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MULTIPLICATION MODULES

BY
SURJEET SINGH AND FAZAL MEHDI

All rings R considered here are commutative with identity and all the
modules are unital right modules. As defined by Mehdi [6] a module My, is said
to be a multiplication module if for every pair of submodules K and N of
M, K = N implies K = NA for some ideal A of R. This concept generalizes the
well known concept of a multiplication ring. A module My is said to be a
generalized multiplication module if for every pair of proper submodules K
and N of M, K< N implies K= NA for some ideal A of R. The quasi-cyclic
group Zp- is a generalized multiplication module which is not a multiplication
module. Another example is given at the end of this note. The purpose of this
note is to find the structure of a faithful generalized multiplication module over
a noetherian domain; the desired structure is given in Theorems (2.4) and
(3.6).

1. Preliminaries. A module is said to be uniserial if it has a unique composi-
tion series. Since any artinian principal ideal ring is a direct sum of special
primary rings, by Nakayama [8], we have:

Lemma (1.1). Any module over an artinian principal ideal ring is a direct
sum of uniserial modules.

Mehdi [6, Theorem 4] showed that any faithful multiplication module M
over a quasi-local ring R, is isomorphic to Rz and R is a multiplication ring.
Now any artinian ring is the direct sum of finitely many local, artinian rings and
any local artinian, multiplication ring, is a special primary ring [2]. Further
every special primary ring is self-injective. This gives the following.

Lemma (1.2). Any multiplication module over an artinian ring is a direct sum
of finitely many uniserial modules. Further if M is a faithful multiplication
module over a quasi-local ring R, and if R is not a domain, then M is uniserial
and injective.

Thus any finite length multiplication module over a quasi-local ring, is
quasi-injective. For definition and some elementary properties of quasi-
injective modules we refer to [4]. For any module M over a ring R, Ez (M) (or
simply E(M)) will denote the injective hull of M.
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2. Torsion free generalized multiplication modules. The following lemma is
obvious:

LemmA (2.1). Let M be a faithful generalized multiplication module over a
noetherian ring R. Then

(I) Either M s finitely generated or every proper submodule of M is finitely
generated and small in M.

(II) If R=R,®DR,, then M is finitely generated.

Lemma (2.2). If M is a generalized multiplication module over a domain D,
such that M is not a torsion free module, then M is a torsion module.

Proof. Let N be the torsion submodule of M. Now N#0 and M/N is a
torsion free module. So if M/N#0, we can find a proper submodule T/N of
MJ/N. Then N = TA for some non-zero ideal A of D. That gives T is a torsion
submodule of M and hence N = T. This is a contradiction. This proves that M
is a torsion module.

Lemma (2.3). If M is torsion free generalized multiplication module over a
domain D, then D is a Dedekind domain and M is a uniform D-module.

Proof. As M is torsion free, D, is embeddable in M. So Dy, is a multiplica-
tion module, and hence D is a Dedekind domain.

If M is not uniform, we can find two non-zero submodules A and B of M
such that ANB=0 and A®B<M, then for some ideal C of D, A=
(A + B)C; which is not possible. This proves that M is uniform.

TueOREM (2.4). If M is a torsion free generalized multiplication module over a
domain D which is not a field, then either M is a multiplication module
isomorphic to an ideal of D, or M is isomorphic to the total quotient field Q of D
and D is a discrete valuation ring of rank one.

Proof. By (2.3), D is a Dedekind domain. Thus, if M is finitely generated,
then by (2.3) M being uniform, M is isomorphic to an ideal of D, and M is a
multiplication module. So let M be not finitely generated. We can regard
DcMc<Q.

Let M# Q. Then M is not divisible as D-module, so for some a# 0, Ma# M.
This gives Ma is finitely generated. Then M = Ma further gives M is finitely
generated. This is a contradiction. Hence M = Q. Suppose D is not a discrete
valuation ring. Consider any prime ideal P#0 of D, then D<Dp,<M=Q.
This gives Dp is a finite D-module; this is a contradiction. Hence D is a
discrete valuation ring. This proves the theorem.
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3. Torsion generalized multiplication modules. It was proved in [2] that any
indecomposable multiplication ring is either a Dedekind domain or a special
primary ring. Its immediate consequence is:

LeMMA (3.1). Any noetherian multiplication ring is a direct sum of Dedekind
domains and special primary rings.

Henceforth throughout all the lemmas, M is a faithful, torsion, generalized
multiplication module over a noetherian domain R. Clearly then M is not
finitely generated and is indecomposable.

LemMa (3.2). For 0#xeM, xR = @3x;R such that for each i, R/ann (x;) is
either a special primary ring or a Dedekind domain, which is not a field (so in the
later case ann(x;) is a non-maximal prime ideal).

Proof. xR = R/ann(x) gives R/ann(x) is a noetherian multiplication ring. The
rest now follows from (3.1).

LemMma (3.3). N, the set of those elements x in M such that xR is a direct sum
of uniserial modules, is a submodule of M.

Proof. Since every special primary ring S is uniserial as S-module, it follows
from (3.2) that x e N if and only if R/ann(x) is artinian. So for any x,y €N,
re R, ann(x)Nann(y)<ann(x—y), ann(x)<ann(xr) imply R/ann(x—y) and
R/ann(xr) are artinian, and hence x—ye€ N, xre N. This proves that N is a
submodule of M.

Lemma (3.4). N', the set consisting of 0 and all those xeM for which
R/ann(x) is a direct sum of Dedekind domains, none of which is a field, is a
submodule of M.

Proof. Let P be a non-maximal prime ideal of R such that for some x e M,

xR=R/P Let

Mp,={yeM:yP=0}
Then Mg, is a finitely generated multiplication module over R/P, such that
M, is not a torsion R/P-module. Consequently by (2.2) and (2.3) M, is a
torsion free uniform R/P-module.

Consider all above types of Mp, and let T =3,Mp,. We show that this sum
is direct and that N'=T. Since My, is a torsion free R/P-module, for any y#0
in M), anng(y)=P.

Let Mp,NQp—pMpy))#0. We can find y(#0)eMyp, such that y=
yity,+-:-+y, ¥:#0 and there exist distinct non-maximal prime ideals
Py, P,, ..., P, all different from P, with y, € Mp). Then P,P,- - - P, <P gives
P, < P for some i. As R/P; is a Dedekind domain and P/P; is a non-maximal
prime ideal of R/P, we get P=P. This is a contradiction. Thus
T=®Yr Mp,.
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Clearly N'c T<M. Consider 0#ye T. Then yR = TA for some ideal A of
R. Therefore yR=®)YpMp)A. If for any P, MpA#0 then it being a
homomorphic image of yR, is cyclic. So if M A =ypR, then ann(yp)=P.
Therefore yR = @Y ypR, gives y € N'. This completes the proof.

LemMA (3.5). There exists a maximal ideal P of R such that for each
x € M, xP" =0 for some n.

Proof. In the notations of (3.3) and (3.4), M=N+N', By (2.1) M=N or
M=N"

Case I. M=N'=@®}Y,Mp, gives M=M4p,. Hence for some x#0 in
M, xR =R/P and also MP =0. This gives P =0, and that M is a torsion free
R-module. This is a contradiction. Hence this case is not possible.

Case II. M= N. Here given x(#0)e M, xR=®Y}_, x;R, with R/ann(x;) a
special primary ring. So there exists a maximal ideal P, such that x;P=0 for
some n;. Thus if for each maximal ideal P of R, for which, for some x e M,
ann(x) =P, we define Mp ={xe M, xP" =0 for some n}, then M, is a sub-
module of M and on similar lines as in Case I, M = @) Mp. This gives M = Mp.
Hence the result follows.

THEOREM (3.6). Let M be a faithful torsion generalized multiplication module
over a noetherian domain R. Then M has an infinite properly ascending chain of
submodules:

0=x0R<le<"'<x"R"' <M

such that x;,R/x;_;R(i=1) are simple, mutually isomorphic, and x;R are the only
submodules of M different from M. Further more R is embeddable in a complete
discrete valuation ring S such that M can be made into an S-module with the
property that M is an injective S-module.

Proof. By (3.5) there exists a maximal ideal P of R such that for each x e M,
xP" =0 for some n. Thus given x and ye M, xR+yR is a multiplication
module over P/P" for some n. So by (1.2) xR + yR is uniserial. Hence xR < yR
or yR < xR and each xR is of finite length. Further if xR + yR = zZR = R/A for
some ideal A then R/A is a special primary ring with maximal ideal P/A,
hence all composition factor of xR +yR are isomorphic to R/P. This proves the
first part.

Consider E = Ex(M). By Matlis [5, Theorem (3.6)] E=Ex(R/P) is an
Rp-module, where R, is the P-adic completion of Rp. Further by Matlis [5,
Theorem (3.7)] Rp = Homg (E, E). Since each x,R is quasi-injective by (1.2),
using Johnson and Wong [4], we get that each x,R is an Rp-submodule of E.
Hence M itself is an Rp-submodule of E. Hence by Johnson and Wong [4], M
is a quasi-injective Rp-module. Consider A, the annihilator of M in Rp. Then
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S=Rp/A is a complete local ring and R is embeddable in S. Further M is a
quasi-injective uniform, S-module; each x,R is an S-module. For each n=1,
let

A,={seS:x,s=0}

Then x, A, = 0. The maximal ideal N of S is PRp/A. By 9, Chap. VIII, Theorem
13, N*>> A, for some n. However by (1.2) S/A,, is a special primary ring. Thus
S/N? is special primary ring and hence N/N? is a simple S-module. This implies
N is principal, and S is a complete discrete valuation ring. However every
infinite length torsion, uniform, module over a Dedekind domain is always
injective we get N is injective as an S-module. This proves the result.

Remark. It follows from the above proof that if R is a complete local
domain, admitting a faithful, torsion generalized multiplication module M, then
R is a discrete valuation ring and M is an injective R-module. If K is the
quotient field of R, then M is isomorphic to K/R. Now any indecomposable
module over a complete discrete valuation ring R, is isomorphic to K, R, K/R
or R/(p"), where K is the quotient field of R, and (p) is the maximal ideal of R
[3, p. 53]. Using this we get the following from (1.2), (2.4), and (3.6).

THeOREM. Generalized multiplications modules over a complete discrete val-
uation ring R are precisely the indecomposable modules over R.

We end this paper by giving an example of a uniform finite length generalized
multiplication module over a local ring, which is not uniserial.

ExampLE. Let R be any local ring with maximal ideal W such that W?>=0
and composition length I[(W)=2, Then W=x;R®x,R. Consider M=
(R/x;R®R/x,R)/D where D ={(X,r,—%;r):re R. Then M is a uniform R-
module of length 3, its proper submodules are isomorphic to R/x;R, R/x,R
and R/W. Since each of these modules is uniserial and hence a multiplication
module, we get M is a generalized multiplication module. It can be easily
verified that M is uniform, but M is not uniserial.
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