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Abstract  We define the notion of a trace kernel on a manifold M. Roughly speaking, it is a sheaf on
M x M for which the formalism of Hochschild homology applies. We associate a microlocal Euler class
with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent
bundle T*M over M, and we prove that this class is functorial with respect to the composition of kernels.

This generalizes, unifies and simplifies various results from (relative) index theorems for constructible
sheaves, Z-modules and elliptic pairs.
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1. Introduction

Our constructions mainly concern real manifolds, but in order to introduce the subject
we first consider a complex manifold (X, Ox). Denote by a)l)}"l the dualizing complex in
the category of Ox-modules, that is, w)}}Ol = 2y [dx], where dx is the complex dimension
of X and §2x is the sheaf of holomorphic forms of degree dy. Denote by &4, and wg‘;(l the
direct images of Ox and w§°1 respectively under the diagonal embedding §: X — X x X.
It is well-known (see in particular [3,4]) that the Hochschild homology of &x may be

defined by using the isomorphism
8. M H (Ox) = RHomg,, , (Osy, oB2). (1.1)

Moreover, if # is a coherent Oy-module and Dg.# = RAFomep, (F, a))}}Ol) denotes its
dual, there are natural morphisms

Onx — FRDe.F — o (1.2)
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488 M. Kashiwara and P. Schapira
whose composition defines the Hochschild class of .#:
hho(F) € HY 7y (X HH(O5)).

These constructions have been extended when replacing Ox with a so-called
DQ-algebroid stack % in [15] (DQ stands for “deformation quantization”). One of
the main results of this reference is that Hochschild classes are functorial with respect to
the composition of kernels, a kind of (relative) index theorem for coherent DQ-modules.

On the other hand, the notion of Lagrangian cycles of constructible sheaves on real
analytic manifolds has been introduced by the first-named author (see [9]) in order to
prove an index theorem for such sheaves, after they first appeared in the complex case
(see [8,19]). We refer the reader to [13, Chapter 9] for a systematic study of Lagrangian
cycles and for historical comments. Let us briefly recall the construction.

Consider a real analytic manifold M and let k be a unital commutative ring with
finite global dimension. Denote by wys the (topological) dualizing complex of M, that is,
wpy = oryy [dim M] where oryy is the orientation sheaf of M and dim M is the dimension.
Finally, denote by my: T*M — M the cotangent bundle of M. Let A be a conic
subanalytic Lagrangian subset of T*M. The group of Lagrangian cycles supported by
A is given by H%(T*M; nﬂ;la)M). Denote by Dﬂbg_C(kM) the bounded derived category
of R-constructible sheaves on M. With an object F of this category, one associates a
Lagrangian cycle supported by SS(F), the microsupport of F. This cycle is called the
characteristic cycle, or the Lagrangian cycle or else the microlocal Euler class of F and is
denoted here by weuy, (F).

In fact, it is possible to treat the microlocal Euler classes of R-constructible sheaves on
real manifolds like Hochschild classes of coherent sheaves on complex manifolds. Denote
as above by ka,, and w,,, the direct image of ky and wy under the diagonal embedding
Sm: M — M x M. Then we have an isomorphism

HY(T*M; w0yt on) = HY (T*M; jihom(k a,,, w4,))s (1.3)

where phom is the microlocalization of the functor RZom. Then peuy,(F) is obtained as
follows. Denote by Dy F := RsZom(F, wyr) the dual of F. There are natural morphisms

kAM—>F|Z|DMF—> WA (14)

whose composition gives the microlocal Euler class of F.

In this paper, we construct the microlocal Euler class for a wide class of sheaves,
including of course the constructible sheaves but also the sheaves of holomorphic
solutions of coherent Z-modules and, more generally, of elliptic pairs in the sense of [23].
To treat such situations, we are led to introduce the notion of a trace kernel.

On a real manifold M (say of class C*), a trace kernel is the data of a triplet
(K, u,v) where K is an object of the derived category of sheaves DP(kyrspr) and u, v are
morphisms

u:kp, > K, viK— wpy,. (1.5)
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One then naturally defines the microlocal Euler class peuy, (K, u, v) of such a kernel,
an element of HY (T*M; hom(k sy, wa,,)) where A =SS(K) N T4 (M x M). By (1.4), a
constructible sheaf gives rise to a trace kernel.

If X is a complex manifold and .# is a coherent Px-module, we construct natural
morphisms (over the base ring k = C)

L
Cay = 2xxx ® gy (M RDpM) — w4y, (1.6)

where Dp.# denotes the dual of .# as a Z-module. In other words, one naturally
associates a trace kernel on X with a coherent Zx-module. Moreover, we prove that
under suitable microlocal conditions, the tensor product of two trace kernels is again a
trace kernel, and it follows that one can associate a trace kernel with an elliptic pair.

We study trace kernels and their microlocal Euler classes, showing that some proofs
of [15] can be easily adapted to this situation. One of our main results is the functoriality
of the microlocal Euler classes: the microlocal Euler class of the composition K7 o K2
of two trace kernels is the composition of the microlocal Euler classes of Ki and
K2 (see Theorem 6.3 for a precise statement). Another essential result is that the
composition of classes coincides with the composition for nAjlle constructed in [13] via
the isomorphism between whom(ka,,, wa,,) and nﬂjlla)M.

As an application, we recover in a single proof the classical results on the index
theorem for constructible sheaves (see [13, §9.5]) as well as the index theorem for
elliptic pairs of [23], that is, sheaves of generalized holomorphic solutions of coherent
2-modules. We also briefly explain how to adapt trace kernels to the formalism of the
Lefschetz trace formula.

We call here phom(ka,,, wa,) the microlocal homology of M, and this paper shows
that, in some sense, the microlocal homology of real manifolds plays the same role as the
Hochschild homology of complex manifolds.

To conclude this introduction, let us make a general remark. The category Dﬁ_c(kM)
of constructible sheaves on a compact real analytic manifold M is “proper” in the sense
of Kontsevich (that is, Ext finite) but it does not admit a Serre functor (in the sense
of Bondal and Kapranov) and it is not clear whether it is smooth (again in the sense
of Kontsevich). However this category naturally appears in mirror symmetry (see [5])
and it would be a natural aim to try to understand its Hochschild homology in the
sense of [17,16]. We do not know how to compute it, but the above construction,
with the use of puhom(ka,,, wa,), provides an alternative approach to the Hochschild
homology of this category. This result is not totally surprising if one recalls the formula
(see [13, Proposition 8.4.14])

Drep(uwhom(F, G)) =~ whom(G, F) @ 7y  wp.

Hence, in some sense, rrﬂjlla)M plays the role of a microlocal Serre functor. Note that
thanks to Nadler and Zaslow [18], we have that the category Dﬁ_c(kM) is equivalent to
the Fukaya category of the symplectic manifold 7*M, and this is another argument for
treating sheaves from a microlocal point of view.
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2. A short review on sheaves

Throughout this paper, a manifold means a real manifold of class C*°. We shall mainly
follow the notation of [13] and use some of the main notions introduced there, in
particular that of microsupport and the functor pwhom.

Let M be a manifold. We denote by my: T*M — M its cotangent bundle. For a
submanifold N of M, we denote by TyM the conormal bundle to N. In particular, Tj,M
denotes the zero-section. We set T*M = T*M \ TyM and we denote by 7tjs the restriction
of 7y to T*M. If there is no risk of confusion, we write simply 7 and 7 instead of 7y
and 7. One denotes by a: T*M — T*M the antipodal map, (x; &) — (x; —&), and for a
subset S of T*M, one denotes by $¢ its image under this map. A set A C T*M is conic if it
is invariant under the action of R* on T*M.

Let f: M — N be a morphism of manifolds. With f one associates as usual the maps

x l l (2.1)
f

M——>N.

(Note that in the above citation the map f; is denoted by 'f'~*.)

Let A be a closed conic subset of T*N. One says that f is non-characteristic for A if
the map f; is proper on f;lA or, equivalently, f;lA ﬂf;l(Tjk,,M) C MxnTyHN.

Let k be a commutative unital ring with finite global homological dimension. One
denotes by ky the constant sheaf on M with stalk k and by DP(ky) the bounded derived
category of sheaves of k-modules on M. When M is a real analytic manifold, one denotes
by DE_C(kM) the full triangulated subcategory of DP (kp) consisting of R-constructible

objects.
One denotes by wy the dualizing complex on M and by &1 its dual, that
is, a)j%’l_l = RJ¢m(wy, kpyr). More generally, for a morphism f: M — N, one denotes

by wm/n =f'ky ~ oy ®f_1(a)16371) the relative dualizing complex. Recall that wp >~
ory [dim M] where orys is the orientation sheaf and dim M is the dimension of M. Also
recall the natural morphism of functors

omN@f = fh (2.2)
We have the duality functors
D}, F = Rom(F,ky), DyF =Rom(F,wy).

For F e Db(kM), one denotes by Supp(F) the support of F and by SS(F) its
microsupport, a closed R*-conic co-isotropic subset of T*M. For a morphism f: M — N
and G € DP(ky), one says that f is non-characteristic for G if f is non-characteristic for
SS(G).

We shall use systematically the functor whom, a variant of Sato’s microlocalization
functor. Recall that for a closed submanifold N of M, there is a functor wuy: DP(ky) —
Db(kT;;,M) constructed by Sato (see [22]) and for F1, Fo € DP(ky), one defines in [13] the
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functor

pwhom: DP(ky)°P x DP(kyy) — DP(kpenn),
jthom(Fy, F2) == paR#om(q3 *F1, q{F2)

where g1 and g2 are the first and second projections defined on M x M and A is the
diagonal. This sheaf is supported by T3 (M x M) that we identify with 7*M via the first
projection T*(M x M) ~T*M x T*M — T*M. Note that

Supp(uhom(F1, F2)) C SS(F1) N SS(F2) (2.3)
and we have Sato’s distinguished triangle, functorial in F1 and Fa:
Romhom(Fy, Fa) — Rotuphom(F1, Fa) — Rity (hom(F1, Fa)ljey) > . (2.4)
Moreover, we have the isomorphism
Rmphom(Fy, Fo) ~ Rom(F1, Fa), (2.5)

and, assuming that M is real analytic and F7 is R-constructible, the isomorphism

L
Rmuhom(F1, F2) ~Dj,F1 ® Fa. (2.6)

In particular, assuming that F1 is R-constructible and SS(F1) N SS(F2) C Ty;M, we have
the natural isomorphism (see [13, Corollary 6.4.3])

L
D), F1 ® Fo => Rom(F1, F2). (2.7)

As recalled in the Introduction, assuming that M is real analytic and the sheaves are
constructible, we have the formula (see [13, Proposition 8.4.14])

Drsp(ihom(F1, Fa)) = phom(Fa, F1) ® my oy for Fi, F2 € DR (k). (2.8)

3. Compositions of kernels

Notation 3.1. (i) For a manifold M, let 8y : M — M x M denote the diagonal
embedding, and Ay, the diagonal set of M x M.

(i) Let M; (i =1,2,3) be manifolds. For short, we write M;j :==M; x M; (1 <i,j<3),
Mi93 =M1 X Mo x M3, M1223 = M1 X Mo X Mo x M3, etc.

(iii) We will often write for short k; instead of kyy, and k, instead of ks My and similarly
with wyy;, etc., and with the index i replaced with several indices ij, etc.

iv) We denote by 7;, 7;;, etc. the projection T*M; — M;, T*M;; — M;;, etc.
ij ij ij

(v) We denote by g; the projection M;; — M; or the projection M123 — M; and by g;; the
projection My23 — Mj;. Similarly, we denote by p; the projection T*M;; — T*M; or
the projection T*M123 — T*M,; and by p;; the projection T*M123 — T*M;;.
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vi) We also need to introduce the maps pj or p;a«, the composition of p; or p;; and the
j ij j ij
antipodal map on T*M;. For example,

p12e((x1, x2, x3; 61, §2, §3)) = (x1, x2; §1, —§2).
(vii) We let 82: M123 — M1223 be the natural diagonal embedding.
We consider the operation of composition of kernels:
91 DP(Kury,) x D° (Kary;) — D" (heary)
(K1, K2) > Ki g Ko = Rausu(ai Ki ® g5 Ko) (3.1)
~ Rq13,8; (K1 %Kz).

We will use a variant of o:

s : DP(Kazy,) X DP(Kpgps) = DP (Kprys)
2 L (3.2)
(K1. K2) > K13 K2 == Rans,. (43 Lo ® 83(K1 X Ka)).

We also have wu,qs/M1203 = qgla)ﬁ?j;l and we deduce from (2.2) a morphism 8, —

qgla)M2 ® 82!. Using the morphism Rpi13, = Rp13, we obtain a natural morphism for
K1 € DP(kyy,,) and Ko € DP(kpzy,):

Ki 0Ky — K1 *%Ko. (3.3)

It is an isomorphism ifpl_ZlaSS(Kl) ﬂp2_31uSS(K2) — T*Mi3 is proper.
We define the composition of kernels on cotangent bundles (see [13, Proposition
4.4.11)):

§: Db(kT*M12) X Db(kT*Mgg) - Db(kT*Mlg)
L
(K1, K2) = K1 §K2 = Rp13,(p12:K1 ® poz K2) (3.4)
- e b
~ Rp130)(p19aK1 ® pg3.K2).

We also define the corresponding operations for subsets of cotangent bundles. Let
A CT*Mi9 and B C T*Mo3. We set

a
AX B = piza(A) Npag (B),
A&B = pi3(A X B)

2 2

(x1,x3; &1, £3) € T*M13; there exists (x2; &2) € T"Mo
o such that (x1, x9; €1, —&2) €A, (x2,x3; &2, &3) €B |

(3.5)

We have the following result which slightly strengthens Proposition 4.4.11 of [13] in
which the composition * is not used.
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Proposition 3.2. For G, F1 € Db(kM12) and Go, Fo € Db(kM23) there exists a canonical
morphism (whose construction is similar to that of [13, Proposition 4.4.11]):

phom(Gy, F) § phom(Ga, F2) = whom(Gy % Ga, F1 g Fa).

L
Proof. In Proposition 4.4.8(i) of the earlier citation, one may replace FaXgGa with
L
J'(Fa X Go) ® wf?;sly/x)(y. Then the proof goes exactly like that of Proposition 4.4.11 in
the earlier citation. O
Let Ajj CT*M;; (i=1,2,j =i+ 1) be closed conic subsets and consider the condition
the projection p13: A2 N Aoy —> T*Mi3 is proper. (3.6)
2
We set

A13 = A12 § A923. (3.7)

Corollary 3.3. Assume that Ajj (i=1,2,j=i+ 1) satisfy (3.6). We have a composition
morphism

RI'p ,whom(G1, F1) § RI Ay, hom(Ga, Fo) — RI A, 3 whom(Gy ;GQ, Fq 8F2).

Convention 3.4. In (3.1), we have introduced the composition S of kernels Kj €

Db(kM12) and Ko € Db(kMQS). However we shall also use the notation Moo = Moy x Mo
and consider for example kernels L1 € D®(kyr,,,) and La € DP(kpryyy). Then when writing
L <2>L2 we mean that the composition is taken with respect to the last variable of Mag for

L1 and the first variable for La. In other words, set My = Mo and consider L1 and Lg as
objects of Db(kM142) and Db(kM243) respectively, in which case the composition L1 <2>L2 18

unambiguously defined.

4. Microlocal homology

Let M be a real manifold. Recall that 837: M < M x M denotes the diagonal embedding.
We shall identify M with the diagonal Ay of M x M and we sometimes write A instead of
Ay if there is no risk of confusion. We shall identify T*M with 7% (M x M) via the map

8%*M: T*MC—> T*(M X M)s (X; é) = (x7 X3 57 _é)

We denote by ka,, wa, and a)%n;l the direct image under &y of ky, wy and
w8 1= R.om(wyy, kpr), respectively.
The next definition is inspired by that of Hochschild homology on complex manifolds

(see the Introduction).
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Definition 4.1. Let A be a closed conic subset of T*M. We set

M AN (kpr) = REA Sy hom(kay . w4,),
MH 4 (kpp) = RI(T*M; # 55 (kyy)), (4.1)
MHY (kyp) = H*MH 4 (kpr)) = HY(T*M; M 75 (kn)).

We call .# 7, (kyr) the microlocal homology of M with support in A.
We also write .# 74ky) instead of A 76y (ky).

Remark 4.2. (i) We have phom(ka,,, wa,,) =~ (8?*M)*n1;11a)M. In particular, we have
MH 4 (kpy) >~ REA(T*M; JT,;Ila)M) and MH(ky) =~ RI'(M; wp). Assuming that M is
real analytic and A is a closed conic subanalytic Lagrangian subset of T*M, we
recover the space of Lagrangian cycles with support in A as defined in [13, § 9.3].

(ii) The support of phom(ka,,was,) is Th,(M x M). Hence, we have
RFS‘;*MA l/«hom(kAMa U)AM) x~ (8?‘*M)*%<}f/&(kM)-

(iii) If M is real analytic and A is a Lagrangian subanalytic closed conic subset, then we
have HX(.# 75 (ky)) = 0 for k < 0 (see [13, Proposition 9.2.2]).

In the sequel, we denote by A; (resp. A;) the diagonal subset Ay, C M (resp.
Amy C Mip).
Lemma 4.3. We have natural morphisms:
. L
(i) way, 202(kA2 M waz) > way,
.. ®—1 L
(ll) kAlS g kA12 2*2(60A2 X kAs)

Proof. Denote by 822 the diagonal embedding M112233 < M11222233.-
(i) We have the morphisms

L L L
WA 202(kA2 X wAg) = RCI1133152_21(60A12 X kAQ X a)Ag)

>~ Rq113310 4103

— WA ;3-
(ii) The isomorphism

899(kp, Maway) ~ka,
gives rise to the isomorphisms

L L L
kap, 2*2(60%_1 Xkay) = RCI1133*(61I11330>22 ® 8g9(ka,, X wi’;l X ka,))

L L
= RQI133*52!2(kA1 X WAy X kA23)

>~ Rq1133.:KA103
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and the result follows by adjunction from the morphism
;) L L L L
q1133kA13 :kAl X kQQ X kA3 - kAl X kA2 X kA3 =kA123. Il

Proposition 4.4. Let M; (i =1,2,3) be manifolds. We have a natural composition
morphism (whose construction will be given in the course of the proof):

,Lbl’lom(kA12, wAlg) 2g2 Mhom(kAggv a)A23) g MhOl’f’l(kAlS, a)A13)' (42)

In particular, let Ay be a closed conic subset of T*My; (ij =12,13,23). If A12§A23 C

A13, then we have a morphism

M A, (K12) § M A pyy (ka3) — MHp 5 (K13). (4.3)

Proof. Consider the morphism (see Proposition 3.2 and Convention 3.4)

1

®— ®—1, 4 ®—1 ®—1
;Lhom(wA2 N2y ) guhom(kA%, WAy3) = /j,hom(a)A2 >5kA23, w4, ga)A%)

o1 & L
~ ,uhom(a)A2 Mkas, ka, M way).
It induces an isomorphism
o1 2 L
phom(K gy, @A) phom(wy~ X kas,. ka, M was). (4.4)
Note that this isomorphism is also obtained from
o1 & L o1 L
phom(K pgs, 0ay;) = whom((@05 ™ X k233) ® kay,, (05 M kosz) @ way,)
o1 5 L
~ ;Lhom(a)A2 Xkas, kay, K way).
Applying Proposition 3.2, we get a morphism:

a
Hfhom(kAlg s wAlg) 202 uhom(kA% s wAgg)

L L
— phom(ka,, ;Q(wi’;l X kay) a1, 9 (Kay M w4ay)). (4.5)
It remains to apply Lemma 4.3. O

Corollary 4.5. Let A (i=1,2,j=i+ 1) satisfying (3.6) and let A13 = A1 g) Ass. The

composition of kernels in (4.3) induces a morphism
L
o : MH.z,, (k12) ® MH s, (ko3) — MHy,; (k13). (4.6)

In particular, each X\ € I\/JI]HI%12 (k12) defines a morphism
,\§ : MH g, (koz) — MH 4, (k13). (4.7)

Proof. These morphisms follow from (4.3). The second assertion follows from the
isomorphism HO(X) ~ Hompp i, (k, X) in the category Db (k). (I

https://doi.org/10.1017/51474748013000169 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748013000169

496 M. Kashiwara and P. Schapira
Theorem 4.6. (i) We have the isomorphisms

phom(Kay,, @ay) = (8% )« RAOm Ky, wpr)

(ii) We have a commutative diagram
a
whom(ka,,, @A;,) 202 phom(Kayg, ®Ays) —— phom(ka,,, wa;3)
I D

a -1 a_—1 -1
(6T*M13)* (7TM12&)M12 SJTM230)M23) —— (8%*M13)*7TM1360M13-

Here the top horizontal arrow of (4.8) is given in Proposition 4.4, and the bottom
horizontal arrow s induced by

“1_-1 L 1 1 1 % —1 L % 1
p12aT[M12wM12 ® P23 T[M23awM23 —7-[1[41 WM, 7TM2 (wMQ & wMQ) 7TM3(,()M3,

L
-1
Tins @n, & o) = 07w,

L L L
-1 -1 -1 -1
Rp13!(JTM1 WM, X WT*Mo X jTMga)MB) — ”le/"h X jTMgwM?,'

Proof. (i) is obvious.

(ii)-(a) By [13, Proposition 4.4.8], we have natural morphisms for (i,j) = (1,2) or
(i,))=(2,3):

L
phom(ka,;, wa;) B phom(ka;, wa;) — phom(ka,, way)

and it follows from (i) that these morphisms are isomorphisms. These isomorphisms give
rise to the isomorphism

a
Mhom(kAlza wAlg) 202 MhOm(kA23, wAQg)
L B L
>~ phom(ka,, wa,) X (uhom(kAQ, WA,) 2o2 whom(ka,,, wAQ)) X phom(ka,, way).
Similarly, we have an isomorphism
-1 a__1 -1 -1 a__1 -1
Ty POM12 gnMgg OMy3 = Ty, oMy X (”Mg DMy gJTMg “)M2) X T3 OM3 -

Hence, we are reduced to the case where M1 = M3 = pt, which we shall assume now.
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(ii)-(b) We change our notation and set
M=M>, Y:=MxM,
8y : M — Y the diagonal embedding, Ay = 8yr(M),
j: Y= Y x Y the diagonal embedding, Ay =j(Y),
Gopg: T"M — T*Y, (x; ) > (x, x; &, —§),
4. T*Y < T*Y x T*Y,
p: T*Y — pt the projection,

ay: Y — pt the projection.
With this new notation, the composition ;OQ will be denoted by T§Y.

Consider the diagram (4.9) similar to Diagram (4.4.15) of [13]:

. 54,
T*M x T*M——> T*Y x T*Y ~———— O T*y

T*Y xy T*Y ~—T% (Y x ¥) ) (4.9)
ljd O iﬂy
T*Y : Y o pt.

Here, i is the canonical embedding induced by 8%.,,, p1 is induced by the first projection
T*Y x T*Y — T*Y, s: Y < T*Y is the zero-section embedding and s is the natural
embedding. Note that the square labeled by [J is Cartesian. We have

Rpg o (5%*;/)_1 =~ Rayg o R]Tyy opl_1 ] (5‘7{*1/)_1
~ Ray, o Rmy, o5 ! oj;l
~ Ray o s1o Rja ojgl.
Therefore,

whom(ka,,, wa,,) T§Y whom(kay,, @ay,)

L
~ Rpy(84-y) " (nhom(kayy. 0ay) B pthom(k . 4,,))
1. =1 L L
>~ Ray\s™ Rjay; pnhomka,, Wka,,was, X oa,).
Hence, by adjunction, giving a morphism

phom(kay. 0a,,) o phom(kay. a,) — k
is equivalent to giving a morphism in DP (ky)

L L
s Rjayjz thom(ka, R ka,,, 0ay R @a,) = apkpt. (4.10)
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Note that the left hand side of (4.10) is supported on Ap. Hence in order to give a
morphism (4.10), it is necessary and sufficient to give a morphism in DP (k)
1 -1p.: —1 L L [
Sy s Riay; mhom(kay, Mkay,, way B way,) = Syaykpt. (4.11)

Hence, it is enough to check the commutativity of the upper square in the following
diagram in DP (ky):

1 L L slalk
83 s Rjarj L whom(ka,, X kp,,, 0ay, B wa,,) o OM%yEpt
~ id

L Y (4.12)
Sy s Riajiz is (mp om B myton) T Smavkpt

~ ~

wp id wp .

The top horizontal arrow is constructed from a chain of morphisms (see [13, § 4.4]):

L L
Rjd.jj;luhom(kAM X ka,,, wa, M oa,)
. L L —1 L
— phom(G'(ka,, Rka,) @ wy,j  (way, X wa,,))
>~ phom(way,, way, @ way,) = (5%*M)*7T1\711(UM

and

L L
83,5 Rjg iz hom(k ay, R kay,, 04y B @ay) = 83 (%)« o ~ oy (4.13)

Hence, the commutativity of the diagram (4.12) is reduced to the commutativity of the
diagram below:

1 —1p; 1 L L
Sy s Rjaj; mwhom(ka,, Mka,, wa, X wa,,)

i x (4.14)

L ~
-1 —-1p; =1 -1 -1 ,
Sp ST Rijanjz s (JTM oy X 7y, a)M) M

where the morphism A is given by the morphisms in (4.13). All terms of (4.14) are
concentrated at the degree —dimM. Hence the commutativity of (4.14) is a local
problem in M and we can assume that M is a Euclidean space. We can check directly in
this case. g

Remark 4.7. Theorem 4.6 may be applied as follows. Let A;; be a closed conic subset of

T*Mj; (i=1.2,j=1i+1). Assume (3.6), that is, the projection p13: A12 X Agg — T*Mq3
2
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is proper, and set A13 = A12 § Agz. Let A5 € MH%U(kMU) ~ H%l,j(T*Mij; n_lwij)‘ Then
A2 g)\zg = / A12 U Ao (4.15)
2 T*Mo

where the right hand side is obtained as follows. Set A := A12 i A923 and consider the
2

morphisms

HY (T*Myo: 1~ w12) x HY, (T*Ma3: m~ ' wg3)

0 * -1 L L -1
— HA(T Miog; m w1 X WT*Mo X 7~ w3)

— HY, (T*M13; 7 w13).
The first morphism is the cup product and the second one is the integration morphism
with respect to T*M>.
5. Microlocal Euler classes of trace kernels

In this section, we often write A instead of Ay,.

Definition 5.1. A trace kernel (K, u, v) on M is the data of K € DP (Kpzsemr) together with
morphisms

ko — K and K- wa. (5.1)

In the sequel, as long as there is no risk of confusion, we simply write K instead of
(K, u,v).
For a trace kernel K as above, we set

SSA(K) := SS(K) N T4 (M x M) = (8%4,,) "1 SS(K). (5.2)

(Recall that one often identifies T*M and T (M x M) through 8%.,,: T*"M — T*M xT*M.)

Definition 5.2. Let (K, u, v) be a trace kernel.

(a) The morphism u defines an element & in HgSA(K)(T*M; whom(ka, K)) and the
microlocal Fuler class peuy(K) of K is the image of u# under the morphism
uhom(kp, K) — phom(ka, wa) associated with the morphism v.

(b) Let A be a closed conic subset of T*M containing SS(K). One denotes by peu 4 (K)
the image of u in H91 (T*M; uhom(k 4, a)A)).

Hence,
e, (K) € MHS (ky) ~ HY (T*M; " wpy). (5.3)

Let v be the element of H(S)SA(K)(T*M; whom(K, w,)) induced by v. Then the
microlocal Euler class peuy (K) of K coincides with the image of v under the morphism
phom(K, wa,,) = whom(ka, wa) associated with the morphism #, which can be easily
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seen from the following commutative diagram:
(8% 3) " L pthom(K, K) ——— (8%,)~* pthom(K, w )
; |
(83~ ithom(k a, K) ——= (84.)) " thom(ka, 04).

One denotes by eu(K) the restriction of weu(K) to the zero-section M of T*M and calls it
the Fuler class of K. Hence

ewy (K) € HY,y o xyna (M ou). (5.4)

It is nothing but the class induced by the composition ka,, = K — wa,,.
We say that L € Db (kpy) is inwvertible if L is locally isomorphic to kys[d] for some d € Z.

L
Then, L®~1 := R#om(L, ky) is also invertible and L @ L®~1 ~ky,.
Proposition 5.3. Let L be an invertible object in DP(ky) and K a trace kernel. Then
L L L L
K ® (LX L®YY is a trace kernel and pLeu(K ® (LK L®*1)) = pneu(K).
L

Proof. L X L® 1 is canonically isomorphic to kyxa on a neighborhood of the diagonal
set Apy of M x M. O

Remark 5.4. Of course, we could also have defined a trace kernel as a sequence of
morphisms

a)%ﬂ;l — K = ky,,. (5.5)
When treating sheaves, the two definitions would give the same microlocal Euler

~ L
class on taking K = K ® (kys X wys). However, when working with &-modules or with
DQ-modules as in [15], the two constructions give different classes. Note that we have
chosen an analogue of (5.5) in [15].

Trace kernels for constructible sheaves

Let us denote by D?C(kM) the full triangulated subcategory of DP(ky) consisting of
cohomologically constructible sheaves (see [13, § 3.4]).

Lemma 5.5. Let F € DEC(kM). There are natural morphisms in D]gc(kMxM):
L
ka,, = F X DyF, (5.6)

L
FX DMF—> WAy - (5.7)
In other words, an object F € DE’C (kys) defines naturally a trace kernel on M.

Proof. (i) We have

L
Ky — R#om(F, F) ~8'(F X DyF).

Hence, the result follows by adjunction.
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(ii) The morphism (5.7) may be deduced from (5.6) by duality, or by adjunction from
the morphism

L
8§ Y (F X DyF) — wy. O

Notation 5.6. We shall denote by TK(F) the trace kernel associated with F € Dlé’c(kM)7

L
that is the data of F X DyF and the morphisms (5.6), (5.7). Note that we always
have SSA(TK(F)) C SS(F) and the equality holds if M is real analytic and F is
R-constructible.

We have the chain of morphisms
L
phom(F, F) =~ (8%+yy) " pthom(k o, F X DF)
— (8%y) "L uhom(ka, w,).
We deduce the map
HYg ) (T*M:; phom(F, F)) — MHSgf (k). (5.8)
Definition 5.7. Let F € D2 (ky). The image of idr under the map (5.8) is called the
microlocal Euler class of F and is denoted by peuy, (F).
Clearly, one has
peuy (F) = peuy (TK(F)). (5.9)

Assume that M is real analytic and denote by Dﬂbﬁ-c (kps) the full triangulated subcategory
of DP(kyy) consisting of R-constructible complexes. Of course, R-constructible complexes
are cohomologically constructible. In [13, §9.4] the microlocal Euler class of an object
F e Dﬁ_c (kpy) is constructed as above and this class is also called the characteristic cycle,
or else, the Lagrangian cycle, of F.

Remark 5.8. Let (K, u, v) be a trace kernel on M. Let §: M — M x M be the diagonal
embedding. Then u and v decompose as

ka, — 8:8'K— K — 8,87 'K — wy,,.
Hence 8,8 'K and 8*8’1K are also trace kernels. We have evidently
Heuy, (8*8 !K) = ueuy, (8*8_11() = peuy (K)  as elements in MH%M(kM).

Trace kernels over one point

Let us consider the particular case where M is a single point, M = pt, and let us identify
a sheaf over pt with a k-module. In this situation, a trace kernel (K, u, v) is the data of
K € DP(k) together with linear maps

k5 K-Sk

The (microlocal) Euler class eupt(K) of this kernel is the image of 1 € k under v o u.
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Assume now that k is a field and denote by D}? (k) the full triangulated subcategory of

DP(k) consisting of objects with finite-dimensional cohomologies. Let V € D'f”(k) and set
V* = RHom(V, k). Let K =TK(V) =V ® V*, and let v be the trace morphism and u its
dual. Then

(a) eupt(V® V*) = tr(idy), the trace of the identity of V.
(b) If k has characteristic 0, then (5.10)

eupt (V® V*) = x(V), the Euler-Poincaré index of V.

Trace kernels for 2-modules

In this subsection, we denote by X a complex manifold of complex dimension dy and the
base ring k is the field C. We denote by Oy the structure sheaf and by £2x the sheaf of
holomorphic forms of maximal degree. We still denote by wy the topological dualizing
complex and recall the isomorphism wx >~ Cx [2dx].

One denotes by Zx the sheaf of Cx-algebras of (finite-order) holomorphic differential
operators on X and we refer the reader to [11] for a detailed exposition of the theory
of Z-modules. We denote by Mod(Zx) the category of left Zx-modules and by DP(Zy)
its bounded derived category. We also denote by Mod.on(Zx) the abelian category
of coherent Zx-modules and by Dgoh(gx) the full triangulated subcategory of DP(Zx)
consisting of objects with coherent cohomologies.

We denote by Dg: DP(2x)°P — DP(%y) the duality functor for left Z-modules:

Dyl = RHomag, (M, Dx) @p, 2, ldx].

We denote by -K - the external product for Z-modules:

L
MREN = Dxxx Qayragy (M X N).

Let A be the diagonal of X x X. The left Zxxx-module H?X](ﬁXXX)(the algebraic
cohomology with support in A) is denoted as usual by Z 4. Note that

DgPBp = Ba.
One should be aware that here, the dual is taken over X x X. We also introduce
B = B [2dx].
For ./ € Dlgoh(@X), we have the isomorphism
Rotomg, (M, #) =~ Ritomg, (B, # RDqg.H)[dx].

We deduce the morphism in D][’(QX>< Xx)

B — M RD g [dx] (5.11)
and by duality, the morphism in DP(Zxx)

M RD g M [dx] — B. (5.12)
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Denote by &x the sheaf on T*X of microdifferential operators of [22]. For a coherent
Dx-module A set

ME =& r-1gy o

and recall that, denoting by char(.#) the characteristic variety of .#, we have
char(.#) = Supp(.#F). One also sets

Gu= A, 6= (B%)".
We denote by Dg: DP(&)°P — Db(é"’x) the duality functor for left &£-modules:
Dt =R Homs, (M, E) @p-16, 7 22 " [dx]

and we denote by -X - the external product for &-modules:

MRAN = Exxx Qeymey (M % N).
The morphisms (5.11) and (5.12) give rise to the morphisms
Cr— MERD e M" [dx] — €. (5.13)
Let A be a closed conic subset of T*X. One sets
A Ex) = Bfex) ™ RAfome,, (€2, C)).
HHA (%) = REA(T*X; S H(8x)),
HHY (&) = H*(HH (8%)) = Hy (T*X; £ A 6x)).

We call HH 4 (&%), the Hochschild homology of & with support in A.
The morphisms in (5.13) define a class

hhs () € HHY, o) (6%) (5.14)

that we call the Hochschild class of A .
Let S be a closed subset of X. By restricting the above construction to the zero-section
X of T*X, we obtain the Hochschild homology of Zx:

HHODx) = (8x) ' RAomg,, (B a, BY) = H HE)|x,
HHs(Zx) = RIs(X; 560 78 Px)),
HH(2x) = H*(HHs(2x)) = H§(X; A 7 Dx)).
Then, for 4 € Dgoh(@X) one obtains
hhg () :=hhe (A)|x € HHG, 0 4 (Zx).

We shall make a link between the Hochschild class of .# and the microlocal Euler
class of a trace kernel attached to the sheaves of holomorphic solutions of .Z. We need a
lemma.

Lemma 5.9. For .4 and A% in DEOh(@X), there exists a natural morphism

L L
RAome(ME, N5F) — hom(2x ® gy M, 2x © gy No). (5.15)
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Moreover, this morphism is compatible with the composition
R.ome(NE, N5) @ RA#ome(NE, NE) — Ro#ome(NE, NE),
whom(Fy, F2) ® whom(Fa, F3) — whom(F1, F3).

Proof. We have the natural morphism in DP(z 1%y ® n_l_@;p) (see [12, Proposition
10.6.2])

Ex — whom(2x, 2x).
This gives rise to the morphisms
RA 01 g (TN, Ex 199 T N3)
— RAom, 14, (et M, pwhom(22x, 2x)) ®r-19y s
>~ phom(82x é) Dy M, 2x é) Dy N9). O
We have

L
2xxx [—dx] ® gy, x Ba = Ca,
L
xxx [—dx] ® Dxxx %X X wA.
Applying Lemma 5.9, one deduces the morphisms
L L
Rﬁfomgmx(%A, %Av) — phom(2xxx ® gy, Ba, Lxxx @ Dxrx @X)
>~ whom(Cp, wnp).

An easy calculation shows that the first arrow is also an isomorphism. Therefore, we get
the isomorphism

HHEx) = MAACy). (5.16)
Recall that the Hochschild homology of &x has already been calculated in [2].
L
Applying the functor 2xxx [—dx] ® gy, to (5.11) and (5.12) we get the morphisms

L
Ca — 2xxx ®@X><X (///@D@///)eam (517)

Notation 5.10. For .Z € D]goh(@X), we denote by TK(.Z) the trace kernel given
by (5.17).

Since char(.#) = SS(RFomg, (M, Ox)) by [13, Theorem 11.3.3], we get that
neuy (TK(#Z)) is supported by char(.#), the characteristic variety of .Z .

Proposition 5.11. After identifying 5 54 E%) and M F(Cx) through the isomorphism
(5.16), we have hhe (M) = peuy(TK(A)) in HHY, . (Cx).

Proof. This follows from Lemma 5.9 applied to (5.13). (]

Note that the class peuy(TK(.#)) coincides with the microlocal Euler class of .#
already introduced by Schapira and Schneiders in [23].
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6. Operations on microlocal Euler classes 1

In this section, we shall adapt to trace kernels the constructions of [15, Chapter 4 § 3]
and we shall show that under natural microlocal conditions of properness, the microlocal
Euler class of the composition of two kernels is the composition of the classes.

We use Notation 3.1 and we consider a trace kernel (K, u, v) on M12.

Lemma 6.1. Let K be a trace kernel on M12. There are natural morphisms in DP (kprqp):
®—1 L
ko, — I(2>k2(a)A2 X kas), (6.1)

L
K2<>2(kA2 N waz) = ®A;- (6.2)

L
Proof. (i) By Lemma 4.3(ii) we have a morphism ka,, — ka, 2>k2(a)§’2_1 M kas). By
composing this morphism with ka,, — K, we get (6.1).
L
(ii) By Lemma 4.3(i) we have a morphism wa,, 2oQ(kA2 X way) > wa,. By composing
this morphism with K — wa,, we get (6.2). O

Let K be a trace kernel on M19 with microsupport SS(K) contained in a closed conic
subset A1129 of T*M1192 and let As3 a closed conic subset of T*Ms3. We assume

a
A1122 2>< 6‘71"*M23A23 is proper over T*M1133. (6.3)
2
We set
A1z = A1122 N T, M1122,
a
A1133 = A2z o 8T Moy A23, (6.4)

a
A1 = A1133 N T), Mi133 = A12 S A23.

We define a map
Dy : MH 4, (k23) — MH 4,5 (k13) (6.5)
by the sequence of morphisms

MHA23 (k23) = RFB;*M23A23 (T*M2233; /’Lhom(kAgg,a a)Agg))
L L
~ RIg.,  ng (T*Mazss: whom(@d) ! Mkay ka, M ogy))
L L
— RIA 35 (T*M1133; whom(K, K) 232 /Lhom(a)i);l X ka,, ko, K a)AS))

L L
— RIA, 45 (T*M1133; whom(K 2*2(0)%’2—1 X kay). K o (ka, X ®a5)))
— I (T*M1133; phom(kp,y, 0a,3)) ~ MHa; (k13).

Here the first arrow is given by idg, the second is given by Proposition 3.2, and the last
arrow is induced by the morphisms in Lemma 6.1.
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The next result is similar to [15, Theorem 4.3.5].

Proposition 6.2. Let Aj120 C T*My122 and A3 C T*Ma3 be closed conic subsets
satisfying (6.3) and recall the notation (6.4). Let K be a trace kernel on Mi2 with

microsupport contained in A1122. Then the map Pk in (6.5) is the map peuy,, (K) 182
given by Corollary 4.5.

Proof. By using the morphism ka,, — K, we find the commutative diagram below:

R4, (T*M2233; phom(kay,, wA23)) RIA (T*MIISS; puhom(ka, 2*2kA23a kay, 2%“%23))

l |

RIA 155 (T*M1133; phom(K s ka,., K202w423)) —> RIay3 (T*M1133; hom(ka,, 3 Kz K2<>2w423))-

By using the morphism K — wa,,, we get the commutative diagram

RI Ay (T*Ma233; thom(K aps, 0453)) RIpy; (T*M1133; hom(k ., 3 Kang, @413 9 WAg3))"

T~ - — (6.6)

RT3 (T*M1133; phom(K s kasg, K202wA23))
Recall the morphisms in Lemma 4.3:
L ®—1 L
WA 202(kA2 X a)A:;) — WA3, kAl:S — kA12 2*2(60A2 X kAJ) (67)
We get the morphisms

w: RIsa T*M1133; phom(ka,, * Kpoe, WA, 0 @
BT*M13A13< 11335 M ( A12 29 A23 A12 2 Agg)

L L
~RIG, oy (T"Muass: phom(kay, % @3, Mkay). 04y, 9 (kay M 04y)))

—)Rrga

T*M13A13 (T*M1133; Mhom(kA13v 0)A13)) .

By its construction, the morphism peuy,,, (K) o is obtained as the composition with the

map w of the top row of the diagram (6.6). Since the composition with w of the two
other arrows is the morphism @k, the proof is complete. O

The next result is similar to [15, Theorem 4.3.6].
Let i=1,2, j=i+1and let A;j be a closed conic subset of T*M;;;;. Assume that

a
A1122 X Ago33 is proper over T*M1133. (6.8)
22
a
Set Aq1133 = A1122 2o2 Ag233 and Aj = Ay N TZ,’jMiijj'

Theorem 6.3. Let K be a trace kernel on My with SS(Kjj) C Ajjj. Assume (6.8), set

~ L L ~
Koz = a)%;l 8K23 ~ (wg)—l X ko33) ® K and set K13 = K12 2021(23. Then
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(a) K13 is a trace kernel on M3,
(b) meuy,, (K13) = peuyy,, (K12) § peuyy,, (Kos) as elements of MIHI%13 (k13).
(¢) In particular, we have @k, o Pg,s = Pk, 4.

Proof. (a) The trace kernel K23 defines morphisms
o1 5 P L
W, XMkay, = Koz = ka, X wa,.

Assuming (6.8) and using (6.1) and (6.2), we get that K13 = K12 2 Ka3 is a trace kernel

on M13.
(b) We get a commutative diagram in which we set Aoz = peuyy,, (K23) € MHC (ko3) ~

1 L L
Hom (0%, " W kas, ka, K way):

L L
-1 r23
kay, —=Kiz % (@3, B kay) —>= K12 0 (ka; M wag) — @

|

K12 % K
12 % R23

]

K12 o K. /
12202 23

The composition of the arrows at the bottom is weuy,,(K13) and the composition
of the arrows at the top is @k, (neuy,,(K23)). Hence, the assertion follows from the
commutativity of the diagram by Proposition 6.2.

(c) follows from (b) and Proposition 6.2. O

7. Operations on microlocal Euler classes 11

We shall combine Theorems 4.6 and 6.3 and make more explicit the operations on
microlocal Euler classes for direct or inverse images. In particular, applying our results
to the case of constructible sheaves, we shall recover the results of [13, Chapter IX § 5].
Let M be a manifold and let ¢: N <— M be a closed embedding of a smooth
submanifold N. If there is no risk of confusion, we shall still denote by ky and wy
the sheaves t,ky and t,wy on M. Then ky is cohomologically constructible and moreover

DMkN = R%Om(kj\], a)M) >~ wN.
L
Hence, TK(ky) = ky X wy is a trace kernel on M.

Let M; be a manifold (i =1, 2), let K; be a trace kernel on M; and let A; be a closed
conic subset of T*M;; with SS(K;) C A;;. We set

A= A; N TZ[MI','.
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For a morphism of manifolds f: M1 — M2, we denote by I} its graph, a smooth closed
submanifold of M12, and we set for short

Ap=ThM12), f=([): M1 — Ma.
Recall the diagram (2.1)

T*M, &Ml XMy T*Mo I T*Ms,
T TTMo
ﬂMl f

M

Mo.
Note that
a ~_~~71 ~£l _N"’_l
A1l 3 Az =fafy A1, Af202 Ao = faf; ~ A22.
In the sequel, we shall identify M1212 with M1122. We take as kernel the sheaf TK(k[}.).
Then

L L L
TK(k[},) = ka X wry 2k1*7® (k1 X w1 X ko2)
L L L
Zwa fl((wiefl X o K ko) ® kr?). (7.1)

Moreover, we have (see (5.9))
meuyr, (TK(k[})) = peuy,, (krf)
Also note that

F R ~ Flp ~
RAK1 =~ K3 1o1 k[‘f~, Ky~ kp? 2021(2.

External product
Applying Theorem 4.6 with M2 = pt and M3 being here My, we get the commutative
diagram

L
MAp Congy) B MAry )~ //MmT(ka)
1 L 1 I% —1
RIA, (mytomy) B R4, (g ongy) > BLA142 (g, O0112)

and taking the global sections and the zeroth cohomology,

o

MHY | (k) ® MHS (ks ) MHY |, 4, Karyo)

- L |

— — X —
HY (T*My; myl o) ® HS, (T*Ma; gt ong,) —= HS g, (T Mi2: ) oury).
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Applying Theorem 6.3, we obtain
Proposition 7.1. The object K1 % K> is a trace kernel on M12 and
ueuyy,, (K1 % K2) = peuy, (K1) % peuy, (K2).

Direct image
Let f: M1 — M2 and I} be as above. Applying Theorem 4.6 with M1 = pt and M2, M3
being the current M1, M2, we get the commutative diagram

MAst,) 0 MHAy,) — MH Kyr,)

]

a _q _1
T[leMla)jTMlgwM12 > JTM2a)M2'

Now we assume
f is proper on A1 N T;IlMl, or, equivalently, f; is proper onfd_lAl. (7.2)
We set
[ulA1) = Av o Ap = fr (f (A1),

Taking the global sections and the zeroth cohomology of the diagram above, we obtain
the commutative diagram

5 op,eu(krf) 0
MHY, (kyy) MHY , (ki,)

J/ o,ueu(kpf) i

HY, (T*My: gt o) ————— HY) 4 (T"Ma2; T o).

We have the natural morphism and isomorphisms, already constructed in [13]:
—1_ -1 ~ -1 ~ 1
Sty Ty, My = S oM —nMQfIU)Ml
-1
g 7'L’M2 WM, -
These induce a morphism:

Ju: RFAl(n];hlel) — RFfﬂAl(n,;,;a)MQ).

Lemma 7.2. Let A € H (T*My; myloyy). Then & o pewyy,, (k) = fu ().

Proposition 7.3. Assume that} is proper on A11 N Ty Mi1. Then the object RﬁKl s a
trace kernel on Ma and

peny, (RAKY) = pewy, (K1) @ peuyy,, (k)
= fu(ueuyy, (K1)).
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Proof. . .
L
Note that weuy,,(kry) = newy,, ((a)ig’_1 X w1 Mkoo) ® TK(kpf)) by Proposition 5.3.
~ L L L
We have RfiK1 >~ K3 1o1 (w%l_l ?((wi@_l X w1 X koo) ® TK(kij))). It remains to apply
Theorem 6.3 in which one replaces M1, M2, M3 with pt, M1, M2, respectively. O

Inverse image

Let f: M1 — My and I} be as above. Applying Theorem 4.6 with M3 = pt, we get the
commutative diagram

AMA K1) §///%(kM2) s MKy,

-1 a 1 -1
Mo PM12 gnMg OMa = Ty M -

Now we assume
f is non-characteristic for A, or, equivalently, f; is proper on f L Ag. (7.3)
We set
f*(A2) = Af o Ar=fa(fy ' (A2)).

Taking the global sections and the zeroth cohomology of the diagram above, we obtain
the commutative diagram

0 p,eu(kpf)o 0
MHAQ (kMQ) MHfﬂAQ (le)

i Meu(kpf)o \L

HS, (T*My; 7y o) —————= Hi)y (T*M1; 7571 oy ).

We have a natural morphism constructed in the proof of [13, Proposition 9.3.2]:
f“:fd,fgln;,;wm — nﬂfllla)Ml.
Hence, we get a map:

F1: REa, (gt ony) = R a (gt oay).

Lemma 7.4. Let A € H911 (T*Mo; n&;wMQ). Then peuy,, (kry) o & =f* ().
Proposition 7.5. Assume that f is mon-characteristic with respect to Aga. Then the
L L ~
object (k1 X wpry/m5) @ f_lKQ 1s a trace kernel on M1 and
penyy, (wa, sff N <2>K2)) = pewy,, (kry) <;> peuyy, (Ko)

= fH (ueuy, (K2)).
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Proof. Applying Theorem 6.3 with M3 = pt, we get that

L L~ ®-1 L o 1, L
k X le/MQ) R f Ko~ TK(kf) 202(61)A2 g(wg X w5 ) ® Ko)

L L
is a trace kernel. Since ueuyy, ((0)2 X a)ég’_l) ® KQ)) = peuyy, (K2) by Proposition 5.3, we
obtain the result. O

Tensor product

Consider now the case where My = My = M and the Aj;; satisfy the transversality
condition

A11 N Ay C Tt (M x M), (7.4)

Then by composing the external product with the restriction to the diagonal, we get a
convolution map

* MHAl(kM) X MHA2 (kM) —> MHA1+A2(kM). (75)
Applying Propositions 7.1 and 7.5, we get

L L L
Proposition 7.6. Assume (7.4). Then the object K1 ® (ky X a)ﬁf’,_l) ® Ko is a trace
kernel on M and

L L L
peuy (K1 ® (ky M wfy ') ® Ka) = pewy (K1) * peny (K2).

Following [23, II, Corollary 5.6], we shall recall the link between the product » and the
cup product.

Proposition 7.7. Let A; € H?L,(T*Mi; nﬁflla)M) (i=1,2), and assume that A1 N A C
TyM. Then

(M1 % 22) yr = / (01 U A2) (7.6)

as elements of Hg(AmAg)(M; wp).

Proof. Denote by §: A <> M2 =M x M the diagonal embedding and let us identify M
with A. Consider the diagram

ThMig2 —— A Xpy, T*M12

nl | lsd (7.7)

A4S>T*A

where m is the projection, §; is the map associated with §, s is the zero-section
embedding and f is the restriction to AxyT*M12 of the embedding THM12 — T*Mi2.
Since this diagram is Cartesian, we have

Silad! ~ 7T!f71.
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Now let A1 X Ao € H%
map

L% Ao (T*M2; n’lem) and denote by A1 XpsA9 its image under the

HY o, (T*Mus w7 onyy) = HY 1, (A%, T Mi2: 7o)
Here, on the right hand side, we still denote by 7 the restriction of the projection
12
to Axp,,T*M12.) Then
[ 01 0he) =ms G xanno)
T
(1 % 22) = s~ 8 (ha Xark).

Corollary 7.8. Let K1 and Ko be two trace kernels on M with SS(K;) C Aj.
Assume (7.4) and assume moreover that Supp(K1) N Supp(K2) is compact. Then the

L L L
object RI’ (M xM; K1 ® (kyy X wﬁ?fl) ® KQ) s a trace kernel on pt and
L L o4 L
cups (RT3 K1 6 Gl B 0™ & K2)) = [ pren(kn) U een(Ko).
T*M

Remark 7.9. Let M be a real analytic manifold and let F € Dﬁ%_c(kM). Recall that

one associates with F the trace kernel TK(F) = F % DyF and that peuy(F) =
peuy (TK(F)). Assume now that f: M1 — M3 is a morphism of real analytic manifolds.

Let F; € Dﬁ_c(le) and assume that f is proper on Supp(Fi). Applying
Proposition 7.3 and noticing that

RATK(F1) ~ TK(RfiF1), (7.8)
we find that ueu(RfiF1) =fy, (neu(¥1)). This is nothing but [13, Proposition 9.4.2].
Let Fo € DE_C (kp,) and assume that f is non-characteristic with respect to Fa.
Applying Proposition 7.5 and noticing that
-1 L L=
TK(¢ ™ F2) = (k1 X opmy/m,) ® f7 TK(F2),
we find that peu(f 1 Fa) = f*(ueu(Fo)). Hence, we recover [13, Proposition 9.4.3].

8. Applications: Z-modules and elliptic pairs

We shall, as an application of Theorem 6.3, recover the theorem of [23] on the index of
elliptic pairs. In this section, X is a complex manifold, k = C, .# is an object of Dlgoh(_@x)
and F is an object of Db_c((CX).

Recall that we have denoted by TK(F) and TK(.#) (see Notation 5.10) the trace
kernels associated with F and with ., respectively:

L
TK(F) := F X DyF,

L
TK(A) = 2xxx ® gy, (M RDg ).

The pair (#, F) is called an elliptic pair in the earlier citation if char(.#)NSS(F) C T3X.
From now on, we assume that (.Z, F) is an elliptic pair.
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It follows from Proposition 7.6 that the tensor product of TK(F) and TK(.#) shifted
by —2dx is again a trace kernel. We denote it by TK(.Z, F). Hence

TK (A, F) ~ Qxxx % Iy M RD G M) & (F 5 DYF). (8.1)
Moreover the same statement gives
peuy (TK(A, F)) = peug(4) * peug(F). (8.2)
We set
Sol(.#, F) := RHomg, (.# ® F, O), (8.3)
DR(#,F) :=RI'(X; 2x é a9y A ® F) [dx]. (8.4)

As explained in [23], [13, Theorem 11.3.3] and isomorphism (2.7) provide a
generalization of the classical Petrovsky regularity theorem, namely, the natural
isomorphisms

RAomag, (M ,DyF ® Ox) => RH#omg, (M ®F, Ox). (8.5)

Now assume that Supp(.#) N Supp(F) is compact and let us take the global sections of
the isomorphism (8.5). We find the isomorphism

RHomg, (4, DyF ® Ox) = RHomg, (A4 ® F, Ox). (8.6)

It is proved in [23] (assuming .# has a good filtration) that one can represent the left
hand side of (8.6) by a complex of topological vector spaces of type DFN and the right
hand side of (8.6) by a complex of topological vector spaces of type FN. It follows that
the complexes Sol(.#, F) and DR(4, F) have finite-dimensional cohomology and are
dual to each other. More precisely, denoting by (-)* the duality functor in D}? (©), we have

(Sol(.#, F))" ~DR(A, F).

It follows from the finiteness of the cohomology of the complexes Sol(.#, F) and
DR(#, F) that

RI'X x X; TK(A, F)) ~ Sol(#, F) @ DR(A, F).

One checks that this isomorphism commutes with the composition of the morphisms
C—>RI'X x X; TK(A,F)) — C and C — Sol(#, F) ® DR(, F) — C, which implies

eup (R (X x X; TK(A, F))) = x (Sol(.#, F)). (8.7)
Therefore, one recovers the index formula of the earlier citation:
% (RHomg, (4 ® F. 6x)) = / (g (.4) » euy (F))x
X

(8.8)
= / ueuy (A) U peuy (F).
T*X

Remark 8.1. In general the direct image of an elliptic pair is no longer an elliptic pair.
However, it remains a trace kernel.
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Remark 8.2. As already mentioned in [23], formula (8.8) has many applications, as
long as one is able to calculate peuy(#) (see the final remarks below). For example,
if M is a compact real analytic manifold and X is a complexification of M, one recovers
the Atiyah—Singer theorem by choosing F = D'Cy. If X is a complex compact manifold,
one recovers the Riemann-Roch theorem: one takes F = Cx and if .% is a coherent
Ox-module, one sets A4 = Dx Qg F .

9. The Lefschetz fixed point formula

In this section, we shall briefly show how to adapt the formalism of trace kernels to the
Lefschetz trace formula as treated in [13, §9.6]. Here we assume that k is a field.

Assume that we are given two maps f, g: N — M of real analytic manifolds, an object
Fe Dﬂ%_c(kM) and a morphism

o:f'F—g'F. (9.1)
Set

h=(gf):NxN—->MxM,

S=Supp(F), L=h"1(Ay)={(xy) €N xN;gx) =f»},
i:L<—> NXN,

T=f1$)Ng 1.

One makes the following assumption:
The set T is compact. (9.2)
Then we have the maps
RI(M; F) — RI;-15(N: f~1F) & RIY(N; g 'F) — RI(M; F).

The composition gives a map
/(p:RF(M;F)—>RF(M;F), (9.3)

and this map factorizes through RI7(N; g 'F) which has finite-dimensional cohomologies.
Hence, we can define the trace tr( [ ¢).
We have the chain of morphisms

ky — R#om(g'F, g'F)
¢ —1 ! Lo -1
— RAom(f~'F,g'F) ~8y(g'F W Dyf ' F)
L L
~ 83 (g'F R f'DyF) ~ 81" (F K DyF).

We have thus constructed the morphism

L
ka, — h'(F X DyF).
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L
By using the morphism F' X Dy F' — wa,, and the isomorphism h !a)AM ~ jywr, we get
the morphisms

L
kay — h'(F X DyF) = ior (9.4)

in Db(kNxN). The support of the composition is contained in Sy(7T) N L.

Theorem 9.1 ([13, Proposition 9.6.2]). The trace tr([ @) coincides with the image of
1 € k under the composition of the morphisms

k — RI'(N,ky) —> RI.(L, wr) — k.
Here the middle arrow is derived from (9.4).

Although (9.4) is not a trace kernel in the sense of Definition 5.1, it should be possible
to adapt the previous constructions to the case of Z-modules and to elliptic pairs, and
then to recover a theorem of [7], but we do not develop this point here (see [21] for
related results).

Final remarks

The microlocal Euler class of constructible sheaves is easy to compute since it is
enough to calculate some multiplicities at generic points. We refer the reader to [13]
for examples.

On the other hand, there is no direct method for calculating the microlocal Euler class
of a coherent Z-module .Z (except in the holonomic case). In [23], the authors made a
precise conjecture relying on peuy(.#) and the Chern character of the associated graded
module (an Or«x-module), and this conjecture has been proved by Bressler, Nest and
Tsygan [1].

Similarly, the Hochschild class of coherent &x-modules is usually calculated through
the so-called Hochschild-Kostant—Rosenberg isomorphism, but this isomorphism does
not commute with proper direct images, and a precise conjecture (involving the Todd
class) has been made by Kashiwara in [10] and this conjecture has recently been proved
in the algebraic case by Ramadoss [20] and in the general case by Grivaux [6].

Acknowledgements. The second-named author warmly thanks Stéphane Guillermou
for helpful discussions.
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