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Abstract

Let G be a finite group. We denote by ν(G) the probability that two randomly chosen elements of G
generate a nilpotent subgroup and by NilG(x) the set of elements y ∈ G such that 〈x, y〉 is a nilpotent
subgroup. A group G is called an N-group if NilG(x) is a subgroup of G for all x ∈ G. We prove
that if G is an N-group with ν(G) > 1

12 , then G is soluble. Also, we classify semisimple N-groups
with ν(G) = 1

12 .
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1. Introduction

Throughout this paper G will be a finite group. Probability theory has made
significant contributions to the study of finite groups. An early example concerns the
commutativity degree of a finite group. The commutativity degree of G, denoted by
cp(G), is the probability that two randomly chosen elements of G commute: that is

cp(G) =
|{(x, y) ∈ G ×G : xy = yx}|

|G|2
.

This concept was introduced in 1968 by Erdős and Turàn [4]. They showed that
cp(G) = k(G)/|G|, where k(G) is the number of conjugacy classes of G. A few years
later, Gustafson [9] showed that cp(G) ≤ 5

8 for any nonabelian finite group G and that
equality holds when |G : Z(G)| = 4, where Z(G) is the centre of G.

In 1992, Dubose-Schmidt et al. [3] took the idea in another direction. For every
positive integer i, they defined νi(G) as the probability that two randomly chosen
elements of a group G generate a subgroup of nilpotency class i. Fulman et al. [5]
introduced ν0(G) as the proportion of ordered pairs of G that generate a nonnilpotent
subgroup. Here, we denote by ν(G) the probability that two randomly chosen elements
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of G generate a nilpotent subgroup. Clearly, ν(G) = 1 − ν0(G) =
∑∞

i=1 νi(G) and
cp(G) ≤ ν(G).

If H is an arbitrary subgroup of the group G, then cp(H) ≥ cp(G) and this is a
powerful tool to estimate cp(G). But a similar result does not hold for ν(G) (see
Remark 2.5). So investigating the structure of groups G by ν(G) is much harder than
it is with cp(G). In [8] Guralnick and Wilson proved that if G is a nonnilpotent group,
then ν(G) ≤ 1

2 .
It is easy to see that cp(A5) = ν(A5) = 1

12 , where A5 is the alternating group of degree
five. J. D. Dixon observed that cp(G) ≤ 1

12 for any finite nonabelian simple group G.
This was submitted by Dixon as a problem in the Canadian Mathematical Bulletin 13
(1970), with his own solution appearing in 1973. Guralnick and Robinson [7] extended
this result to nonsoluble groups and determined precisely for which nonsoluble groups
the equality happens. So it is natural to pose the following question.

Question 1.1. If G is a finite group with ν(G) > 1
12 , then is G soluble?

We conjecture that the answer is, in general, positive. In this paper we will answer
the question for certain groups. Let G be a finite group and x ∈ G. We denote by
NilG(x) the subset of all elements y of G such that the subgroup 〈x, y〉 is nilpotent. We
notice that NilG(x) is not necessarily a subgroup of G (see the second paragraph of the
proof of Theorem 1.3 in Section 2). It is easy to see that ν(G) =

∑
x∈G |NilG(x)|/|G|2.

A group G is called an N-group if NilG(x) is a subgroup of G for every x ∈ G. In the
last section of the paper we give some examples of N-groups. In Section 2 we give a
positive answer to Question 1.1, when G is an N-group.

Theorem 1.2. Let G be an N-group. If ν(G) > 1
12 , then G is soluble.

We also determine the semisimple N-groups with ν(G) = 1
12 .

Theorem 1.3. Let G be a semisimple N-group with ν(G) = 1
12 . Then G � A5.

2. Proofs of the main results

To prove our main results, we need the following lemmas.

Lemma 2.1 [5, Proof of Lemma 6]. Let G be a group and N CG. Then ν(G) ≤ ν(G/N).

Lemma 2.2 [5, Corollary 3]. Let G be a group. Then ν(G) = ν(G/Z∗(G)), where Z∗(G)
is the hypercentre of G.

Lemma 2.3. Let G and H be finite groups. Then ν(G × H) = ν(G)ν(H).

Proof. The proof is straightforward. �

Proposition 2.4. Let G be a finite N-group and H be a subgroup of G. Then H is an
N-group and ν(G) ≤ ν(H).
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Proof. The first assertion is clear. If g1, g2 ∈ NilG(x) for some x ∈ G such that
g1 NilH(x) , g2 NilH(x), then g1g−1

2 < NilH(x) = NilG(x) ∩ H and so g1H , g2H. We
conclude that |NilG(x) : NilH(x)| ≤ |G : H|. Therefore |NilG(x)| ≤ |G : H| |NilH(x)| and
so
∑

x∈G |NilG(x)| ≤ |G : H|
∑

x∈G |NilH(x)|. Also∑
x∈G

|NilH(x)| = |{(x, y) ∈ G : 〈x, y〉 is nilpotent and x ∈ H or y ∈ H}| =
∑
y∈H

|NilG(y)|.

We conclude that
∑

x∈G |NilG(x)| ≤ |G : H|2
∑

x∈H |NilH(x)| from which it follows that
ν(G) ≤ ν(H). This completes the proof. �

Remark 2.5. The second assertion of Proposition 2.4 is not true in general. For
example, it can be checked by GAP [6] that ν(SmallGroup(96, 229)) = 7

24 , but this
group has a normal subgroup H of order 48 with ν(H) = 1

6 .

In the three following lemmas, we compute ν(G) for some simple groups.

Lemma 2.6. Let G be the Suzuki group Sz(q) where q = 22n+1 for some n ≥ 1. Then
ν(G) = (2q + 1)/q2(q2 + 1)(q − 1).

Proof. It is well known that Sz(q) has a partition Ψ = {Ax, Bx,Cx, F x | x ∈ G}, where
A, B,C are cyclic groups of orders, say, a = q − 1, b = q − 2r + 1 and c = q + 2r + 1
respectively, and F is a Sylow 2-subgroup G of order q2. Also, if T ∈ Ψ, then CG(y) ≤ T
for each y ∈ T (see [10, Satz 3.10, Satz 3.11 and pages 192–193]). If there are
1 , t1 ∈ T1, 1 , t2 ∈ T2 and T1 , T2 ∈ Ψ such that the subgroup 〈t1, t2〉 is nilpotent,
then Z(〈t1, t2〉) ⊆ CG(t1) ∩CG(t2) = 1, which is a contradiction. Therefore, for any two
non-identity elements x, y, we see that 〈x, y〉 is a nilpotent subgroup of G if and only if
there is a T ∈ Ψ such that x, y ∈ T . Since the number of conjugates of A, B,C and F in
G are respectively

m :=
q2(q2 + 1)

2
, l :=

q2(q2 + 1)(q − 1)
4(q − 2n+1 + 1)

, k :=
q2(q2 + 1)(q − 1)
4(q + 2n+1 + 1)

, t := q2 + 1,

we find

ν(G) =
ma(a − 1) + lb(b − 1) + kc(c − 1) + tq2(q2 − 1) + |G|

q4(q2 + 1)2(q − 1)2 ,

which gives the result. �

For any prime power q, we denote the general linear group, the projective general
linear group, the special linear group and the projective special linear group of degree
two over the finite field of size q by GL(2, q), PGL(2, q), SL(2, q) and PSL(2, q),
respectively.

Lemma 2.7. Let G = GL(2, q), PGL(2, q), SL(2, q), or PSL(2, q), where q = 2m and
m > 1. Then ν(G) = 1/q(q − 1) .
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Proof. By Lemma 2.2 and since PGL(2, 2m) is isomorphic to PSL(2, 2m), it is enough
to prove the result for the group G := PSL(2,2m). It is well known that PSL(2,2m) has a
partition Π = {Px,Dx, Ix | x ∈ G}, where P is an elementary abelian Sylow 2-subgroup
of order q, and D and I are cyclic subgroups of G of orders q − 1 and q + 1 respectively
(see [10, pages 191–193]). If a is a nontrivial element of G, then it is easy to see that

NilG(a) =


Px if a ∈ Px,
Dx if a ∈ Dx,
Ix if a ∈ Ix.

Therefore 〈x, y〉 is a nilpotent subgroup of G if and only if there is X ∈ Π such
that x, y ∈ X. Since the number of conjugates of P, D and I in G are a := q + 1,
b := 1

2 q(q + 1) and c := 1
2 q(q − 1) respectively,

ν(PSL(2, q)) =
aq(q − 1) + b(q − 1)(q − 2) + cq(q − 1) + q(q − 1)(q + 1)

q2(q − 1)2(q + 1)2 =
1

q(q − 1)
.

This completes the proof. �

Lemma 2.8. If q > 5 is odd and 16 - q2 − 1, then

ν(SL(2, q)) = ν(PSL(2, q)) =
q + 5

q(q − 1)(q + 1)
.

Proof. Since ν(G) = ν(G/Z∗(G)), by Lemma 2.2, it is sufficient to compute ν(G) for
G = PSL(2,q)). Assume q ≡ 1 (mod 4). It is well known that Λ = {Ax,Bx,Cx | x ∈G} is
a partition for G, where C is elementary abelian of order q with γ := q + 1 conjugates
in G, A is a cyclic subgroup of order 1

2 (q − 1) with α := q(q + 1)(q − 1)/2(q − 1)
conjugates in G, and B is a cyclic subgroup of order 1

2 (q + 1) for which the number of
conjugates in G is β := q(q + 1)(q − 1)/2(q + 1). Now we claim that NilG(x) = CG(x)
for every x ∈ G.

Suppose, for a contradiction, that there is an element y ∈ NilG(x)\CG(x) for some
x ∈ G. Since the subgroup 〈x, y〉 is nilpotent, we see that 〈x, y〉 ≤ CG(a) for some
nonidentity element a ∈ Z(〈x, y〉). If a2 , 1, then CG(a) ∈ Λ and so y ∈CG(x), which is a
contradiction. Now assume that a2 = 1. Then CG(a) is isomorphic to the dihedral group
of order q − 1 and so 〈x, y〉 is abelian or a 2-subgroup of G. On the other hand, since
16 - q2 − 1, every Sylow subgroup of G is abelian (by [10, Satz 8.10]). Therefore 〈x, y〉
is abelian, which is a contradiction. Consequently, NilG(x) = CG(x) and it is sufficient
to compute the number of centralisers of G. Now, for every 1 , a ∈ G,

CG(a) =


NG(〈a〉) if a2 = 1 and a ∈ Ax for some x ∈ G,
Ax if a2 , 1 and a ∈ Ax for some x ∈ G,
Bx if a ∈ Bx for some x ∈ G,
Cx if a ∈ Cx for some x ∈ G.

So

ν(G) =
2α|A| + α 1

2 |A|(
1
2 |A| − 2) + β 1

2 |B|(
1
2 |B| − 1) + γ|C|(|C| − 1) + |G|

|G|2

and this is equal to (q + 5)/q(q − 1)(q + 1), as desired.
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Now let q ≡ 3 (mod 4). Then NilG(x) = CG(x) for all x ∈ G. If 1 , a ∈ G, then

CG(a) =


NG(〈a〉) if a2 = 1 and a ∈ Bx for some x ∈ G,
Bx if a2 , 1 and a ∈ Bx for some x ∈ G,
Ax if a ∈ Ax for some x ∈ G,
Cx if a ∈ Cx for some x ∈ G

and the desired result follows by a similar argument. �

Now we are ready to prove our main results.

Proof of Theorem 1.2. Let G be a nonsoluble counterexample of minimal order. We
can assume that G is a minimal nonsoluble group by Proposition 2.4. By [12], G
contains a normal soluble subgroup N such that G/N is one of the following groups:

PSL(3, 3);
PSL(2, 2m);
PSL(2, 3m) or Sz(2m) where m is an odd prime; or
PSL(2, p) where 3 < p is prime.

First, let G/N � PSL(3, 3). By using GAP [6] we have that ν(PSL(3, 3)) = 6631
31539456 and

since ν(G) ≤ ν(G/N), by Lemma 2.1, we reach a contradiction. Now assume G/N is
isomorphic to one of the remaining groups. This is again impossible, by Lemmas 2.6–
2.8, 2.1 and [1, Lemma 3.10]. Therefore G is soluble.

Proof of Theorem 1.3. We claim that A5 is the only simple N-group with ν(G) = 1
12 .

To prove this, suppose, on the contrary, that there exists a nonabelian finite simple
N-group of the least possible order such that ν(G) = 1

12 and G is not isomorphic to A5.
Then every proper nonabelian simple section of G is isomorphic to A5. It follows from
[2, Proposition 4] that G is isomorphic to one of the following groups:

PSL(2, 2m) where m = 4 or a prime;
PSL(2, 3p),PSL(2, 5p),PSL(2, 7p) where p is a prime;
PSL(2, p) with p ≥ 7;
PSL(3, p) with p = 3, 5, or 7;
PSU(3,m) with m = 3, 4, or 7; or
Sz(2m) where m is an odd prime.

By Lemmas 2.6–2.8 and [1, Lemma 3.10], we reach a contradiction for each of the
projective special linear groups of degree two and the Suzuki groups. For each of the
remaining groups, we have a contradiction by Proposition 2.4, after checking by GAP
[6] that each has a subgroup isomorphic to S4 (the symmetric group of degree four),
which is not an N-group (since NilS4 ((12)(34)) is not a subgroup of S4). So the claim
is proved.

Now let G be semisimple and ν(G) = 1
12 . If R is the centreless CR-Radical of G,

then R � R1 × · · · × Rk, where Ri is simple for each i. It follows from Lemma 2.3 and
Proposition 2.4 that R � A5, since ν(A5) = 1

12 . On the other hand, we know that G is
embedded in Aut(R). Since Aut(A5) � S5, we have either G � A5 or S5. But S5 is not
an N-group, by Proposition 2.4. This completes the proof.
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3. Examples ofN-groups

It is clear that every nilpotent group is anN-group. Now we present some examples
of N-groups which are not nilpotent. First, we determine Frobenius N-groups.

Proposition 3.1. Let G be a Frobenius group with the Frobenius complement H. Then
G is an N-group if and only if H is an N-group.

Proof. If G is an N-group, then so is H by Proposition 2.4. Conversely, assume that
H is anN-group. It is well known that G has a partition as Π = {K, x−1Hx | x ∈ K}. We
claim that if 1 , g ∈ G, then either NilG(g) ⊆ K or NilG(g) ⊆ w−1Hw for some w ∈ K.

Suppose that 1 , y ∈ NilG(g). Then there is a nonidentity element t in the centre of
〈g, y〉 by definition of NilG(g). Now we consider two cases.

Case 1. Suppose that g ∈ K. If y ∈ x−1Hx for some x ∈ K, then t ∈ CG(g) ∩ CG(y) ⊆
K ∩ x−1Hx, which is a contradiction. It follows that y ∈ K and so NilG(g) = K, since
K is nilpotent by [11, Theorem 10.5.6].

Case 2. Suppose that g ∈ w−1Hw for some w ∈ K. If y ∈ K or x−1Hx for some
x ∈ K\{w}, then t ∈ w−1Hw ∩ K or w−1Hw ∩ x−1Hx, which is impossible. Therefore
NilG(g) ⊆ w−1Hw. This completes the proof of the claim.

Since K is nilpotent and w−1Hw is an N-group by hypothesis for every w ∈ K, the
result follows. �

The next corollary, which follows directly from the above proposition and the next
two propositions, gives some further examples of N-groups.

Corollary 3.2. Let G be a nonnilpotent group such that every proper subgroup of G
is nilpotent. Then G is an N-group.

Proposition 3.3. Let G1 and G2 be finite groups. Then G1 ×G2 is an N-group if and
only if G1 and G2 are N-groups.

Proof. Put G = G1 ×G2. If G is an N-group, then both G1 and G2 are N-groups by
Proposition 2.4. Conversely, assume that G1 and G2 are N-groups. Suppose 〈x, y〉
and 〈x, z〉 are nilpotent subgroup of G, where x = (x1, x2), y = (y1, y2), z = (z1, z2) with
x1, y1, z1 ∈G1 and x2, y2, z2 ∈G2. Then we show that 〈x, yz〉 is nilpotent. Since 〈x, y〉 and
〈x, z〉 are nilpotent, so are 〈(x1, 1), (y1, 1)〉 and 〈(x1, 1), (z1, 1)〉. Next, 〈(x1, 1), (y1z1, 1)〉
is nilpotent because NilG1 (x1) is a subgroup of G1. In a similar way, 〈(1, x2), (1, y2z2)〉
is nilpotent. Hence 〈(x1, 1), (y1z1, 1)〉 × 〈(1, x2), (1, y2z2)〉 is nilpotent, which shows that
〈x, yz〉 is nilpotent and completes the proof. �

Proposition 3.4. Let G = PGL(2,q). Then G is anN-group if and only if q > 3 is prime
and 8 - (q ± 3).

Proof. Suppose that 8 - (q ± 3). Then all nilpotent subgroups of G are abelian. Now we
show that NilG(x) = CG(x) for all x ∈ G. If CG(a) , NilG(a) for some a ∈ G, then there
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is an element b ∈ NilG(a)\CG(a). It follows that 〈a, b〉 is nilpotent and so b ∈ CG(a),
which is a contradiction. Hence G is an N-group.

Conversely if q ≡ ±3 (mod 8), then G has some subgroups isomorphic to S4, which
is not an N-group. Therefore we have the result by Proposition 2.4. �
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