝑁 ,𝑀 can be computed using the birth-death structure
of the underlying Markov chains under 𝜋C and 𝜋S , respectively. Specifically, the closed-form expression
of the gain (long-run average reward) for any specific policy can be uniquely determined by

𝑔𝜋𝑁 ,𝑀 =
𝑁∑
𝑥=0

𝜂𝜋𝑥 𝑟 (𝑥, 𝑑𝜋 (𝑥))𝑞, (13)

where 𝜂𝜋𝑥 is the limiting probability of {X𝜋 (𝑡)} being in state 𝑥 under policy 𝜋.
Let 𝜂𝜂𝜂𝜋 denote the limiting probability vector under policy 𝜋. The limiting probabilities can be

obtained by solving the set of equations 𝜂𝜋𝑥 [
∑
𝑘≠𝑥 𝑞𝜋 (𝑥, 𝑘)] =

∑
𝑘≠𝑥 𝜂

𝜋
𝑘 𝑞𝜋 (𝑘, 𝑥) for all 𝑥 ∈ 𝑋 , along

with the equation
∑𝑁
𝑘=0 𝜂

𝜋
𝑘 = 1.
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Therefore, for policy 𝜋S , we have

𝜂𝜋
S

𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑁
𝑥

)
𝜃𝑁−𝑥𝜇𝑥1 [𝜇2 + (𝑁 − 1)𝜃]∑𝑁−1

𝑗=0
(𝑁
𝑗

)
𝜃𝑁− 𝑗𝜇 𝑗1 [𝜇2 + (𝑁 − 1)𝜃] + 𝑁𝜃𝜇𝑁1

for 𝑥 = 0, . . . , 𝑁 − 1,

𝑁𝜃𝜇𝑁1∑𝑁−1
𝑗=0

(𝑁
𝑗

)
𝜃𝑁− 𝑗𝜇 𝑗1 [𝜇2 + (𝑁 − 1)𝜃] + 𝑁𝜃𝜇𝑁1

for 𝑥 = 𝑁,
(14)

and for policy 𝜋C , we have

𝜂𝜋
C

𝑥 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑁
𝑥

)
(
𝜇1

𝜇2
)𝑥

∑𝑀
𝑘=0

(𝑁
𝑘

)
(
𝜇1

𝜇2
)𝑘 +

∑𝑁
𝑘=𝑀+1

∏𝑘
𝑖=1 [(𝑁 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 (Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃])

for 𝑥 = 0, . . . , 𝑀,

∏𝑥
𝑖=1 [(𝑁 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 (Π𝑥𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃])∑𝑀
𝑘=0

(𝑁
𝑘

)
(
𝜇1

𝜇2
)𝑘 +

∑𝑁
𝑘=𝑀+1

∏𝑘
𝑖=1 [(𝑁 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 (Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃])

for 𝑥 = 𝑀 + 1, . . . , 𝑁.

(15)

By plugging Eqs. (14) ((15)) and the corresponding rewards 𝑟 (𝑥, 𝑑𝜋S (𝑥)) (𝑟 (𝑥, 𝑑𝜋C (𝑥))) into (13),
we can obtain the gains of 𝜋S (𝜋C). �

Until now, we have assumed that customers will not abandon while they are receiving (first- or
second-stage) service. This is motivated by service applications where it is unlikely that customers will
abandon when in service. However, there are situations where abandonments may occur during the
service (e.g., in healthcare applications).

The next corollary extends Theorem 1 to the case where abandonments can also occur during the first-
and second-stage service. In particular, the corollary show that the structure of the optimal threshold
policy remains the same when abandonments can also occur during service. Let 𝜃1 (𝜃2) denote the
abandonment rate during the first-stage (second-stage) service and 𝑐1 (𝑐2) denote the corresponding
abandonment cost. Note that 𝜃1, 𝜃2 or 𝑐1, 𝑐2 do not necessarily equal 𝜃 or 𝑐. Then, one of 𝜋C and 𝜋S is
always optimal, but the threshold on the value of 𝑐 is different.

Corollary 7. When abandonments can also occur during the first- and second-stage service,

(i) if 𝑐 ≤ 𝑐′0 := 𝑐1 𝜃1 (𝜇2+𝜃2−𝜃)+(𝑟𝑠𝜇𝑠−𝑟2𝜇2+𝑐2 𝜃2) (𝜃+𝜇1)
(𝜇1+𝜇2+𝜃2) 𝜃

, then 𝜋S is optimal;
(ii) if 𝑐 ≥ 𝑐′0, then 𝜋C is optimal.

The proof of Corollary 7 follows similar techniques as the proof of Theorem 1 by setting

𝑣0(𝑥) = (𝑁 − 𝑥 − 1) ×
𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 + 𝑐2𝜃2 − 𝑐1𝜃1

𝜇1 + 𝜇2 + 𝜃2
.

Alternatively, the new threshold can be obtained in an intuitive way as follows. Note that when aban-
donments can also occur during the first- and second-stage service, the birth rates in Figure 1 remain
the same, while the death rate in state 𝑥 ∈ {1, . . . , 𝑁} is now (𝑥 − 𝑎𝑥)𝜃 + 𝑎𝑥 (𝜇2 + 𝜃2) due to the aban-
donments that may take place during the second-stage service. Similarly, the immediate reward of the
second-stage service is now 𝑟2 × 𝜇2/(𝜇2 + 𝜃2) − 𝑐2 × 𝜃2/(𝜇2 + 𝜃2). Moreover, for state 𝑥 ∈ {1, . . . , 𝑁},
the costs from the first-stage abandonments are (𝑁 − 𝑥)𝑐1𝜃1 per unit time. That is to say, the immediate
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reward 𝑟 (𝑥, 𝑎𝑥) of choosing action 𝑎𝑥 in state 𝑥 now is

𝑟 (𝑥, 𝑎𝑥) =
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2 ×

𝜇2
𝜇2+𝜃2

− 𝑐2 ×
𝜃2

𝜇2+𝜃2
)(𝜇2 + 𝜃2) − (𝑥 − 𝑎𝑥)𝑐𝜃 − (𝑁 − 𝑥)𝑐1𝜃1

𝑞

=
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥 (

𝑟2𝜇2
𝜇2+𝜃2

+ 𝑐1 𝜃1
𝜇2+𝜃2

− 𝑐2 𝜃2
𝜇2+𝜃2

)(𝜇2 + 𝜃2) − (𝑥 − 𝑎𝑥)(𝑐 −
𝑐1 𝜃1
𝜃 )𝜃 − 𝑁𝑐1𝜃1

𝑞
.

By ignoring the 𝑁𝑐1𝜃1/𝑞 term as it is constant in 𝑥, replacing the 𝑟2 term in 𝑐0 by 𝑟2𝜇2/(𝜇2 + 𝜃2) +

𝑐1𝜃1/(𝜇2 + 𝜃2) − 𝑐2𝜃2/(𝜇2 + 𝜃2), replacing the 𝑐 term by 𝑐 − 𝑐1𝜃1/𝜃, replacing the 𝜇2 term by 𝜇2 + 𝜃2,
and replacing the (𝜇1 + 𝜇2) term by (𝜇1 + 𝜇2 + 𝜃2) in (8) and (10), the structure of the optimal policy
remains unchanged, and the new threshold 𝑐′0 should satisfy

𝑐′0 =
𝑐1𝜃1(𝜇2 + 𝜃2 − 𝜃) + (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 + 𝑐2𝜃2)(𝜃 + 𝜇1)

(𝜇1 + 𝜇2 + 𝜃2)𝜃
,

as in Corollary 7. We note that 𝑐′0 increases in 𝑐2. This is because when the second-stage abandonment
cost increases, the actual reward of a supervisor serving a customer (𝑟2×𝜇2/(𝜇2 + 𝜃2)−𝑐2×𝜃2/(𝜇2 + 𝜃2))
decreases. Therefore, the supervisors will only switch to serve the customers for larger abandonment
costs while they are waiting for the second-stage service.

Moreover, 𝑐′0 is constant in 𝑐1 or 𝜃1 when 𝜇2 + 𝜃2 = 𝜃; 𝑐′0 increases in 𝑐1 or 𝜃1 when 𝜇2 + 𝜃2 > 𝜃;
and 𝑐′0 decreases in 𝑐1 or 𝜃1 when 𝜇2 + 𝜃2 < 𝜃. This is because when 𝜇2 + 𝜃2 = 𝜃, the death rate
in state 𝑥 ∈ {1, . . . , 𝑁} is 𝑎𝑥 (𝜇2 + 𝜃2) + (𝑥 − 𝑎𝑥)𝜃 = 𝑥𝜃. Thus, the death rate in state 𝑥 is the same
regardless of the chosen action 𝑎𝑥 , which leads to the threshold 𝑐′0 remaining the same. However, when
𝜇2 + 𝜃2 > 𝜃, larger 𝑎𝑥 results in higher death rates. Since the 𝑐1, 𝜃1 terms in the immediate reward
𝑟 (𝑥, 𝑎𝑥) equal −(𝑁 − 𝑥)𝑐1𝜃1, the effects of 𝑐1, 𝜃1 are less for smaller 𝑥, leading to an increment in the
threshold 𝑐′0. On the contrary, when 𝜇2 + 𝜃2 < 𝜃, larger 𝑎𝑥 results in lower death rates, and hence, the
supervisors will switch to serve the customers for smaller abandonment costs 𝑐 while they are waiting
for the second-stage service.

Meanwhile, we note that 𝑐′0 increases in 𝜃2 when 𝑐1𝜃1 + 𝑐2(𝜇1 + 𝜇2) > 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2; decreases in 𝜃2
when 𝑐1𝜃1 + 𝑐2 (𝜇1 + 𝜇2) < 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2; and is constant in 𝜃2 when 𝑐1𝜃1 + 𝑐2 (𝜇1 + 𝜇2) = 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2.
Thus, when the abandonment costs 𝑐1, 𝑐2 and rate 𝜃1 during service are large (small) relative to the
benefit 𝑟𝑠𝜇𝑠−𝑟2𝜇2 of supervisors focusing on their own responsibilities, the supervisors will switch later
(earlier) from their own responsibilities to serving the customers as the abandonment rate 𝜃2 increases.

Remark 8. When abandonments can also occur during the first- and second-stage service, if 𝑐1 = 𝑐2 = 𝑐
and 𝜃1 = 𝜃2 = 𝜃, we have:

(i) if 𝑟2𝜇2 ≤ 𝑟𝑠𝜇𝑠, then 𝜋S is optimal;
(ii) if 𝑟2𝜇2 ≥ 𝑟𝑠𝜇𝑠, then 𝜋C is optimal.

Note that when 𝑐1 = 𝑐2 = 𝑐 and 𝜃1 = 𝜃2 = 𝜃, the immediate reward 𝑟 (𝑥, 𝑎𝑥) of choosing action 𝑎𝑥 in
state 𝑥 is

𝑟 (𝑥, 𝑎𝑥) =
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2 ×

𝜇2
𝜇2+𝜃

− 𝑐 × 𝜃
𝜇2+𝜃

)(𝜇2 + 𝜃) − (𝑥 − 𝑎𝑥)𝑐𝜃 − (𝑁 − 𝑥)𝑐𝜃

𝑞

=
𝑀𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2𝜇2 − 𝑟𝑠𝜇𝑠) − 𝑁𝑐𝜃

𝑞
. (16)

Since𝑀𝑟𝑠𝜇𝑠/𝑞 and 𝑁𝑐𝜃/𝑞 in (16) are constant in 𝑥, the optimal policy depends solely on the comparison
of 𝑟2𝜇2 and 𝑟𝑠𝜇𝑠 in this case.
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Remark 9. When abandonments can also occur during the first-stage (but not during the second-stage
service), if 𝑐1 = 𝑐 and 𝜃1 = 𝜃, we have

(i) if 𝑐 ≤ (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/𝜃, then 𝜋S is optimal;
(ii) if 𝑐 ≥ (𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)/𝜃, then 𝜋C is optimal.

Note that in this case, 𝜋S is optimal when 𝑟𝑠𝜇𝑠 ≥ 𝑟2𝜇2 + 𝑐𝜃 and 𝜋C is optimal otherwise. This is
because the immediate reward 𝑟 (𝑥, 𝑎𝑥) of choosing action 𝑎𝑥 in state 𝑥 now is

𝑟 (𝑥, 𝑎𝑥) =
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2𝜇2 + 𝑐𝜃) − 𝑁𝑐𝜃

𝑞

=
𝑀𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2𝜇2 + 𝑐𝜃 − 𝑟𝑠𝜇𝑠) − 𝑁𝑐𝜃

𝑞
,

which does not depend on 𝑥. Therefore, the optimal policy depends on the comparison of 𝑟2𝜇2 + 𝑐𝜃 and
𝑟𝑠𝜇𝑠 in this case.

Remark 10. When abandonments can also occur during the second-stage (but not during the first-stage
service), if 𝑐2 = 𝑐 and 𝜃2 = 𝜃, we have

(i) if 𝑐 ≤ [(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/𝜃𝜇2, then 𝜋S is optimal;
(ii) if 𝑐 ≥ [(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/𝜃𝜇2, then 𝜋C is optimal.

Note that in this case, the immediate reward 𝑟 (𝑥, 𝑎𝑥) of choosing action 𝑎𝑥 in state 𝑥 is

𝑟 (𝑥, 𝑎𝑥) =
(𝑀 − 𝑎𝑥)𝑟𝑠𝜇𝑠 + 𝑎𝑥 (

𝑟2𝜇2
𝜇2+𝜃

− 𝑐𝜃
𝜇2+𝜃

)(𝜇2 + 𝜃) − (𝑥 − 𝑎𝑥)𝑐𝜃

𝑞

=
𝑀𝑟𝑠𝜇𝑠 + 𝑎𝑥 (𝑟2𝜇2 − 𝑟𝑠𝜇𝑠) − 𝑥𝑐𝜃

𝑞
,

which depends on the state 𝑥. However, when 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 > 0, the threshold in Remark 10 satisfies
[(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/𝜃𝜇2 > 𝑐0 = [(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/(𝜇1 + 𝜇2)𝜃 > 0. This implies that when
the supervisors earn greater rewards per unit time working on their own responsibilities, if abandonments
can also occur during the second-stage service and 𝑐2 = 𝑐 > 0, the expected rewards for supervisors
serving the customers decrease. Therefore, the supervisors will switch to serve the customers for larger
abandonment costs. However, when 𝑟𝑠𝜇𝑠 − 𝑟2𝜇2 < 0, we have [(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)(𝜃 + 𝜇1)]/𝜃𝜇2 < 𝑐0 < 0.
That is to say, when the supervisors earn greater rewards per unit time serving the customers, if
abandonments can also occur during the second-stage service and there is a reward for customers leaving
the system without second-stage service (i.e., −𝑐 as 𝑐 < 0), there are added benefits for supervisors to
serve the customers and hence they will switch to serving the customers earlier.

4. Benefits of pooling the subordinates of several supervisors

In this section, we investigate the effects of pooling supervisors (and their subordinates) on the system
performance. When there are multiple supervisors, each of whom has her own subordinates, a natural
question arises: should each supervisor work with her subordinates only, or should all supervisors work
with all the subordinates? Consider our example of government services in Section 1. One possibility is
that the waiting people form several queues and each official is responsible for one queue in addition to
her other responsibilities. Alternatively, all officials can be jointly responsible for serving all the waiting
people (in addition to their own responsibilities).

In particular, we consider two cases. In case 1, there are 𝐾𝑀 subordinates and 𝑀 supervisors (a
pooled system with 𝐾 subordinates per supervisor); in case 2, there are 𝑀 systems each with 𝐾 ≥ 1
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subordinates and one supervisor (𝑀 dedicated systems). Note that since 𝑐0 does not depend on the
number of subordinates or supervisors, the optimality condition is the same for both cases. We then
have Proposition 12. Before we elaborate on Proposition 12, we first prove Lemma 11.

Lemma 11. For 1 ≤ 𝑘 ≤ 𝐾𝑀 ,
(𝐾𝑀
𝑘

)
𝑘 ≥

∑min{𝐾,𝑘 }
𝑗=1

(𝐾𝑀
𝑘− 𝑗

) (𝐾
𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗).

Proof. Observe that (
𝐾𝑀

𝑘

)
𝑘 =

(
𝐾𝑀

𝑘 − 1

)
[𝐾𝑀 − (𝑘 − 1)],

and (
𝐾

𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗) ≤ 𝐾 (𝐾 − 1) 𝑗−1(𝑀 − 𝑘 + 𝑗)

= [𝐾𝑀 − (𝑘 − 𝑗) − (𝑘 − 𝑗)(𝐾 − 1)] (𝐾 − 1) 𝑗−1

for 1 ≤ 𝑘 ≤ 𝐾𝑀 and 1 ≤ 𝑗 ≤ 𝐾 . When 1 ≤ 𝑘 ≤ 𝐾𝑀 , we have(
𝐾𝑀

𝑘

)
𝑘 −

min{𝐾,𝑘 }∑
𝑗=1

(
𝐾𝑀

𝑘 − 𝑗

) (
𝐾

𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗)

≥

(
𝐾𝑀

𝑘 − 1

)
[𝐾𝑀 − (𝑘 − 1)] −

min{𝐾,𝑘 }∑
𝑗=1

(
𝐾𝑀

𝑘 − 𝑗

)
[𝐾𝑀 − (𝑘 − 𝑗) − (𝑘 − 𝑗)(𝐾 − 1)] (𝐾 − 1) 𝑗−1

=

(
𝐾𝑀

𝑘 − 1

)
(𝑘 − 1)(𝐾 − 1) −

min{𝐾,𝑘 }∑
𝑗=2

(
𝐾𝑀

𝑘 − 𝑗

)
[𝐾𝑀 − (𝑘 − 𝑗) − (𝑘 − 𝑗)(𝐾 − 1)] (𝐾 − 1) 𝑗−1

=

(
𝐾𝑀

𝑘 − 2

)
[𝐾𝑀 − (𝑘 − 2)] (𝐾 − 1) −

min{𝐾,𝑘 }∑
𝑗=2

(
𝐾𝑀

𝑘 − 𝑗

)
[𝐾𝑀 − (𝑘 − 𝑗) − (𝑘 − 𝑗)(𝐾 − 1)] (𝐾 − 1) 𝑗−1

≥

(
𝐾𝑀

𝑘 − 2

)
(𝑘 − 2)(𝐾 − 1)2 −

min{𝐾,𝑘 }∑
𝑗=3

(
𝐾𝑀

𝑘 − 𝑗

)
[𝐾𝑀 − (𝑘 − 𝑗) − (𝑘 − 𝑗)(𝐾 − 1)] (𝐾 − 1) 𝑗−1

...

≥

(
𝐾𝑀

𝑘 − min{𝐾, 𝑘}

)
(𝑘 − min{𝐾, 𝑘})(𝐾 − 1)min{𝐾,𝑘 } ≥ 0.

�

Proposition 12. (i) If 𝑐 ≤ 𝑐0 (i.e., 𝜋S is optimal), then 𝑔𝜋S

𝐾𝑀,𝑀 ≥ 𝑀𝑔𝜋
S

𝐾,1 for 𝑀, 𝐾 ≥ 1 and

lim
𝑀→∞

𝑔𝜋
S

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
S

𝐾,1

𝑀
=

𝐾𝜃𝜇𝐾1 [(𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) − 𝑐𝜃 (𝜇1 + 𝜇2)]

(𝜇1 + 𝜃){[𝜇2 + (𝐾 − 1)𝜃] (𝜃 + 𝜇1)𝐾 + 𝜇𝐾1 (𝜃 − 𝜇2)}

for 𝐾 ≥ 1;
(ii) If 𝑐 ≥ 𝑐0 (i.e., 𝜋C is optimal), then 𝑔𝜋C

𝐾𝑀,𝑀 ≥ 𝑀𝑔𝜋
C

𝐾,1 for 𝑀, 𝐾 ≥ 1 and

0 ≤
𝑔𝜋

C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1

𝑀
≤
𝑐𝜃 (𝜇1 + 𝜇2) − (𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)

(𝜇1 + 𝜃) [1 + 𝑇 (𝐾)]

for 𝐾 ≥ 1, where 𝑇 (𝐾) =
∑𝐾
𝑘=1

∏𝑘
𝑖=1 [(𝐾 + 1 − 𝑖)𝜇1]/Π𝑘𝑙=1 [𝜇2 + (𝑙 − 1)𝜃].
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Proof. (i) Using the closed-form expression of the gain for policy 𝜋S in (11), with some algebra, we have

𝑔𝜋
S

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
S

𝐾,1 =
1

(𝜇1 + 𝜃){[(𝐾 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)
𝐾 + 𝜇𝐾1 (𝜃 − 𝜇2)}

{[(𝐾𝑀 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)
𝐾𝑀 + 𝜇𝐾𝑀1 (𝜃 − 𝜇2)}

× 𝐾𝑀𝜃 [(𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) − 𝑐𝜃 (𝜇1 + 𝜇2)]

× {𝜇𝐾1 (𝜇1 + 𝜃)
𝐾𝑀 [(𝐾𝑀 − 1)𝜃 + 𝜇2] − 𝜇

𝐾𝑀
1 (𝜇1 + 𝜃)

𝐾 [(𝐾 − 1)𝜃 + 𝜇2]}. (17)

We now proceed to show that each term here is non-negative. Since 𝑐 ≤ 𝑐0, (𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) −

𝑐𝜃 (𝜇1 + 𝜇2) ≥ 0. Furthermore,

𝜇𝐾1 (𝜇1 + 𝜃)
𝐾𝑀 [(𝐾𝑀 − 1)𝜃 + 𝜇2] − 𝜇

𝐾𝑀
1 (𝜇1 + 𝜃)

𝐾 [(𝐾 − 1)𝜃 + 𝜇2] ≥ 𝜇𝐾𝑀1 (𝜇1 + 𝜃)
𝐾𝐾 (𝑀 − 1)𝜃 ≥ 0.

Similarly,

[(𝐾 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)
𝐾 + 𝜇𝐾1 (𝜃 − 𝜇2) ≥ 𝐾𝜃𝜇𝐾1 > 0

and

[(𝐾𝑀 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)
𝐾𝑀 + 𝜇𝐾𝑀1 (𝜃 − 𝜇2) ≥ 𝐾𝑀𝜃𝜇𝐾𝑀1 > 0.

Thus, 𝑔𝜋S

𝐾𝑀,𝑀 −𝑀𝑔𝜋
S

𝐾,1 ≥ 0 with the equality holding when 𝑐 = 𝑐0 or 𝑀 = 1. We now proceed to obtain
the limit of (𝑔𝜋S

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
S

𝐾,1)/𝑀 when 𝑀 goes to infinity. Based on (17), we have:

lim
𝑀→∞

𝑔𝜋
S

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
S

𝐾,1

𝑀

=
𝐾𝜃𝜇𝐾1 [(𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2) − 𝑐𝜃 (𝜇1 + 𝜇2)]

(𝜇1 + 𝜃){[(𝐾 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)𝐾 + 𝜇𝐾1 (𝜃 − 𝜇2)}

× lim
𝑀→∞

(𝜇1 + 𝜃)
𝐾𝑀 [(𝐾𝑀 − 1)𝜃 + 𝜇2] − 𝜇

𝐾 (𝑀−1)
1 (𝜇1 + 𝜃)

𝐾 [(𝐾 − 1)𝜃 + 𝜇2]

[(𝐾𝑀 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)𝐾𝑀 + 𝜇𝐾𝑀1 (𝜃 − 𝜇2)
.

The result now follows from the fact that

lim
𝑀→∞

(𝜇1 + 𝜃)
𝐾𝑀 [(𝐾𝑀 − 1)𝜃 + 𝜇2] − 𝜇

𝐾 (𝑀−1)
1 (𝜇1 + 𝜃)

𝐾 [(𝐾 − 1)𝜃 + 𝜇2]

[(𝐾𝑀 − 1)𝜃 + 𝜇2] (𝜃 + 𝜇1)𝐾𝑀 + 𝜇𝐾𝑀1 (𝜃 − 𝜇2)
= 1.

(ii) Using the closed-form expression of the gain for policy 𝜋C in (12), with some algebra, we have

𝑔𝜋
C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1 =
[𝑐𝜃 (𝜇1 + 𝜇2) − (𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)]

(𝜇1 + 𝜃) [1 + 𝑇 (𝐾)]

×
Γ∑𝑀

𝑘=0
(𝐾𝑀
𝑘

)
(
𝜇1
𝜇2
)𝑘 +

∑𝐾𝑀
𝑘=𝑀+1

∏𝑘
𝑖=1 [ (𝐾𝑀+1−𝑖)𝜇1 ]

𝑀 !𝜇𝑀
2 Π𝑘

𝑙=𝑀+1 [𝑀𝜇2+(𝑙−𝑀 ) 𝜃 ]

, (18)
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where

Γ = 𝑀
𝐾𝑀∑
𝑘=𝑀+1

∏𝑘
𝑖=1 [(𝐾𝑀 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]
+

𝑀∑
𝑘=1

(
𝐾𝑀

𝑘

) (
𝜇1

𝜇2

) 𝑘
𝑘

−

(
𝑀∑
𝑘=1

(
𝐾𝑀

𝑀 − 𝑘

) (
𝜇1

𝜇2

)𝑀−𝑘

𝑘

)
× 𝑇 (𝐾).

We now show that the expression (18) is non-negative. Note that the term 𝑐𝜃 (𝜇1+𝜇2)−(𝑟𝑠𝜇𝑠−𝑟2𝜇2)(𝜇1+

𝜃) ≥ 0 since 𝑐 ≥ 𝑐0. We will show that Γ ≥ 0. Define

𝛼𝑘 =
𝑘−1∑

𝑗=max{0,𝑘−𝐾 }

(𝐾𝑀
𝑗

) ( 𝐾
𝑘− 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

𝜇 𝑗2Π
𝑘− 𝑗
𝑙=1 [𝜇2 + (𝑙 − 1)𝜃]

for 1 ≤ 𝑘 ≤ 𝑀 , and

𝛽𝑘 =
𝑀−1∑

𝑗=max{0,𝑘−𝐾 }

(𝐾𝑀
𝑗

) ( 𝐾
𝑘− 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

𝜇 𝑗2Π
𝑘− 𝑗
𝑙=1 [𝜇2 + (𝑙 − 1)𝜃]

for 𝑀 + 1 ≤ 𝑘 ≤ 𝑀 + 𝐾 − 1. Note that by expanding (
∑𝑀
𝑘=1

(𝐾𝑀
𝑀−𝑘

)
(
𝜇1
𝜇2
)𝑀−𝑘 𝑘) × 𝑇 (𝐾) and ordering the

terms by ascending exponent of 𝜇1, we have(
𝑀∑
𝑘=1

(
𝐾𝑀

𝑀 − 𝑘

) (
𝜇1

𝜇2

)𝑀−𝑘

𝑘

)
× 𝑇 (𝐾) =

(
𝑀−1∑
𝑗=0

(
𝐾𝑀

𝑗

) (
𝜇1

𝜇2

) 𝑗
(𝑀 − 𝑗)

)

×

(
𝐾∑
𝑘=1

∏𝑘
𝑖=1 [(𝐾 + 1 − 𝑖)𝜇1]

Π𝑘𝑙=1 [𝜇2 + (𝑙 − 1)𝜃]

)

=
𝑀+𝐾−1∑
𝑘=1

𝜇𝑘1

min{𝑘−1,𝑀−1}∑
𝑗=max{0,𝑘−𝐾 }

(𝐾𝑀
𝑗

) ( 𝐾
𝑘− 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

𝜇 𝑗2Π
𝑘− 𝑗
𝑙=1 [𝜇2 + (𝑙 − 1)𝜃]

=
𝑀∑
𝑘=1

𝜇𝑘1𝛼𝑘 +
𝑀+𝐾−1∑
𝑘=𝑀+1

𝜇𝑘1 𝛽𝑘 .

By grouping the terms in Γ based on the exponent of 𝜇1, we obtain Γ = Γ1 + Γ2 + Γ3, where

Γ1 =
𝑀∑
𝑘=1

𝜇𝑘1

[(
𝐾𝑀

𝑘

)
𝑘

𝜇𝑘2
− 𝛼𝑘

]
,

Γ2 =
𝑀+𝐾−1∑
𝑘=𝑀+1

𝜇𝑘1

[
𝑀

∏𝑘
𝑖=1(𝐾𝑀 + 1 − 𝑖)

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]
− 𝛽𝑘

]
,

Γ3 =
𝐾𝑀∑

𝑘=𝑀+𝐾

𝜇𝑘1
𝑀

∏𝑘
𝑖=1(𝐾𝑀 + 1 − 𝑖)

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]

(recall that the summation over an empty set equals zero).
Note that Γ3 is positive if 𝑀, 𝐾 ≥ 2 and Γ3 is zero if 𝑀 = 1 or 𝐾 = 1. Moreover, when 𝑀 = 1,

Γ1 = 0 and Γ2 =
∑𝑀+𝑁−1
𝑘=𝑀+1 𝜇𝑘1 × 0 = 0. Thus, Γ = 0 when 𝑀 = 1 and it suffices to show that Γ1 and

Γ2 are non-negative, which we will prove by showing that each term of the respective summation is
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non-negative. For Γ1, when 1 ≤ 𝑘 ≤ 𝑀 , we have

(
𝐾𝑀

𝑘

)
𝑘

𝜇𝑘2
− 𝛼𝑘 ≥

1
𝜇𝑘2

⎡⎢⎢⎢⎢⎣
(
𝐾𝑀

𝑘

)
𝑘 −

𝑘−1∑
𝑗=max{0,𝑘−𝐾 }

(
𝐾𝑀

𝑗

) (
𝐾

𝑘 − 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

⎤⎥⎥⎥⎥⎦
=

1
𝜇𝑘2

[(
𝐾𝑀

𝑘

)
𝑘 −

min{𝐾,𝑘 }∑
𝑗=1

(
𝐾𝑀

𝑘 − 𝑗

) (
𝐾

𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗)

]
≥ 0, (19)

where the last inequality follows from Lemma 11. Similarly, note that

𝛽𝑘 ≤
𝑀−1∑

𝑗=max{0,𝑘−𝐾 }

(𝐾𝑀
𝑗

) ( 𝐾
𝑘− 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

𝜇𝑀2 Π𝑘−𝑀𝑙=1 (𝜇2 + 𝑙𝜃)
, for 𝑀 + 1 ≤ 𝑘 ≤ 𝑀 + 𝐾 − 1.

Therefore, for 𝑀 + 1 ≤ 𝑘 ≤ 𝑀 + 𝐾 − 1,

𝑀
∏𝑘
𝑖=1(𝐾𝑀 + 1 − 𝑖)

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]
− 𝛽𝑘

≥
𝑀

(𝐾𝑀
𝑘

)
𝑘!

𝑀!𝜇𝑀2 𝑀 𝑘−𝑀
∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

−

∑𝑀−1
𝑗=max{0,𝑘−𝐾 }

(𝐾𝑀
𝑗

) ( 𝐾
𝑘− 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

𝜇𝑀2
∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

=
1

𝜇𝑀2
∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

⎡⎢⎢⎢⎢⎣
(𝐾𝑀
𝑘

)
𝑘!

(𝑀 − 1)!𝑀 𝑘−𝑀
−

𝑀−1∑
𝑗=max{0,𝑘−𝐾 }

(
𝐾𝑀

𝑗

) (
𝐾

𝑘 − 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

⎤⎥⎥⎥⎥⎦
≥

1
𝜇𝑀2

∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

⎡⎢⎢⎢⎢⎣
(
𝐾𝑀

𝑘

)
𝑘 −

𝑀−1∑
𝑗=max{0,𝑘−𝐾 }

(
𝐾𝑀

𝑗

) (
𝐾

𝑘 − 𝑗

)
(𝑘 − 𝑗)!(𝑀 − 𝑗)

⎤⎥⎥⎥⎥⎦
=

1
𝜇𝑀2

∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

[(
𝐾𝑀

𝑘

)
𝑘 −

min{𝐾,𝑘 }∑
𝑗=𝑘−𝑀+1

(
𝐾𝑀

𝑘 − 𝑗

) (
𝐾

𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗)

]

≥
1

𝜇𝑀2
∏𝑘−𝑀
𝑙=1 (𝜇2 + 𝑙𝜃)

[(
𝐾𝑀

𝑘

)
𝑘 −

min{𝐾,𝑘 }∑
𝑗=1

(
𝐾𝑀

𝑘 − 𝑗

) (
𝐾

𝑗

)
𝑗!(𝑀 − 𝑘 + 𝑗)

]
≥ 0, (20)

where the last inequality follows from Lemma 11. It follows from (19) and (20) that Γ1 and Γ2 are
non-negative, which implies that Γ is positive when 𝑀 ≥ 2 and 𝐾 ≥ 2. When 𝑀 ≥ 2 and 𝐾 = 1, since
Γ2 = Γ3 = 0, we have

Γ = Γ1 =
𝑀∑
𝑘=1

𝜇𝑘1

[(
𝑀

𝑘

)
𝑘

𝜇𝑘2
− 𝛼𝑘

]
=

𝑀∑
𝑘=1

(
𝜇1

𝜇2
)𝑘

[(
𝑀

𝑘

)
𝑘 −

(
𝑀

𝑘 − 1

)
(𝑀 − 𝑘 + 1)

]
= 0.

Therefore, we have 𝑔𝜋C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1 ≥ 0 with equality holding only when 𝑐 = 𝑐0 or 𝑀 = 1 or 𝐾 = 1
(Γ = 0 in the last two cases).
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Figure 2. The incremental value of pooling 𝑀 supervisors as a function of 𝑀 .

We now proceed to obtain the lower and upper bounds of (𝑔𝜋C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1)/𝑀 when 𝑀 goes to
infinity. Note that

Γ∑𝑀
𝑘=0

(𝐾𝑀
𝑘

) (
𝜇1
𝜇2

) 𝑘
+

∑𝐾𝑀
𝑘=𝑀+1

∏𝑘
𝑖=1 [ (𝐾𝑀+1−𝑖)𝜇1 ]

𝑀 !𝜇𝑀
2 Π𝑘

𝑙=𝑀+1 [𝑀𝜇2+(𝑙−𝑀 ) 𝜃 ]

×
1
𝑀

=

𝑀
∑𝐾𝑀
𝑘=𝑀+1

∏𝑘
𝑖=1 [(𝐾𝑀 + 1 − 𝑖)𝜇1]

𝑀!𝜇𝑀2 Π𝑘𝑙=𝑀+1 [𝑀𝜇2 + (𝑙 − 𝑀)𝜃]
+

∑𝑀
𝑘=1

(𝐾𝑀
𝑘

) (
𝜇1

𝜇2

) 𝑘
𝑘 − 𝑇 (𝐾)

×

[∑𝑀−1
𝑘=0

(𝐾𝑀
𝑘

) (
𝜇1

𝜇2

) 𝑘
(𝑀 − 𝑘)

]

𝑀
∑𝑀
𝑘=0

(𝐾𝑀
𝑘

) (
𝜇1
𝜇2

) 𝑘
+ 𝑀

∑𝐾𝑀
𝑘=𝑀+1

∏𝑘
𝑖=1 [ (𝐾𝑀+1−𝑖)𝜇1 ]

𝑀 !𝜇𝑀
2 Π𝑘

𝑙=𝑀+1 [𝑀𝜇2+(𝑙−𝑀 ) 𝜃 ]

= 1 −
[1 + 𝑇 (𝐾)]

∑𝑀
𝑘=0

(𝐾𝑀
𝑘

) (
𝜇1
𝜇2

) 𝑘
× (𝑀 − 𝑘)

𝑀
∑𝑀
𝑘=0

(𝐾𝑀
𝑘

) (
𝜇1
𝜇2

) 𝑘
+ 𝑀

∑𝐾𝑀
𝑘=𝑀+1

∏𝑘
𝑖=1 [ (𝐾𝑀+1−𝑖)𝜇1 ]

𝑀 !𝜇𝑀
2 Π𝑘

𝑙=𝑀+1 [𝑀𝜇2+(𝑙−𝑀 ) 𝜃 ]

< 1.

Since 𝑔𝜋C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1 ≥ 0 , it now follows from (18) that for all 𝑀 ≥ 1,

0 ≤
𝑔𝜋

C

𝐾𝑀,𝑀 − 𝑀𝑔𝜋
C

𝐾,1

𝑀
≤
𝑐𝜃 (𝜇1 + 𝜇2) − (𝜇1 + 𝜃)(𝑟𝑠𝜇𝑠 − 𝑟2𝜇2)

(𝜇1 + 𝜃) [1 + 𝑇 (𝐾)]
.

�

Remark 13. It follows directly from the proof of Proposition 12 that pooling supervisors and their
associated subordinates is a strict improvement over the unpooled system, as long as 𝑀 > 1 and either
𝑐 < 𝑐0 or 𝑐 > 𝑐0 and 𝐾 > 1; otherwise, the pooled and unpooled systems have identical performance.
While it may at first seem surprising that pooling is not beneficial when 𝑐 > 𝑐0 and 𝐾 = 1, observe that
the Markov chain models of the pooled and unpooled systems are identical under 𝜋C when 𝐾 = 1.

Proposition 12 shows that pooling supervisors and their subordinates improves the performance of
the system in terms of the long-run average reward. However, the improvement per pooled supervisor is
bounded. We utilize numerical examples to illustrate the comparison of dedicated and pooled systems
and to quantify the incremental benefit per pooled supervisor of pooling systems as more supervisors
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are pooled. In our numerical examples, we have: 𝜇1 = 4, 𝑟1 = 5, 𝜇2 = 6, 𝑟2 = 8, 𝜇𝑠 = 11, 𝑟𝑠 = 6, 𝜃 = 2.
Consider the dedicated and pooled systems where there are 𝑀 supervisors, each of whom has 𝐾 = 4
subordinates. Note that the threshold 𝑐0 is 27

5 = 5.4. Figure 2 shows the value of pooling 𝑀 supervisors
as a function of 𝑀 when 𝑐 = 2 (where 𝜋S is optimal) and when 𝑐 = 10 (where 𝜋C is optimal). The
incremental value of pooling more than 5 (10) supervisors is small when 𝑐 = 2 (𝑐 = 10).

5. Conclusion

In this paper, we characterize the optimal policy for a two-stage service system with customer abandon-
ments. There are subordinates who perform the first-stage service on their own and supervisors who
work together with the subordinates to complete the second-stage service and also have other responsi-
bilities beyond serving the customers in the system. We show that there are only two optimal policies,
namely the supervisors start working on the second-stage service either when the subordinates can no
longer serve new customers in the first stage or as soon as there is a customer waiting for the second-
stage service. The optimality of the two policies depends on how the abandonment cost compares with
a threshold that is a function of the other model parameters. We also investigate the effects of pooling
supervisors (and their associated subordinates) and show that pooling improves the system performance.
In a future research, we are interested in characterizing the optimal policies when there is not unlim-
ited work, and instead the customers and/or other responsibilities of the supervisors arrive according to
Poisson processes.
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