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DERIVATIONS ON WHITE NOISE FUNCTIONALS

NOBUAKI OBATA

Introduction

The Gaussian space (E , μ) is a natural infinite dimensional analogue of

Euclidean space with Lebesgue measure and a special choice of a Gelfand triple

(E) c L (E , μ) c (E) gives a fundamental framework of white noise calculus

[2] as distribution theory on Gaussian space. It is proved in Kubo-Takenaka [7]

that (E) is a topological algebra under pointwise multiplication. The main purpose

of this paper is to answer the fundamental question: what are the derivations on

the algebra (E) ?

Since (E) is a topological algebra, each Φ ̂  (E) gives rise to a multiplica-

tion operator φ »-• Φφ = φΦ G (E) , φ e (E). In fact, this is a continuous oper-

ator, namely, Φ €= £((E), (E) ). We then adopt a slightly general definition: a

linear operator fi1 from (E) into (£) is called a derivation if

(0-1) Ξ(φψ) = Ξφ ψ + φ'Ξψ, φ,ψtΞ(E).

In this paper we determine all continuous derivations on (E); more precisely, the

derivations which belong to £((E), (£)*) or # ( ( £ ) , (£)) . The main result is

stated in Theorem 5.1.

As a result, we shall see that a continuous derivation is nothing but a first

order differential operator with distribution coefficients. Its formal expression is

given as

(0-2) Ξ= f Φtd,dt,

where dt is Hida's differential operator, i.e., an annihilation operator at a point

t ^ T, and Φt ̂  (E) is (identified with) a multiplication operator with parameter

t ^ T. In fact, t *-+ Φt is an (E) -valued distribution on T, namely, Φ(t, x) =

Φt(x) is an element in Ec ® (E) = (Ec ® (£)) , for the rigorous definition see

Section 3. Moreover, the operator Ξ defined as in (0-2) belongs to £((E), (E)) if
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22 NOBUAKI OBATA

and only if Φ ^ Ec ® (E), namely, if and only if Ξ is a first order differential

operator with smooth coefficients.

The discussion is based on the theory of Fock expansion of operators on

white noise functionals established in a series of works [12], [13], [14]. The ess-

ence of this theory lies in the fact that every operator Ξ ^ ί£((E), (E) ) admits

an infinite series expansion in terms of integral kernel operators, see also Section 4.

For another application of this effective theory, see e.g., [11].

There has been observed formal analogy between white noise calculus and the

calculus on Euclidean space based on the Gelfand triple J ^ ( R ) c L (R ) c

ώ (R ), e.g., rotation groups, Laplacians, Fourier transform, see [3], [4], [9], [11].

A more informative expression of (0-2) would be

Ξφ(x) = f Φt(x)dtφ(x)dt, φ e (£), x e £*.

We then easily understand that the operator Ξ is a white noise analogue of a

usual first order differential operator on Euclidean space given as

Π fjsk

Dφ(x) = Σ Af(x) -£- ω , φ e J(RW), x = (χv- , χn) e Rw.

Thus the formal analogy is again reinforced with our result in this paper.

Obviously, a first order differential operator on E gives rise to a vector

field on it and vice versa. It is then interesting to investigate a (local)

one-parameter group of tranformations on E which generates the vector field,

for a particular case see [4]. As a next step, it will be interesting to discuss an

operator of the form:

(0-3) Γ d*Φst(x)dtdsdt,
Jχxχ

which gives rise to a quadratic form on (E) in a natural way. In [5] a simple case

ΦStt(x) = τ(s, t)Φ(x) is discussed in relation with Dirichlet forms on white noise

functionals. Furthermore, there are similarities between the above mentioned oper-

ators and quantum stochastic integrals, see e.g., [10], [15]. In fact, (0-2) and (0-3)

are considered as direct generalizations of quantum stochastic integrals against

the annihilation process and the number process, respectively. Systematic

approaches to those topics will be carried out elsewhere.
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DERIVATIONS ON WHITE NOISE FUNCTIONALS 2 3

1. White noise functional

To avoid tedious introduction of notation we use the same framework as set-

tled in [4] under the name of standard setup of white noise calculus. Nevertheless

we recapitulate minimal notation for readers' convenience, for details see also [12],

[13], [14], etc.

Let T be a topological space equipped with a Borel measure dv(t) = dt and

introduce a real Hubert space H—L (T, v R) with norm | | 0 and inner pro-

duct <*, *>. Let A be a positive selfadjoint operator on H with Hilbert-Schmidt

inverse and assume that ίnf Spec (A) > 1. Then there exist an increasing sequ-

ence of positive numbers 1 < Λo < /^ < Λ2 ^ *' * and a complete orthonormal

basis {̂ }y=o f° r H such that Aβj = λfij. We use the following constant numbers:

( oo \ 1/2

ΣλJΊ <oo, 0 < p = \\A~l lop = λ~l < 1.
Then a Gelfand triple E ^ H c E is constructed in the standard manner, where

the nuclear Frechet space E is equipped with Hilbertian norms:

The canonical bilinear form on £ X E is also denoted by <•, •>. Hereafter we

assume the usual conditions (H1)-(H3) to keep a delta function δt in E , see [4],

[14].

The Gaussian space is by definition the probability space (E , μ), where μ is

the Gaussian measure defined by

exp(- \ I ξ lo) = f ei<x °μ(dx), ξ e E.

The Wiener-Itό-Segal isomorphism between (L) = L (E , μ C) and the Boson

Fock space over Hc is given by means of the Wick ordered product as

(1-1) φ(x) = Σ <: .r 0 w :,/„>, x e £ * ,

where 0 ^ (L2) and /w e ίf^w. Note also that each <: x®n:, /w> is defined as an

L -function and that the series is an orthogonal direct sum.

For φ ^ (L) given as in (1-1) the second quantized operator Γ(A) acts as

(Γ(A)φ)(x) = Σ <: x®n:, A®"Q.
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24 NOBUAKI OBATA

With the maximal domain Γ(A) becomes a positive selfadjoint operator with

Hilbert-Schmidt inverse and thereby we obtain a complex Gelfand triple:

(E) c (L2) = Z , 2 ( £ * , μ ; C ) c (£)* .

Here (E) is again a nuclear Frechet space equipped with Hilbertian norms:

|| φ I = || ΓUΫΦ llo = Σ «! I CAβ")7. lo = Σ «! I /, I*, ί e R,
n=Q n=0

where 0 ̂  (E) and /Λ ^ ifc

w are related as in (1-1) and || ||0 denotes the norm

of (L ). In particular, if 0 ̂  (E) then fn ^ HQ

n for all n = 0,1,2, * . Elements

in (E) and (2?) are called a tesί (white noise) functional and a generalized (white

noise) functional, respectively. We denote by «*, •)) the canonical bilinear form on

( £ ) * x (£).

By construction each 0 ̂  (E) is a function on E determined only up to

μ-null functions. Kubo-Yokoi's continuous version theorem [8] asserts that for

0 ^ (E) the series (1-1) converges absolutely at each x ̂  E and becomes a uni-

que continuous function on E which coincides with 0 up to μ-null functions

Hereafter we always assume that (E) consists of such continuous functions on

E*.

As for generalized white noise functionals similar but formal expression as in

(1-1) is also possible and useful in many applications.

2. Gradient operator

We first recall basic differential operators on white noise functionals. Let

φ e (E) be given as

(2-1) 0ω-Σ(:/w:,/w>, *e£*, fn e E\

Then for any y ̂  E we put

to o^ n A, \ v

(2-2) Dyφ(x) = hm(9-0

<S)(n—1)Σ / <
n(:x y i / « 0

W = l

where ® ! stands for the contraction of tensor products. The limit always exists

and the series converges absolutely as numerical series. Moreover, it is known [4]

that for any p > 0 and q > 0,
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(2-3) ^D'Φi

In particular, Dy ^ £((E), (E)). Hida's differential operator is defined as dt = Dδf,

where δt ^ E is the delta function at t ^ T. It is nothing but an annihilation

operator at a point t ^ T in usual Fock space language.

It is convenient to use a white noise analogy of the gradient. We put

(2-4) Vφ(t, x)=dtφ(x), t*ΞT, xtΞE*.

This operator is well known in various contexts, see e.g., [1], [5], [6]. For further

discussion we need Ec ® (E), i.e., the space of i?c-valued white noise test func-

tionals. As usual the symbol Θ stands for the completed π-tensor product follow-

ing our convention [4], [14]. It is known (see e.g., [13]) that the topology of Ec Θ

(E) is given by the norms

(2-5) \\ω\\p = \\(A®Γ(A))Pωi, α>e=£ c ®(£), p e R.

With these notation we prove the following

PROPOSITION 2.1. It holds that

(2-6) Vφ=Σeί®Dβ.φ, φtΞ(E),

where the series converges in Ec ® (E) as well as pointwisely. Moreover, for any p > 0

(2-7) || Vφ I = Σ II e, ® Dejφ \\l < ( _

In particular, V e # ( ( £ ) , £ c ® ( £ ) ) .

Proo/ Suppose that 0 ^ (£) is given as in (2-1). Then, by definition

(2-8) Vφ(t, x) = dtφ(x) = Σ w<:x0 ( M"υ:, δt®xQ.

Using the Fourier expansion of fn in terms of {ej}J=Qt we obtain

(2-9) Vφ(t, x) = Σ Σ n < : x ® ( n " υ :, ^ ^ p β / O .
;=0 n=l

For simplicity we put 0 ; = Deφ. Then, by (2-2)
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2 6 NOBUAKI OBATA

(2-10) Vφ(t, x) = Σ βjWφjix).
; = 0

As is easily verified, the above infinite series (2-8), (2-9) and (2-10) converge

absolutely at each t ^ T and x ^ E .

We next investigate a norm estimate. In view of (2-3) we have

/ o~2Q \ 1 / 2

(2-Π) I 1 0 Λ < L o l w J I ^ U + f ) l l 0 L . . ^ ^ 0 ^ ? > °

On the other hand, since {̂ }JLo * s a n orthogonal set with respect to every norm

I 1̂ , we see from (2-5) and (2-10) that

(2-12) || Vφ \ζ = || (A (8) ΠA)Ϋ Vφ IE = Σ U \\ II φ, \ζ = Σ II ̂  ® φ, t
; = 0 ; = 0

which proves the first half of (2-7). Inserting (2-11) into (2-12) we obtain

II Vφ { = Σ I« ί ( ^ £ _ ) I et !!,„., I # II, = ( ^ J J ) I # t . £ C
Thus the second half of (2-7) follows, by taking q — 1. The rest of the assertion is

now immediate. Q,E.D.

COROLLARY 2.2. For y <Ξ E* and Φ <^ ( £ ) * it holds that

(2-13) « ? / Θ Φ , Γ 0 » = « Φ , D,0», φ €= (£ ) .

Here the canonical bilinear form on ( £ c ® (£) )* X (,BC ® (£)) is also de-

noted by «*, *)). It is also possible to adopt (2-13) as the definition of Vφ.

3. First order differential operators

Before going into the definition of an operator of the form (0-2) we recall the

following

LEMMA 3.1 ([7]). For each p > 0 there exist q > 0 and C > 0 such that

(3-1) \\φφ\\p<C\\φ\\p+q\\φ\\p+q, φ,ψ*Ξ(E).

In this paper we do not need a precise norm estimate though it is very in-

teresting in itself, see e.g., [14]. We next prove the following
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LEMMA 3.2. For φ, ψ e (E) put

*(3-2) ωφιφ(t, x) = (dtφ)(x)'ψ(x), f e Γ , * e £ * .

w, ω 0 0 ^ E <S) (E). Moreover, (0, φ) >-• ω 0 0 is α continuous bilinear map from

(E) x (E) intoEc®{E).

Proof For simplicity we write α> = α ^ . It then follows from Proposition 2.1

that

ω(tf x) = Vφ(t, x)-φ(x) = Σ ejifiφjixϊφix), ί e Γ, x
0; = 0

where 0 ; = ΰ e >0. Suppose /) ^ 0 is given. Then, in view of Lemma 3.1,

oo oo
/o o\ II l|2 v I |2 II , , | |2 ^ s^2 \\ . ||2 v ^ I |2 II » ||2(3-3) II ω \\p = Σ I *, 1̂  II φjφ \\p < C \\φ \\p+q Σ I ej \p || 0 \\p+v

; = 0 ; = 0

for some C ^ 0 and ^ > 0. Using | ^; |̂  = p9 \ e, \p+q, we obtain

II l |2 ^>- Λ I 2 2q |i , | | 2 ^-» I | 2 II , i|2

\\ω\\p< C p || 0 ||,+ί Σ I ej \p+q \\ φj \\p+q,

; = 0

and therefore, by (2-7) we come to

(3-4) || ωφ>φ \\p <M\\φ \\p+q+ι || 0 I U , 0, 0 e ( £ ) ,

where Λf = C^~ <5(— 2elogp)~1/2. This completes the proof. Q.E.D.

THEOREM 3.3. For φ G ( J E C ( 8 ) ( £ ) ) * ί/iere exists α unique operator ΰ G

, (£)*) such that

(3-5) <CS0, 0» = «Φ, ω0)0», 0, φe(E),

where a>φφ is defined as in (3-2).

Proof Choose p > 0 such as || Φ \\_p < °°. Then, by (3-4) we have

I « Φ , ω φ t φ » I < || Φ \\_p || ω φ r φ \\p < M\\Φ \\_p I φ \\p+q+1 \\ φ \\p+q

for some q > 0 and M > 0. This means that (0, 0) ^ «Φ, α>00» is a continuous

bilinear form on (E) X (E), and therefore there exists a unique operator £ e

, (JB)*) satisfying (3-5). Q.E.D.
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The above constructed operator Ξ is called a first order differential operator

with coefficient Φ ^ (Ec ® (E)) and is denoted (somehow formally) by

(3-6) Ξ= f Φtdtdt.
Jτ

)Here we write Φt(x) = Φ(t, x). In fact t »-• Φt is an (E) -valued distribution on

T, namely, an element in £ * <g> (£)* = ( £ c ® (£))*.

We are now interested in first order differential operators acting on (E) into

itself.

THEOREM 3.4. Let Ξ be a first order differential operator with coefficient Φ ^

(Ec <g> (£))*. ThenΞtΞ # ( ( £ ) , (£)) i/αnd croίy t/Φ e £ * (g) (E).

Proof There is a canonical isomorphism ( £ c ® (£)) = &(EC, (E) ): the

correspondence between Φ G (Ec ® (£)) and iΓ e £(EC, (E) ) is given by

(3-7) «Φ, $ ® 0 » = «Kξ, φ», ? G £ C , 0 e ( £ ) .

Under this isomorphism, Φ e £ * 0 (£) if and only if K e 3?CEC, (£)).

Suppose that 5 is given as in (3-6). Then, by definition (3-5) holds. On the

other hand, it has been established during the proof of Lemma 3.2 that

ωφ>φ = Σ e3,<g) (φjφ), φj = D φ,

converges in Ec ® (E). Then (3-5) becomes

«Sφ, φ» = Σ «Φ, ej ® (φjφ))) = Σ «Kejf φjφ» = Σ «ΦjKejy φ».
;=0 j=0 ;=0

Hence for any p > 0,

(3-8) I «Ξφ, ψ » \ < Σ II φjKe, II, II φ IU,
; = 0

though the sum is possibly infinite. We now suppose that Φ ̂  Ec ® (E), or

equivalent^, K e ί?(£ c , (£)). Then ϋC^ e (£) and by Lemma 3.1 there exist

q > 0 and Cι> 0 such that

|| 0 y i fc, I, < c x II 0 ; \\p+q II ̂ ; IU, .

Moreover, there exist r ^ 0 and C2 ^ 0 such that
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|| Kβj \\p+q < C2 I βj \p+q+r.

Thus (3-8) becomes

«Ξφ, ψ» I < Cfit II φ lp Σ II φ, IU, I e, \p+q+r
; = 0

00

= CλC2 II φ \\_p Σ II φj \\p+q I βj \p+q+r+1 λj
; = 0

( oo \ 1/2 / oo _\ 1/2

Σ ιi0; i u j ej\p+q+r+1) I Σ Λ ;
; = 0 ' V=0

/ oo \ 1/2

V=o ; /

It then follows from Proposition 2.1 that

I «Ξφ, 0 » I < CxC2δ || φ \\_p II Vφ \\p+q+r+v

and hence

/ o~2δ2 \ 1 / 2

|| 50 ||, < C^δ IF0 | | , + f + r + 1 < CxC2δ ( - g g l o g p ) !l ?

We have thus seen that £ e #((£), (£)).

Conversely, suppose that fi1 ^ £((E), (E)). Then for any/> > 0 there exist q

> 0 and C > 0 such that

(3-9) \\Ξφ\\p< C\\φ\\p+q, φ<Ξ(E).

Let ξ G £ c be fixed and consider

As is easily verified, ωφtφ — ζ ® φ for any φ e (£). Hence by (3-5) and (3-7) we

obtain

«Ξφ, φ» = «Φ, ωφtφ» = «Φ, ξ (8) φ» = «Kξ,

Then by (3-9) we obtain

I «Kξ, φ» I = I «Ξφ, φ» \<\\Ξφ ||, || 0 I U < C || 0I

Therefore,

\\Kξ\\p<C\\φ\\p+q = C\ξ\p+q, ξ ^ E c .

Consequently, K e ί ? ( £ c , (£)) Q.E.D.
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Such an operator Ξ as described in Theorem 3.4 is called a first order differen-

tial operator with smooth coefficients. This would be reasonable because in that case

t •-* Φt is an (2?)-valued distribution on T.

4. Integral kernel operators and Fock expansion

With each K ^ (Ec

 m) we may associate an integral kernel operator whose

formal expression is given by

^i,m(/c) = jτl+m

/c(si>'">sι> *»"', tjdl" d*dh- -dtjs^ -dstdti' -dtm,

where K is called the kernel distribution. More precisely, it is defined through two

canonical bilinear forms:

«Ξι>m(κ)φ, 0» = </c, «9* 9 s χ - dtmφ, 0»>, 0, ψ e (£).

It is proved that Ξlm(/c) G f ( ( £ ) , (£)*), see [4] for further details. Without loss

of generality we may assume that the kernel distribution K is symmetric with re-

spect to the first / and the last m variables independently. We denote by

(EC )sym(/,«) t h e S P a c e o f S U c h K ^ ( £ C ) •

THEOREM 4.1 ([12]). F(?r αn>> S e £((E), (£)*) ίλ^rg wwte α unique family of

distributions KUm ^ ( i t c JSym(/,m)

(4-1) 50= Σ 5 ^ ( ^

ι̂  right hand side converges in (E) .

More complete results are found in [14]. The unique expression of Ξ £=

f (E) ) given in Theorem 4.1 is called the Fock expansion of Ξ and denoted

simply by

(4-2) £ = Σ ΞlMU,J.
l,m=0

It is also known that the series converges in ϊ£((E), (E) ).

Given Ξ ^ £((E), (E) ), the kernel distributions /c/m are easily found by

using an operator symbol. For each ξ e Ec the exponential vector φξ e (£) is de-

fined by

https://doi.org/10.1017/S0027763000005286 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005286


DERIVATIONS ON WHITE NOISE FUNCTIONALS 3 1

(4-3) 0 , ω - exp (<*, ξ> - \ <ξ, ξ>) = Σo <: x*n :, ̂ r) , x e E*.

For ί e f ( ( £ ) , (£)*) a function on £ c X £ c defined by

(4-4) Ξ(ξ,η) = «Ξφvφη», ξ,η<ΞECf

is called the symbol of Ξ. For example, for S1 with Fock expansion (4-2) we have

(4-5) e £(f, ry) = Σ </cι>m, ϊ] ® ξ >, ξ, η <Ξ Ec.
l,m=0

Hence, in order to find kernel distributions κlm one needs only to consider the

Taylor expansion of (4-5).

We also note the following

PROPOSITION 4.2. For a first order differential operator Ξ with coefficient

φ e (£ c(g)(£))* we have

(4-6) e-<tη>Ξ(ξ, η) = «Φ, ξ ®Φt+ΐ]», ξ, η e Ec.

Proof By definition (3-2) we have

ωφς>φη(t, x) = dtφξixϊφ^x)

namely, ω^ 0 7 ? = ^ >r? f ® 0e+r?. Then

This shows (4-6). Q.E.D.

COROLLARY 4.3. Let K e £ c and put Φ = K ®l <^ E^® (E). Then the first

order differential operator with coefficient Φ coincides with Ξ01(κ).

Such an operator described as in Corollary 4.3 is called a first order differen-

tial operator with constant coefficients.

5. Main result

Recall that a linear operator Ξ : (E) —* (E) is called a derivation if

(5-1) Ξ(φψ) = Ξφ-ψ + φ Ξφ, φ,ψ^ (E).

We then come to the main result.
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THEOREM 5.1. Any continuous derivation in £((E), (E) ) is a first order dif-

ferential operator and vice versa. Furthermore, any continuous derivation in ίβ((E),

(E)) is a first order differential operator with smooth coefficients and vice versa.

For the proof we prepare a few lemmas.

LEMMA 5.2. Let Ξ e <β((E), (E) ) . Then, it is a derivation if and only if

(5-2) e^Ξiξ +η,0 = e<η °Ξ(ξ, η + ζ) + e<u>Ξ(η, ξ+ζ), ξ, rj, ζ e Ec.

Proof Since the exponential vectors (4-3) span a dense subspace of (Z?), Ξ

is a derivation if and only if

(5-3) Ξ(φ,φη) =Ξφ,-φη + φξ'Ξφv, ξ, τ ? e £ * .

With the obvious relation φξφη = e φξ+η, we see easily that (5-3) is equivalent

to (5-2). Q.E.D.

LEMMA 5.3. Any first order differential operator is a derivation in £((E),

(£)*) .

Proof Immediate from Proposition 4.2 and Lemma 5.2. Q.E.D.

LEMMA 5.4. Let Ξ ^ £((E), (E) ) be a derivation with Fock expansion:

(5-4) Ξ= Σ Ξlim(κ,,J.
l,m=Q

Then, κlt0 = 0 for all I > 0 and

/ 8>l XX ^<8»(W + 1 ) \ ( I \ Wl

<*/.m+i. V ® ξ > {

for all I, m > 0.

Proo/. By assumption the symbol Ξ satisfies (5-2). Then, in view of expan-

sion (4-5) we obtain

( 5 ~5) \ n

m
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~r Yl

n

Then, putting m = w = 0 in (5-5), we see that κl0 = 0 for all / > 0. We next put

n — \ and ϊj — ξ in (5-5) to obtain

Applying this argument to the second term successively, we come to

/!(m + l)\(fclm+v ζ<8>/ (g>ξ0 ( m + 1 )> = (m + 1)(/ + m)l(/cl+mV (ζ<8>/ ®ξ*m) ® £>,

which completes the proof. Q.E.D.

Proof of Theorem 5.1. Suppose that we are given a continuous derivation 3

with Fock expansion as in (5-4). We first introduce a continuous bilinear form Ω

on Ec x (E) by

(5-6) Ω(ξ9φ)=Σnl<κntl,fn®ξ>, ξ^ECi 0 e (£),

where φ(x) = Σ ^ = o ^
: x * :> Λ^ We shall prove the convergence of (5-6). In fact,

for any p, q > 0 we have

n=0

oo

< V n\ I />- I I f (9) fi I

W = 0

/ OO V 1 / 2 / OO \ 1/2

< y M t L I2 i IY fii \ f \
— \ ^ "" I ̂ Mj \-(p + q+l) \ ̂  n' I Jn I

x»=0 / x»=0

= I ξ \p+q+ι II 0 I U ί + i ( Σ n\ I /cW ; 11!. ( /,+ (

Since Ξ G ί?((£), (£)*), there exist C > 0, K > 0 and ^ > 0 such that

I S(ξ, η) I < C exp K (| ξ |J + | 77 |J),' ξ, >? G J S C .

It is proved in [12] that the kernel distributions κlm of Ξ satisfies

ί C (/' ιmm)~1/2(2ec l

(5
2) (/+w)/2ί—- -f jζ)
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In particular,

I I ^ q(n+l) I I

s- r^ Q(n+l) -«/2/ o 3s2\(n+l)/2( P , TΛ

<Cp n (2e δ ) I-5- + KJ

Therefore,

(5-8) Σ n\ I /cB>; |
2_(ί+g+1) <C2Έ—n 2 W V + i:)} < °°

w=o w=o ^ X

for a sufficiently large # > 0. In conclusion, we see from (5-7) and (5-8) that

Σ n\<κnΛ, f n ® ξ > <Cλ\ξ \p+q+ι II φ \\p+q+1, ? e Ec, φ e ( £ ) ,

w=0

for some Cx > 0, £ > 0 and ^ > 0. Therefore Ω in (5-6) is well defined on Ec X

(E) and becomes a continuous bilinear form.

Let Φ ^ ( £ c ® (£)) be the element corresponding to Ωy namely,

Let Ξf be the first order differential operator with coefficient Φ. It then follows

from Proposition 4.2 that

(5-9) e-<tη>Ξ'(ξ9 17) = «Φ, ξ ® 0 f + r ?» = Ω(ξ, φξ+v).

On the other hand, in view of (5-6) we have

= t
Now, applying the relations:

κι 0 — 0, I 2: Ό,

j < ( ®? )®?> / > 0,

which are obtained in Lemma 5.4, we come to
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(5-10) Ω(ξ, 0e+β) = Σ <κlM, r ) β ' ® r > = e-<t71>Ξ(ξ, η).

l,m=0

It follows from (5-9) and (5-10) that

e- z / ( ξ , η ) = e & ( ξ , η ) , ξ,η^Ec,

so that Ξ — Ξr. Consequently, Ξ is the first order differential operator with coeffi-

cient Φ. The rest of the assertion is now immediate from Lemma 5.3 and Theorem

3.4. Q.E.D.

Note that any derivation maps constant functions into zero.

COROLLARY 5.5. Any continuous derivation on (E) which maps linear functionals

into constants is a first order differential operator with constant coefficients and vice

versa.

The Gross Laplacian and the number operator are defined respectively as integ-

ral kernel operators:

ΔG= f τ(s,t)dsdtdsdt, N= f τ(s, t)d*dtdsdt,

where τ e £ * ® E is given by <r, ξ ® φ = <f, η>, ξ, η e £.

COROLLARY 5.6. idG + N is a derivation in£((E), (E)).
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