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MULTIPLICATION MODULES 

BY 

SURJEET SINGH AND FAZAL MEHDI 

All rings R considered here are commutative with identity and all the 
modules are unital right modules. As defined by Mehdi [6] a module MR is said 
to be a multiplication module if for every pair of submodules K and N of 
M , K c N implies K-NA for some ideal A of R. This concept generalizes the 
well known concept of a multiplication ring. A module MR is said to be a 
generalized multiplication module if for every pair of proper submodules K 
and N of M, K <= JV implies K = NA for some ideal A of R. The quasi-cyclic 
group ZP- is a generalized multiplication module which is not a multiplication 
module. Another example is given at the end of this note. The purpose of this 
note is to find the structure of a faithful generalized multiplication module over 
a noetherian domain; the desired structure is given in Theorems (2.4) and 
(3.6). 

1. Preliminaries. A module is said to be uniserial if it has a unique composi­
tion series. Since any artinian principal ideal ring is a direct sum of special 
primary rings, by Nakayama [8], we have: 

LEMMA (1.1). Any module over an artinian principal ideal ring is a direct 
sum of uniserial modules. 

Mehdi [6, Theorem 4] showed that any faithful multiplication module M 
over a quasi-local ring JR, is isomorphic to RR and JR is a multiplication ring. 
Now any artinian ring is the direct sum of finitely many local, artinian rings and 
any local artinian, multiplication ring, is a special primary ring [2]. Further 
every special primary ring is self-injective. This gives the following. 

LEMMA (1.2). Any multiplication module over an artinian ring is a direct sum 
of finitely many uniserial modules. Further if M is a faithful multiplication 
module over a quasi-local ring R, and if R is not a domain, then M is uniserial 
and injective. 

Thus any finite length multiplication module over a quasi-local ring, is 
quasi-injective. For definition and some elementary properties of quasi-
injective modules we refer to [4]. For any module M over a ring R, ER(M) (or 
simply E(M)) will denote the injective hull of M. 
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2. Torsion free generalized multiplication modules. The following lemma is 
obvious: 

LEMMA (2.1). Let M be a faithful generalized multiplication module over a 
noetherian ring JR. Then 

(I) Either M is finitely generated or every proper submodule of M is finitely 
generated and small in M. 

(II) If R =R1(BR2, then M is finitely generated. 

LEMMA (2.2). If M is a generalized multiplication module over a domain D, 
such that M is not a torsion free module, then M is a torsion module. 

Proof. Let N be the torsion submodule of M. Now N^O and M/N is a 
torsion free module. So if M/N^ 0, we can find a proper submodule T/N of 
M/N. Then JV = TA for some non-zero ideal A of D. That gives T is a torsion 
submodule of M and hence N=T. This is a contradiction. This proves that M 
is a torsion module. 

LEMMA (2.3). If M is torsion free generalized multiplication module over a 
domain D, then D is a Dedekind domain and M is a uniform D-module. 

Proof. As M is torsion free, DD is embeddable in M. So DD is a multiplica­
tion module, and hence D is a Dedekind domain. 

If M is not uniform, we can find two non-zero submodules A and B of M 
such that A H B = 0 and A@B<M, then for some ideal C of D,A = 
(A + B)C; which is not possible. This proves that M is uniform. 

THEOREM (2.4). If Mis a torsion free generalized multiplication module over a 
domain D which is not a field, then either M is a multiplication module 
isomorphic to an ideal of D, or M is isomorphic to the total quotient field Q of D 
and D is a discrete valuation ring of rank one. 

Proof. By (2.3), D is a Dedekind domain. Thus, if M is finitely generated, 
then by (2.3) M being uniform, M is isomorphic to an ideal of D, and M is a 
multiplication module. So let M be not finitely generated. We can regard 
D c M c Q . 

Let M ^ Q. Then M is not divisible as D-module, so for some a i= 0, Ma j= M. 
This gives Ma is finitely generated. Then M=Ma further gives M is finitely 
generated. This is a contradiction. Hence M=Q. Suppose D is not a discrete 
valuation ring. Consider any prime ideal P ^ O of D, then D<DP<M=Q. 
This gives D P is a finite D-module; this is a contradiction. Hence D is a 
discrete valuation ring. This proves the theorem. 
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3. Torsion generalized multiplication modules. It was proved in [2] that any 
indecomposable multiplication ring is either a Dedekind domain or a special 
primary ring. Its immediate consequence is: 

LEMMA (3.1). Any noetherian multiplication ring is a direct sum of Dedekind 
domains and special primary rings. 

Henceforth throughout all the lemmas, M is a faithful, torsion, generalized 
multiplication module over a noetherian domain R. Clearly then M is not 
finitely generated and is indecomposable. 

LEMMA (3.2). For O^xeM, xR = ® Sx^R such that for each i, .R/ann(xj) is 
either a special primary ring or a Dedekind domain, which is not a field (so in the 
later case ann(^) is a non-maximal prime ideal). 

Proof. xR=R/arm(x) gives JR/ann(x) is a noetherian multiplication ring. The 
rest now follows from (3.1). 

LEMMA (3.3). N, the set of those elements x in M such that xR is a direct sum 
of uniserial modules, is a submodule of M. 

Proof. Since every special primary ring S is uniserial as S-module, it follows 
from (3.2) that x e N if and only if JR/ann(x) is artinian. So for any x,yeN, 
reR, ann(x)nann(y)<=ann(x-y), ann(x) <= ann(xr) imply R/arm(x — y) and 
R/2iTm(xr) are artinian, and hence x — yeN, xreN. This proves that N is a 
submodule of M. 

LEMMA (3.4). N', the set consisting of 0 and all those xeM for which 
JR/ann(x) is a direct sum of Dedekind domains, none of which is a field, is a 
submodule of M. 

Proof. Let P be a non-maximal prime ideal of JR such that for some xeM, 
xR = R/P Let 

M(P) = {yeM:yP = 0} 

Then M(P) is a finitely generated multiplication module over RIP, such that 
M(P) is not a torsion K/P-module. Consequently by (2.2) and (2.3) M(P) is a 
torsion free uniform JR/P-module. 

Consider all above types of M(P) and let T = SPM(P). We show that this sum 
is direct and that N' = T. Since M(P) is a torsion free J?/P-module, for any y ̂  0 
in M(P), annR(y) = P. 

Let M(P)n(Xp=pM(PO)^0. We can find y(^0)eM ( P ) such that y = 
yi + y2+ ' ' '+ym tt^O and there exist distinct non-maximal prime ideals 
Pl9 P 2 , . . . , Pn all different from P, with yt e M(Pi). Then PXP2 ---Pncp gives 
Pt c P for some i. As R/Pt is a Dedekind domain and P/Pt is a non-maximal 
prime ideal of R/Pt, we get P = Pt. This is a contradiction. Thus 
T=eipM ( P ) . 
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Clearly N ' c: T < M . Consider 0 + y e T. Then yR = TA for some ideal A of 
R. Therefore yR = ©XPM ( P )A. If for any P , M ( P ) A ^ 0 then it being a 
homomorphic image of yR, is cyclic. So if Mœ)A — yPR, then ann(yP) = P. 
Therefore yR = © £ P yPJ?, gives yeN'. This completes the proof. 

LEMMA (3.5). There exists a maximal ideal P of R such that for each 
xeM, xPn = 0 for some n. 

Proof. In the notations of (3.3) and (3.4), M = N+N', By (2.1) M = N or 
M = N'. 

CASE I. M = N' = © £ P M ( P ) gives M = M(P). Hence for some x^O in 
M, xR = R/P and also MP = 0. This gives P = 0, and that M is a torsion free 
JR-module. This is a contradiction. Hence this case is not possible. 

CASE II. M = N. Here given x ( ^ 0 ) e M , xR = ©£!=i *!?, with R/ann(xt) a 
special primary ring. So there exists a maximal ideal Pt such that xtP^ = 0 for 
some nt. Thus if for each maximal ideal P of JR, for which, for some xeM, 
ann(x) = P, we define MP = {x € M, xPn = 0 for some n}, then MP is a sub-
module of M and on similar lines as in Case I, M = ©£M P . This gives M = MP. 
Hence the result follows. 

THEOREM (3.6). Let M be a faithful torsion generalized multiplication module 
over a noetherian domain R. Then M has an infinite properly ascending chain of 
submodules: 

0 = xoR<x1R<- <xnR •• • < M 

such that x ijR/x i_1i?(i>l) are simple, mutually isomorphic, and xtR are the only 
submodules of M different from M. Further more R is embeddable in a complete 
discrete valuation ring S such that M can be made into an S-module with the 
property that M is an infective S-module. 

Proof. By (3.5) there exists a maximal ideal P of JR such that for each x e M, 
xPn = 0 for some n. Thus given x and y e M, xR + yR is a multiplication 
module over P/Pn for some n. So by (1.2) xR + yjR is uniserial. Hence xR c yR 
or yjR <= xR and each xR is of finite length. Further if xR + yjR = zR = R/A for 
some ideal A then R/A is a special primary ring with maximal ideal PI A, 
hence all composition factor of xR + yR are isomorphic to RIP. This proves the 
first part. 

Consider E = ER(M). By Matlis [5, Theorem (3.6)] E = ER(R/P) is an 
Rp-module, where RP is the P-adic completion of RP. Further by Matlis [5, 
Theorem (3.7)] RP =HomR(E, E). Since each x^R is quasi-injective by (1.2), 
using Johnson and Wong [4], we get that each x„R is an RP -submodule of E. 
Hence M itself is an JRP-submodule of E. Hence by Johnson and Wong [4], M 
is a quasi-injective RP-module. Consider A, the annihilator of M in i?P. Then 
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S = Rp/A is a complete local ring and R is embeddable in S. Further M is a 
quasi-injective uniform, S-module; each xJR is an S-module. For each n > l , 
let 

An={seS:xns = 0} 

Then xnAn = 0. The maximal ideal N of S is PRP/A. By 9, Chap. VIII, Theorem 
13, N 2 => AM for some n. However by (1.2) S/An is a special primary ring. Thus 
S/N2 is special primary ring and hence N/N2 is a simple S-module. This implies 
N is principal, and S is a complete discrete valuation ring. However every 
infinite length torsion, uniform, module over a Dedekind domain is always 
injective we get N is injective as an S-module. This proves the result. 

REMARK. It follows from the above proof that if R is a complete local 
domain, admitting a faithful, torsion generalized multiplication module M, then 
R is a discrete valuation ring and M is an injective JR-module. If K is the 
quotient field of R, then M is isomorphic to KIR. Now any indecomposable 
module over a complete discrete valuation ring JR, is isomorphic to K, R, KIR 
or R/(pn), where K is the quotient field of R, and (p) is the maximal ideal of JR 
[3, p. 53]. Using this we get the following from (1.2), (2.4), and (3.6). 

THEOREM. Generalized multiplications modules over a complete discrete val­
uation ring JR are precisely the indecomposable modules over R. 

We end this paper by giving an example of a uniform finite length generalized 
multiplication module over a local ring, which is not uniserial. 

EXAMPLE. Let JR be any local ring with maximal ideal W such that W2 = 0 
and composition length l(W) = 2, Then W = x1R(Bx2R. Consider M = 
(R/x1R®R/x2R)/D where D={(x2r,-x1r):reR. Then M is a uniform R-
module of length 3, its proper submodules are isomorphic to JR/jqJR, R/x2R 
and R/W. Since each of these modules is uniserial and hence a multiplication 
module, we get M is a generalized multiplication module. It can be easily 
verified that M is uniform, but M is not uniserial. 
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