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VALUE GROUPS AND DISTRIBUTIVITY 

H. H. BRUNGS AND J. GRATER 

0. Let F be a skew field with a valuation (also called total) subring B, i.e. x in F\ B 
implies x~l in B. Such rings are useful not only in the investigation and construction of 
division algebras (see for example [5],[6],[12]) but also in geometry ([15]). 

Associated with B is an invariant subring R of F and a value group G. We investigate 
the relationship between properties like the distributivity of R and properties like being 
lattice ordered of G. 

In particular, we construct in Section 3 examples for B and F such that R is distributive 
but G is not lattice ordered and we need some results of algebraic number theory in 
the process. An example where R is not distributive and G is not lattice ordered is also 
provided. If B is commutative or invariant ([19]) then R = B is itself a valuation ring 
and G is totally ordered. 

1. Let B be a valuation subring of the skew field F and we define W = {kB | 0 ^ 
k G F} U { oo} with oo as its largest element and aB < bB if and only if aB D bB. 
The set W is totally ordered and the mapping v from F onto W with v(a) = aB if a ^ 0, 
v(0) = oo, satisfies the following conditions: 

(1) v(x) — oo if and only if x = 0; 
(2) v(x + y) > min{ V(JC), v(y)} for all x, y in F; 

(3) V(JC) < v(y) implies v(zx) < v(zy) for all x,y, z in F. 
Conversely, given a skew field F, a totally ordered set W with largest element oo and 

a mapping v from F onto W satisfying ( 1 ), (2), (3) above—called a valuation on F—then 
Bv = {x G F I v(x) > v(l)} is a valuation subring of F. 

Associated with such a valuation is the group Gv of order preserving bijections x of 
Wv defined by x(w) = x(v(k)) = v(xk) for x in F* = F\ { 0} , w = v(k) in W, k in F. 

The mappings x are well defined because of condition (3) and the operation in Gv is 
given by x o y = xy for JC, y in F*. 

The group 
Gv = { i | JC in F*} 

is called the value group of the valuation v and it is partially ordered by x <y if and only 
if x(w) < y(w) for all w in W. We say that Gv is lattice ordered if the infimum and the 
supremum exist for any two elements x, y in Gv in which case Gv is a distributive lattice. 
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If the valuation subring B of F is invariant under all inner automorphisms of F, then 
one can define on the set { kB | k in F*} an operation aBbB = abB to obtain an ordered 
group r . 

The valuation v, associated with B, onto Y U {00} satisfies conditions (1) and (2) 
above and 

(3') v(xy) = v(x)v(y) for x, ;y in F. 

Conversely, to every mapping v from F with (1), (2) and (3') onto a set F U { 00} for 
an ordered group Y there corresponds an invariant valuation subring Bv of F In this case 
we have F = Gv for an isomorphism (p of ordered groups given by (p (V(JC)) = x for x in 
F*. 

These are the valuations considered by Schilling in [18]. 
If F is finite dimensional over its center K and v a valuation of F then Gv is lattice 

ordered. The group Gv is totally ordered in this case only if B is invariant, i.e. v is a 
Schilling valuation ([5],[11]). 

On the other hand, it is in general not necessary for Bv to be invariant in order for 
Gv to be totally ordered. This condition is equivalent with the existence of an invariant 
valuation ring B of F with B C Bv C F ([13]) and defines subinvariant valuations. The 
not necessarily invariant ring Bv is then a localization of the invariant valuation ring B. 

Another interesting class of valuations is given by the locally invariant valuations 
which can be defined by properties of Gv ([9],[1]) and which are exactly the valuations 
for which the general approximation theorem holds. 

As before, let Bv be a valuation subring of the skew field F We define: 

Rv = f] aBva~l 

aeF* 

and Rv is an invariant subring of F, i.e. aRva~l — Rv for all a ^ 0 in F 
We denote by H(RV) the set of all cyclical Rv-submodules / (0) of F, i.e. H(RV) = 

{ aRv I a G F*} and H(RV) is a group with aRvbRv = abRv as operation. 
The group H(RV) is partially ordered with aRv < bRv if and only if aRv D bRv and 

the mapping 77 from Gv to H(RV) defined by 77 (x) = xRv is well defined and an order 
preserving group isomorphism; Gv is a lattice ordered group if and only if H(RV) is lattice 
ordered. 

2. Let F be a skew field with valuation ring Bv and Gv, Rv and H(RV) as defined in 
Section 1. 

The first result gives a condition for H(RV) to be lattice ordered. 

THEOREM 2.1. H(RV) is lattice ordered if and only ifaRv Pi bRv G H(Rv)for a, b in 
F*. 

PROOF. Let H(RV) be lattice ordered and cRv = sup{ aRv, bRv} be the supremum of 
aRv and bRv. 
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It follows that cRv Ç aRv D bRv and for every d in aRv D bRv we have dRv > aRv, 
bRv, hence, dRv Ç cRv and cRv — aRv D bRv follows. 

Conversely, assume that for any a.b'mF* there exists c in F* with aRv Pi Z?/?v = cRv. 
Then obviously c/?v = sup{ aRv, bRv}. In addition, there exists an element d'mF* with 
a~lRv n ^-1/?v = d/?v which implies d-1/?v = inf{ a/?v, bRv}, since a/?v Ç tRv if and 
only if t~lRv Ç a_1/?v for a, fin F*. 

COROLLARY. IfGv is lattice ordered then F is the skew field of quotients ofRv. 

PROOF. For any k in F* there exists an x in F* with kRv D Rv — xRv and x in 7?v, 
x — ka.ain Rv, follows. 

It was mentioned in Section 1 that Gv is lattice ordered if F is finite dimensional 
over its center. This follows from the fact that Rv is a Bezout domain in this case, i.e. 
every finitely generated ideal of Rv is a principal ideal. We consider one other condition 
on Rv. We say Rv is a distributive ring if the lattice of ideals of Rv is distributive, i.e. 
A H (B + C) = (A fl B) + (A n Q for all ideals A, £, C ofRv. 

THEOREM 2.2. Lef Rv be a distributive ring with F as skew field of fractions. Then 
the following statements are equivalent: 

(i) Rv is a Bezout ring; 
(ii) Gv is lattice ordered; 

(Hi) For arbitrary elements x, y in Gv there exists z in Gv with z(w) — min{ x( w), y(w)} 
for all w in Wv. 

PROOF. If (iii) holds then z = inf{x,y}. Further, we have sup{Jc,j} = 
(inf{jc_1, j - 1 } ) - 1 , i.e. Gv is lattice ordered. 

To prove that (ii) implies (i) choose a, b ^ 0 in Rv. It must be proved that / = aRv+bRv 

is a principal ideal. We define I~l — {x G F \ xi Ç Rv} and I~l = {x G F | Ix Ç Rv} 
follows, since Rv is invariant. 

We have 7"1 = a~lRv H b~lRv and (by [8], 2.3) 

(a~xRv H b~lRv)(aRv + bRv) = I~lI = Rv. 

Using Theorem 2.1 there exists an element c in F with a~lRv D b~lRv — cRv and 
cRv(aRv + bRv) = /?v, a/?v + bRv = c~lRv follows. 

Next, we assume (i) and for x, y in F* there exists a z in F* with xRv +yRv = zRv, since 
Fis the skew field of fractions of Rv. It must be shown that z{w) = min{Jc(w), y(w)} for 
all w in Wv which is equivalent with zkBv = xkBv + ykBv for all k in F, which in turn 
follows from the above equation and the invariance of Rv. 

3. In this section we construct valuation rings in skew power series rings which have 
value groups that are not lattice ordered and the associated invariant ring is distributive 
in one case (Example 2) and not distributive in another (Example 1). 
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Let A' be a skew field with invariant valuation ring B and let G be a group of auto­
morphisms of K. Then G can be considered as the homomorphic image of a free group 
T under a homomorphism ip and T as a free group can be totally ordered. 

The skew field D — K({T, <p)) of skew power series rf= 1 7 ^ , 7 G T, with well 
ordered support {7 | k^ ^ 0} , &7 G K, exists where the multiplication is defined by 
Id = 7 ^ ( 7 ) (see [16]). If we identify the elements 7 of T with 71 in D then we have 
7"1jfc7 = kP<r» for k in K and 7 in T. 

The subring B' — { X7&7 G Z) | 7 > e, ke G #} is a valuation ring of D where e is the 
identity in V. We show that B' is total by considering an element d — 7o(&70

 — ET>^ 7£7 ) 
in D with fcy0 ̂  0 and 7o the least element in the support of d. 

We have dk'^l^ = 1 - ZloT^y*^1!^1 = 1 - m and (1 - m)"1 = E ^ 0
m ' follows 

and hence 
J- 1=7 0" 1 (^ 0

1 r ( 7 o _ 1 ) ( l+m + m2 + . . . ) . 

One concludes that either 7o > e or 7o = e and fcy0 in B in which case J is in Bl or 7o = e 
and fc^1 in B or 7Q-1 > £ in which case d~l is in B'. 

For a in G we denote with B'a the following subring of D: 

K = { f e + E ^ I kintr(fl)} 
7>e 

and it follows that the set { B'a \ a G G} is exactly the set of subrings of D conjugate to 
B' in D. 

To see this we write d ^ 0 in D as before in the form d — (1 — m)7o&70
 w*m m £ 

M= {H^el^ G Z)}. Then 

(
OO X 

0 y 

/ O O v 

= (1 - m)[l0B%1 +7oM70
_1] E ^ 

v 0 y 

Ç 7 o ^ 7 0 " 1 + M = a - 1 ( 5 ) + M 

if < (̂7o) = cr G G, where we also use the fact that B is invariant in K. 
The same argument shows d~x (<j-l(B)+M)d C £+M = # and a~1(^)+^ = dBl d~l 

follows. 
If we write R — Ha EG &(B) and Rf = PUGD* dB'd~x we obtain 

CTGG 7 > e 

THEOREM 3.1. 77ie following conditions are equivalent: 
(i) For any a, b in K* there exists c in K* with aRH bR = cR. 

(ii) For any a, b in D* there exists c in D* with aR/ D bR' = cR/. 

To prove that (i) implies (ii) we can assume that a = 1, i.e. aRf = R/. We write 
b = 7o(&7o + m) w i t n w in Af, fcy0 ̂  0 in K. For 7o > e it follows that 7o is in M and 
bR' CMC R/. 
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For 7o < e it follows that 70
_1 > e, 1Q1 G M and R' = att Ç &#. For 7o = e 

we have bR' = fetf = fe/? + M. Let d be in K* with RH keR = dR and it follows that 
R'nbR' = (fl + M)n (keR + M) = (RH keR)+M = dR +M = dR*. 

To prove that (ii) implies (i) let a, & be in K* and a/?' = aR + M, bR' = bR + M and 
atf H /?/?' = (a/? H bR) + M = c # follows for some c = ke + m, m G M,ke G K. 

It is enough to show that ke ^ 0 since we have aR D bR = Z /̂?. This is trivial if 
R — K and otherwise there exists k G AT\ R. Under the assumption ke — 0 we have 
c G M, c&tf' ÇMÇaR'nbR' = cR* and therefore the contradiction k£R\keR. 

The next two results are proved in similar fashion: 

THEOREM 3.2. The following conditions are equivalent: 
(i) For any a, b in K* there exists c in K* with aR-\- bR — cR. 

(ii) For any a, b in D* there exists c in D* with aR/ + bR' — cR/. 

THEOREM 3.3. The following conditions are equivalent: 
(i) aR H (bR + cR) = (aR D bR) + (aR H cR)for any a, b, c in K. 

(ii) aR' H (bR! + cR') = (aR! H bR') + (aR! H cR')for any a, b, c in D. 

These results show that the following properties: H(R') is lattice ordered, R1 is a Bezout 
ring, R! is distributive, follow from related properties of the ^-module K. 

In the following examples B is a valuation subring of a commutative field K that 
admits a group G of automorphisms such that R = Ha(B), G G G, has the desired 
properties. 

EXAMPLE 1. Let L be an algebraically closed field and K = L(JC), the function field 
in one indeterminate x over L. Let B be the valuation ring of K associated with the jc-adic 
valuation on K. 

We define for any I in L the L-mapping <^ from Kto K with (^ (JC) = x — I. 
The mapping ipt is an automorphism of f̂ and (^ (B) is the valuation ring of K as­

sociated with the (x — I )-adic valuation of K. Since L is algebraically closed, it follows 
that the set {(x — I ) \ l G L} is the set of all irreducible polynomials in L[x] and we 
obtain: 

H <pe(B) = L[x]. 
t<EL 

Finally, let (f oo be the L-automorphism of K with <̂oo W = \ and let G be the subgroup 
of the automorphism group ofK generated by (p^ and the elements (ft, l G L. Then: 

R = n *(*) = *<. 
<T<EG 

We have IRH xR = { 0} ; the condition (i) in Theorem 3.1 is not satisfied. It follows from 
Theorem 2.1 that the value group associated with B' is not lattice ordered where Bl is the 
valuation ring of D constructed as above from K, B and G. From Theorem 3.3 it follows 
that R1, the intersection of all valuation rings in D conjugate to B', is not distributive, since 
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K is a vectorspace over R(= L) of dimension greater than one and hence the distributive 
law does not hold for the lattice of L-subspaces of K. 

In Section 4 we will investigate Gauss-extensions of valuations in skew polynomial 
rings. As for invariant or subinvariant valuation rings or for valuation rings in division 
algebras finite dimensional over their centers the value group in all these cases is lattice 
ordered and R\ the intersection of all conjugates of the valuation ring B*, is distributive. 
In Example 1, neither is the value group of the valuation ring B' lattice ordered nor is /^ 
distributive. 

EXAMPLE 2. We construct a valuation ring B in a field K with a group G of automor­
phisms such that 

(i) R — P\cr(B), a G G, is distributive with K as its field of quotients and 
(ii) R is not a Bezout domain. 
It then follows from the above construction and Theorems 3.2 and 3.3 that Rf is dis­

tributive, but not a Bezout ring. Theorem 2.2 then shows that the value group associated 
with the valuation ring B' is not lattice ordered even though R' is distributive. 

The construction of B and K with (i) and (ii) will be based on some preliminary results 
from algebraic number theory. 

LEMMA 3.4. Let S be a Dedekind domain with quotient field F and F* a separable 
field extension of F with S' the integral closure of S in F1. Let I be an ideal of S with 
IS' — aS' for a in S'. Then IS" — aS"for the integral closure S" of S in F" = F(a). 

We prove first that IS'H S" = IS" where IS" C IS'H S" is trivial. To prove the opposite 
inclusion it is enough to consider only the case [F*: F"] < oo, since every element of IS' 
is contained in a finite extension of F". The result follows immediately from [17] (1.A, 
p. 161) for the Dedekind rings Sf, S" and the ideal IS" of S". 

Now, we show aS" = aS' D S" where aS" Ç aS' H S" holds trivially. Assume as = 
t e S", s G S' and 5 = a~lt G F" H S' = S" follows. We conclude IS" = IS' H S" = 
aS' H S" = aS". 

LEMMA 3.5. Let S be a Dedekind domain with quotient field F and I ^ (0) an ideal 
of S with order n as element of the class group ofS. Let F1 be a separable field extension 
of F and S' be the integral closure of S in F*. If IS' = aS' for some a in S', then n divides 
[F(a):F]. 

For a proof let S" be the integral closure of S in F" — F(a). By Lemma 3.4 it follows 
that IS" = aS" and NF„/F(IS") = fl*"'^ = NF„/F(a) • S is a principal ideal in S and the 
statement of the lemma follows. 

We now turn to the construction of the example. Let L be an algebraically closed field 
of characteristic ^ 2,3 and let L[t] be the polynomial ring over L in one indeterminate 
with L(f) as field of quotients. Then L[t] is a Dedekind ring. We define F = L(t)(Vt3 + 1) 
and let S be the integral closure of L[t] in F. 

It follows that S = L[f, Vt3 + 1], since t3 + 1 is square free (charL ^ 3) in L[t] and S 
is a Dedekind domain. 
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Let M = tL[t] and the minimal polynomial x1 — t3 —I of vt3 + 1 over L(t) splits into 
two distinct (charL ^ 2) irreducible factors modulo M. Hence, MS = M1M2 for two 
distinct maximal ideals M; of S. 

We claim that M\ is not a principal ideal in S. Otherwise, M\ — aS and NF/L(t)(aS) = 
NF/L(t)(a)L[t] = NF/W)(M\) = M = tL[t]. Hence, there exists £ G L* with £f = 
NF/Ut)(a).Ua=f(t)+g(t)VFTÎ9f(t)9g(t) e L[r],then/(0 ^ 0 ^ g(t)andNF/L(t)(a) = 
f2(t)-g2(t)(P + l). 

The degree of (t3 + l)g2(0 is odd and the degree of f2(t) is even and hence 1 = 
deg(£0 = deg(/2<7) - (t3 + l)g2(t)) = max{ deg/2<7), deg(f3 + l)g2(t)} > 3 leads to a 
contradiction. 

Next, it will be shown that the order of M\ in the class group of S is three. Since we 
know that M\ is not principal, it is sufficient to prove that M3 is a principal ideal. 

Let a = 1+V73 + 1 and a ' = 1 — Vt3 + 1. It follows that neither a nor a ' i s contained 
in any maximal ideal P of S with P D L[t] = (t - £ )L[t] for £ ^ 0. 

To see this assume a in P or a ' in P, hence a a7— 1 — f3 — 1 = — t3 is in PR L[f] = 
(r — £ )L[t]— a contradiction. Let a be the L(Y)-automorphism of F different from the 
identity. Then a (Mi) = M2 and a(af) = a. 

We have oca' = — t3 £ M Ç Mi and we can assume a G Mi. Since a + a ' = 2, it 
follows that af $ M\ and a = a (a ') ^ cr(M\) = M2. We conclude that Mi is the only 
maximal ideal of S containing a S and therefore a S — M\. 

However, 
M3 = t*L[t] = NF/m(a)L[t] 

= NF/Ut)(aS) = NF/L(t)(M
k0 

= {NF/L(t)(Ml)f = M\ 

which shows that k = 3. We consider F* = L(0({ V(t - £)3 + 1 | £ GL}). This is an 
infinite Galois extension of L(t) and we denote by X the Galois group of Ff over L(t). 

If V is the valuation ring of L(t) associated with the r-adic valuation and B an extension 
of V in F*, then 

RB = f)(j(B), a G l , 

is the integral closure of V in Fi. 

For every £ in L one can define the L-automorphism </?, of L(t) with <pt(t) = t — £. 
Since L is algebraically closed, we have L[t] = C\teL <Pe(V). Every <pz can be extended 
to an automorphism of F which we denote again by (ft and it follows that 

C\<pi(<j(BJ) =Ç}a<pi(B), a G l , 

is the integral closure of (pi (V) the valuation ring of L(t) associated with the (t — £ )-adic 
valuation. 

We obtain: S' — f)teL flaex; Vt (<?(#) ) *s t n e integral closure of L[t] in Fi. 
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Let G be the subgroup of the automorphism group of F* generated by X and { <pi | 
t G L}. It follows that Z is a normal subgroup of G and that 

S' = H 7(B). 

Every element 7 in G can be written as 7 = o^i — ipi o1 for some £ G L and some <r, 
ff'Gl 

Since F1 is algebraic over L(t) and L[f] is distributive, it follows that Sf is distributive 
(i.e. S' is a Priifer domain). 

It remains to show that Sf is not a Bezout domain. Let M\ be the maximal ideal in 
S = L[t, Vt3 + 1] defined above. The ideal Mi is finitely generated, since S is a Dedekind 
domain, and hence M\S' is finitely generated in S'. The assumption M\S' = aS' for some 
a in S' implies that 3 divides [F(a): F] by Lemma 3.5 and the result proved above says 
that 3 is the order of M\ in the class group of S. However, \F[a\: FJ is a power of 2 by 
construction. The contradiction shows that 5" is not a Bezout domain and the valuation 
ring B of the field Fi — K with R = S' satisfy the required conditions. 

4. In this section we consider the extension of valuations on a skew field AT to an Ore 
extension of K. Let AT be a skew field with an automorphism a. The skew polynomial 
ring K[x, a] with xa = a(a)x defining the multiplication is a right and left Ore domain 
with a skew field F — K(x, cr) of quotients. If v is a valuation of A' with valuation ring Bv 

which satisfies cr(Bv) — Bv then v can be extended to a valuation u from K(x, a) to Wv by 
defining w(z"=1 aix*) = min{ v(at) \ i = 1, . . . , n}, (see: [4],[14]). This extension u of 
v will be called Gauss-extension of v. The elements in AX*, cr) are of the form kt{x)s~x (x) 
for some k in K and f(jc), s(x) in K[x, a] which are units in Bu. The set of the valuation rings 
in K(x, a) conjugated to Bu is therefore { kBuk~l \ k G K*} and kBuk~l is the valuation 
ring associated with the valuation Uk from K(x, a) to Wv defined by Ukiy) = u(k~xyk). 

In particular, 

Uk(ao + a\x + • • • + artjc") = u[k~laok + k~la\a(k)x + • • • + k~ ^^{k)^ 

= min{v(jr ^o^), v(k~laMkj),..., v(k~xano
n(k))}. 

The next results establish a relationship between properties of Rv = DkeK* kBvk~l and 
properties of the ring Ru = ClseF* sBus~l = C\keK* kBuk~l. 

THEOREM 4.1. Ler v be a valuation of the skew field K, a an automorphism of K 
with a(Bv) = Bv and u the Gauss extension ofv to F — K(x, cr). Then Ru is a distributive 
ring ifK is the skew field of quotients ofRv and Rv is distributive. 

PROOF. It must be shown that A D (B + C) C (A n B) + (A D Q for any ideals A, £, C 
in 7?M—the opposite inclusion holds trivially. 

The following proof is similar to the proof of Theorem 1 in [10]. 
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Let af be an element in A D (B + C), hence a' = b' + cf\hf G B, c' G C. There exist 
a, b,c,d G £[*, cr] with d ^ 0 and 

n n n 

d = J_ 1a, h1 = d~xb, c = d~lc and a = ^drf, b = Yl biX1, c = ^ C[Xl 

i=0 i'=0 *=0 

and 

A,- = /?/ + Q, at G Û/^V H (Z?;/?v + Q/?V) = (atRv H b/flv) + (Û//?V H c//?v) 

follows for / = 0 , . . . , n. Hence, elements r„ 5; exist in Rv with 

a, = hpi + CiSi and Z?/r,, QS; G fl//?v-

Define the element 

h = b0(l-r0) + bi(l-ri)x+--- + bn(l - rn)x" 

and since a = (b — h) + (h + c) it is sufficient to show that b — hE aRu D bRu and h + c G 
a/?M D c/?M. This in turn follows if one can prove that uk(b — h)> iik(a), uk(b — h)> uk{b) 
and also Uk(h + c) > uk(a), u^ih + c) > uk(c) for all k G K* holds. We will show the first 
inequality. 

Uk(b -h) = min{v(k-1 b0r0kl v(k~lbiri<T(kj),..., v(k~lbnrna
n(k))} 

ujc(a) = minlv(k~laok), v(k~la\cr(k)\ . . . , v(k~lana
n(k))\. 

We have: b^ G atRv, hence, k~lbtrial(k) G k~laiRva
l(k) — k~latal(k)Rv and 

v(k-lbiria
i(k)) > v(k-lai(T

i(k)). 

THEOREM 4.2. Let v be a valuation of the skew field K, a an automorphism of K 
with a(Bv) = Bv and u the Gauss-extension ofv to K(x, a). Assume that K is the skew 
field of quotients ofRv and that Rv is a Bezout domain. Then: 

(i) Ru is a Bezout domain with F = K(x, a) as its field of quotients. 
(ii) Gu is lattice ordered. 

PROOF. TO show (ii) let <3, b be elements in Gu and there exist c, d, e in K[x, cr] with 
0 ^ e and a = e~lc, b = e~ld. As we observed earlier, it is enough to show that 
inf{ c, d} exists in Gu. 

Letc = co+c\x+- - -+cnx
n andd = do+d\x+- • •+Jrtx

n. Since Rv is a Bezout domain, 
there exists for every / = 0 , . . . , n an element/; in K with ctRv + diRv = fRv and for all 
k in K we obtain 

Cio\k)Rv + dta\k)Rv =ficri(k)Rv and 

Ci(jl(k)Bv + dta
l(k)Bv =fal(k)Bv which implies 

v(fai(k)) = inf jv^crW), v{dia
i(k))}. 
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It remains to show that inf{ c, d} =f for/ = / 0 +f\x + ••• +f„xP. For all k in K we have: 

f(y(k)) =f{u(k)) = uijk) = « ( x > r w ) 
i= 1 

= mf{v(f0k\...,v(fna
n(k))} 

= inf {inf{ v(c0k), v(d0k)},..., inf {v(cna
n(k)\ v(dna

n(k))}} 

= infjinf{v(c0/:),...,v(cnart(/:))}, inf{v(d0kl •.. ,v(dna
n(fc))}} 

= inf{ u(ck), u(dk)} 

= M{c(v(k))J(u(k))}, 

and the equation/ = inf { c, 3} follows. 
To prove (i) one observes that by (ii) and the Corollary to Theorem 2.1, it follows that 

K(x, a) is the skew field of quotients of Ru. Theorem 4.1 shows that Ru is distributive 
and Theorem 2.2 can be applied to Ru and (i) follows from (ii). 

5. Let B be a valuation ring of the skew field D, G the value group and R = 
CldeD* dBd~x the intersection of all subrings in D conjugate to B. We were not able to 
answer the following two questions: 

A. Is D the skew field of quotients of Rl 
B. Does there exist an example for B and D such that R with D as its skew field of 

quotients is not distributive, however, G is lattice ordered? 
If one would want to construct such an example using the methods in Section 3, then 

the following question arises: does there exist a valuation ring BQ of a commutative field 
K and a subgroup H of the automorphism group of K such that R§ = f] 0"(#o), a £ H* 
does not satisfy the distributivity condition in Theorem 3.3 for all elements a, b, c in K, 
but for a,b eK* there exists c e K* with aR0 D bR0 = c/?0? 
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