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Abstract

We present bounds on the decay parameter for absorbing birth–death processes adapted
from results of Chen (2000), (2001). We address numerical issues associated with
computing these bounds, and assess their accuracy for several models, including the
stochastic logistic model, for which estimates of the decay parameter have been obtained
previously by Nåsell (2001).
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1. Introduction

Determination of the decay parameter is critical to the analysis of absorbing countable
state Markov processes, and there are several approximations and bounds for the particular
case of the birth–death process; see, for example, Bordes and Roehner [2], Zeı̆fman [29], and
van Doorn [25], [27]. More accurate bounds have been obtained for specific models. For
instance, Nåsell [19] has derived approximations for the expected time to absorption, starting
with the quasi-stationary distribution (this being the reciprocal of the decay parameter) for the
stochastic logistic model. Whilst Nåsell’s approximations are generally good, their accuracy for
given parameter values is unknown. We use results of Chen [8], [9] (see also [10, Chapter 5]) to
give upper and lower bounds that differ by less than a factor of four for a general absorbing birth–
death process, to develop robust numerical methods for approximating the decay parameter of
any finite-state absorbing birth–death process. We apply this to the stochastic logistic model,
comparing our results with those of Nåsell [19]. We will see that the bounds frequently provide
very good approximations to the decay parameter. We also demonstrate that both the upper and
lower bounds are sharp in different senses which we will describe.

2. Preliminaries

Let (X(t), t ≥ 0) be a Markov process taking values in a countable state space S = {0}∪C,
where C is an irreducible class from which the sole absorbing state 0 is accessible. For simplicity
we will take C to be either {1, 2, . . . , N} or {1, 2, . . .} according to whether we require the state
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The decay parameter of a birth–death process 477

space to be finite or infinite. We denote by P(t) = (pij (t), i, j ∈ S, t > 0) the transition
function of the process, and by Q = (qij , i, j ∈ S) = P ′(0+) its q-matrix of transition rates,
assumed to be both stable and conservative. Furthermore, we shall assume that the process is
absorbed with probability 1; if absorption occurs with probability less than 1, we may transform
the rates to obtain a process which is absorbed with probability 1 and thereby study the original
process conditioned on absorption occurring (see Waugh [28]).

We will now define the decay parameter of an absorbing Markov process and briefly discuss
its importance, outlining the main previously known results. We then focus on birth–death
processes and discuss what is known about the decay parameter in this more analytically
tractable case. Following this we shall describe Chen’s results and explore some of their more
important implications. It will be convenient to separate the cases of finite and infinite state
space. In the infinite state case, we analyse our bounds in the context of the random walk on
the nonnegative integers with an absorbing barrier at zero. We then investigate the numerical
evaluation of these bounds for finite state processes, in particular for the stochastic logistic
model.

The decay parameter of an absorbing Markov process is the nonnegative, finite quantity
given by

λC := lim
t→∞

[
−1

t
log pij (t)

]
.

Kingman [15] proved that the limit exists and is the same for all i, j ∈ C. He also established
that there are constants Mij ∈ (0, ∞) (with Mii = 1) such that pij (t) ≤ Mij e−λCt , so
that when λC > 0 the transition probabilities decay to zero exponentially fast as t tends to
infinity. However, it is important to realise that positivity of the decay parameter is equivalent
to exponential ergodicity: recall that a process is called exponentially ergodic (with index α)
if for all states i and j there are positive constants cij and α such that its transition function
satisfies

|pij (t) − pij (∞)| ≤ cij e−αt (1)

(for further details see Anderson [1, Section 6.6]). We note that, although the state space
here is not irreducible, the limiting distribution is still unique when the class structure is as
we have assumed. Although nearly all work on exponential ergodicity is presented in the
context of convergence of the transition probabilities to the unique limiting distribution of a
positive recurrent process, these results are just as applicable to the convergence of the transition
probabilities to the degenerate limiting distribution with all of its mass at the absorbing state.

It is the close link with exponential ergodicity from which the decay parameter derives most
of its usefulness. One of the most useful quantities associated with an absorbing process is the
probability of absorption having occurred at or before an arbitrary time t . Depending upon what
a particular model represents, this may have meaning in terms of, for example, the probability
of extinction of an endangered species or the probability that an infection will die out. We can
show that, for suitable constants xi , i ∈ C, we have pi0(t) ≈ xie−λCt for i ∈ C and t large. In
addition, if we suppose that the process starts with the quasi-stationary distribution (see below)
then it is easy to show that the time to absorption has a negative exponential distribution, with
rate parameter λC , so that then the expected time to extinction is precisely 1/λC . This quantity
is of significant value in applications, as frequently it can be assumed that the process of interest
has been running for sufficient time that it is reasonable to take the quasi-stationary distribution
as the initial distribution.
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Additionally, the decay parameter plays an important role in the theory of quasi-stationary
distributions, which we now outline briefly.

2.1. Quasi-stationary distributions and λC

When describing the long-term behaviour of Markov processes with an absorbing state we
cannot use the usual notions of stationary and limiting distributions, for these distributions have
mass one at the absorbing state and, thus, provide no information about the process before
it evanesces. We need to consider the long-term behaviour of the process conditional on it
not having been absorbed. A quasi-stationary distribution (QSD) is a probability measure
m = (mi, i ∈ C) that, for some ν > 0, satisfies

∑
i∈C

mipij (t) = e−νtmj ,

for all j ∈ C and t > 0. We can interpret this as meaning that if the Markov process has
initial distribution m, then the state probabilities remain in the same proportions as in the
initial distribution, but decay to zero like e−νt . In fact, the state probabilities conditioned on
nonabsorption are stationary and given by the distribution m. It is further known that, if it
exists, the limiting conditional distribution (LCD) b = (bi, i ∈ C) given by

bj = lim
t→∞

pij (t)

1 − pi0(t)
,

independently of i ∈ C, is a QSD with ν = λC . We can see that positivity of λC is necessary
for the existence of an LCD. Though here we content ourselves with this brief introduction to
the role of the decay parameter in the theory of QSDs and LCDs, which is but a scratch on the
surface of this extremely rich field of interest in the study of countable state Markov processes.
For further details and references see Anderson [1, Chapter 5] or Pollett [20].

2.2. Previous results

If the set C is finite, the process is always exponentially ergodic and the best (i.e. largest)
constant α in (1) is effectively the Perron–Frobenius eigenvalue of the restricted q-matrix
QC = (qij , i, j ∈ C) (see Section 5). Although the problem of establishing exponential
ergodicity for infinite-state processes was in principle solved by Tweedie [24], his necessary
and sufficient conditions are usually impractical to check, and making any progress in this
direction is dependent on the few useful sufficient conditions which are available and/or any
special structure present in the particular model of interest.

3. Birth–death processes

Recall that a birth–death process (BDP) is a Markov process on (a subset of) the nonnegative
integers with the property that direct transitions from any state i are possible only to the states
i − 1 and i + 1; this is equivalent to specifying that the q-matrix has the tridiagonal form

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λi if j = i + 1,

µi if j = i − 1,

−(λi + µi) if j = i,

0 otherwise.
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Here (λi, i ≥ 0) and (µi, i ≥ 1) are respectively the birth and the death rates, which we assume
are all strictly positive, except λ0 = 0, in order to ensure that the state space has the desired
class structure S = {0} ∪ C. As usual we define the potential coefficients π = (πi, i ∈ C) by
π1 = 1 and

πk = λ1λ2 · · · λk−1

µ2µ3 · · · µk

, k ≥ 2.

We recall here that the condition of absorption with probability 1 (for infinite-state BDPs) is
equivalent to the divergence of the series

A =
∞∑

n=1

1

λnπn

.

We also see appreciable simplification of the theory of QSDs when we restrict our attention
to birth–death processes. In fact a near complete picture of the existence of QSDs in BDPs is
contained in the following result (an agglomeration of Theorems 3.2 and 4.1 of van Doorn [26]),
for which we define

D =
∞∑

n=1

1

µnπn

∞∑
m=n

πm.

Theorem 1. (Van Doorn [26].) For an absorbing birth–death process on {0} ∪ C which is
absorbed with probability 1,

(a) if D < ∞ then there is a unique QSD corresponding to ν = λC > 0;

(b) if D = ∞ then either

(i) λC = 0 and there are no QSDs, or

(ii) λC > 0 and there is a one-parameter family of QSDs indexed by ν ∈ (0, λC].
We can see from this theorem that, for birth–death processes, λC > 0 is not only necessary

but sufficient for the existence of a QSD; this dates back to Good [12]. We also observe, in light
of the fact that D < ∞ is equivalent to strong ergodicity (Zhang et al. [30]), the implication
D < ∞ implies that λC > 0 in the above result is simply restating the fact that strong ergodicity
entails exponential ergodicity; it had earlier been shown by Tweedie [24] that the convergence
of Reuter’s well-known S series (see [21, Section 8.4]), which is equivalent to the convergence
of D , implies exponential ergodicity. For further results on strong ergodicity, see Mao [16] and
the references therein.

The search for practical conditions that ensure exponential ergodicity for birth–death
processes has been long; indeed we would expect there to be no closed form expression for
the decay parameter of a BDP in terms of the birth and death rates, (λi) and (µi), respectively.
However, there are many results giving computable bounds for a particular BDP, or class of
BDPs. Bounds on the best constant of exponential ergodicity (that is, the largest α for which (1)
holds) for BDPs have been obtained by Bordes and Roehner [2] (involving, and with conditions
on, Reuter’s [21] series R, S, and T ), Zeı̆fman [29] (for processes satisfying supi qi < ∞),
and van Doorn [25], [27] who considered BDPs with no additional structure. In particular,
Theorem 3.3 of [27] gives three representations for the decay parameter; these representations
are as (attained) suprema and infima over sequence spaces, for example

λC = max
v∈V

{
inf
n≥1

{
λn + µn − λn−1µn

vn

− vn+1

}}
,
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where V is the family of all positive sequences v = (vi, i ∈ C). Whilst such representations are
not in general amenable to explicit evaluation, judicious choice of the sequence v can provide
a good (in this case lower) bound for the decay parameter.

In addition, the decay parameter has even been explicitly evaluated for some models,
including the random walk on the nonnegative integers (Seneta [23]), the so-called ‘linear BDP’
(see, for example, Anderson [1, pp. 165–166]), ‘asymptotically symmetric quadratic BDPs’(see
Roehner and Valent [22]), and several queueing models (see, for example, Kartashov [13]).
Also, there are some necessary and some sufficient conditions for the prevalence of exponential
ergodicity (positivity of the decay parameter). Van Doorn [26, Theorem 3.2(ii)] (or our
Theorem 1) is one such result; it is also known that inf i∈C qi = 0 implies λC = 0 (this follows
immediately from λC ≤ inf i∈C qi , one of the first properties of the decay parameter which
Kingman [15] discovered). Callaert and Keilson [5] and Tweedie [24] (already mentioned
above) contain the most general such results. Theorem 5.3 of van Doorn [25] determined
the exponential ergodicity or otherwise of a wide range of BDPs encountered in practice, and
Kijima [14, Theorems 3.2 and 3.3] provided some results concerning the comparison of the
decay parameters of two birth–death processes.

The results we have discussed, although in principle able to give significant information
about the decay parameter of a birth–death process, are far from complete. Since the early
1990s, however, a series of papers by Mu-Fa Chen has appeared in the Chinese literature
which addresses the problem of evaluating, or finding bounds for, the so-called spectral gap of
various operators associated with not only countable-state Markov processes, but also a number
of classes of differential operators with probabilistic applications. The main results with respect
to birth–death processes are contained in the papers [6], [7], [8], [9] (see also Chen’s recent
monograph [10]) but many of these results in fact apply to all countable-state Markov processes,
or at least to those which are reversible. These results appear not to be widely known and indeed
to the best of our knowledge have not previously been cited outside the Chinese literature.

In so far as these results are concerned with birth–death processes; in 1991, Chen [6]
established the connection between the decay parameter, L2-exponential convergence, and the
L2-spectral gap and established the validity of several previously known bounds under weaker
assumptions than before. He then went on to use this representation to obtain variational
formulae for the decay parameter, and from these obtained several bounds for the decay
parameter, and then some sufficient, and some necessary and sufficient conditions for positivity
of the decay parameter. Nearly all previously known results are encompassed by Chen’s work.
Central to these results are the two operators defined by

Ii(f ) =
∑∞

j=i+1 πjfj

µi+1πi+1(fi+1 − fi)
, i ≥ 1,

and

IIi(f ) = 1

fi

i∑
j=1

1

µjπj

∞∑
m=j

πmfm, i ≥ 1,

which in general act on positive sequences f = (fi, i ∈ C) (though f must be π -integrable
for Ii(f ) or IIi(f ) to be finite). Further restricting the class of sequences f upon which these
operators act leads to Chen’s variational formulae (see [9, Section 2]). We now summarise
Chen’s main results as applicable to our consideration of absorbing birth–death processes.
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Theorem 2. Suppose that a birth–death process on {0} ∪ C is absorbed with probability 1
(i.e. A = ∞) and write φi = ∑i

j=1(µjπj )
−1.

(a) (Chen [8].) If we define

Rn =
n∑

j=1

1

µjπj

∞∑
j=n

πj , n ≥ 1,

and put R = supn≥1 Rn, then (4R)−1 ≤ λC ≤ R−1.

(b) (Chen [9].)

(i) Lower approximating sequence: put

f
(1)
i = √

φi, f
(n)
i = f

(n−1)
i IIi(f

(n−1)), δ′′
n = sup

i≥1

f
(n+1)
i

f
(n)
i

.

Then (δ′′−1
n , n ≥ 1) is increasing and δ′′−1

1 ≤ · · · ≤ δ′′−1∞ ≤ λC .

(ii) Upper approximating sequence: put

f
(1,k)
i = φi∧k, f

(n,k)
i = f

(n−1,k)
i∧k IIi(f

(n−1,k)), δ′
n = sup

k≥1
inf
i≥1

f
(n+1,k)
i

f
(n,k)
i

.

Then (δ′−1
n , n ≥ 1) is decreasing and R−1 ≥ δ′−1

1 ≥ · · · ≥ δ′−1∞ ≥ λC .

Analogous results hold if II is replaced everywhere by I ; if we denote these approximating
sequences by δ̃′′

n and δ̃′
n, respectively, then δ̃′′−1

n ≤ δ′′−1
n ≤ δ̃′′−1

n+1 and δ̃′
n ≥ δ′

n ≥ δ̃′
n+1.

Immediately obvious from Theorem 2(a) is the following necessary and sufficient condition
for positivity of the decay parameter in terms of the transition rates of the process.

Corollary 1. We have λC > 0 if and only if R < ∞.

Remarks. Chen [8] also provides another upper bound δ−1 for λC , which is better (i.e. less)
than R−1, defined by

δ = 2 sup
n≥1

n∑
j=1

Q′
j ν

(n)
j ,

where

Q′
j =

(j−1∑
i=1

(µiπi)
−1 + (2µjπj )

−1
) ∞∑

i=j

πi and ν
(n)
j = (µjπj )

−1∑n
k=1(µkπk)−1

.

Though this upper bound is better than R−1, its more complicated form renders it more difficult
to deal with analytically, and we shall see in Proposition 1 that it is in fact equal to δ′−1

1 . We
also note that the main use of Theorem 2(a) is to establish the positivity of the decay parameter;
if we seek to approximate its value the better (but slightly more complicated) bounds given by
the approximating sequences in Theorem 2(b) should be used.
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We now proceed to establish the equality of two of the upper bounds we have described.

Proposition 1. The bounds δ′−1
1 (defined in Theorem 2(b)(ii)) and δ−1 (defined in the above

remarks) are equal.

Proof. We firstly show that the quantity

α
(k)
i = 1

φi∧k

i∑
j=1

(µjπj )
−1

∞∑
m=j

πmφm∧k

achieves its infimum over i ≥ 1 when i = k. To this end we note that it is not hard to show
that α

(k)
i is decreasing for i = 1, 2, . . . , k, and trivial to see that it is increasing for i ≥ k; thus

establishing that arg inf i≥1 α
(k)
i = k.

We now recall that
δ′

1 = sup
k≥1

inf
i≥1

α
(k)
i

(see part (2) of Theorem 2.2 in [9]). Upon applying the above result and then interchanging the
order of the summation this simplifies to

sup
k≥1

1

φk

∞∑
m=1

πmφ2
m∧k,

an expression for δ which can be easily inferred from the proof of Theorem 3.5 of [8].

We shall see later that this result enables us to compute δ′
1 for finite-state birth–death processes

in time which is O(N), as opposed to O(N2) without it.

4. Infinite state space

We can easily see that Theorem 2(a) encompasses two partial results which have been
mentioned previously. Firstly, the fact that

∑
i∈C πi = ∞ implies λC = 0 is immediately

obvious from Corollary 1 because
∑

i∈C πi = ∞ implies that Rn = ∞ for all n. In addition,
it is not difficult to show that Rn < D for all n and, hence, D < ∞ implies that supn Rn < ∞
and therefore λC > 0 (in accordance with Theorem 1(a)).

The bounds given in Theorem 2(a) are a huge improvement on the previously available
bounds; the error is strictly limited to a factor of four. Most significant is the universality
of this factor across all birth–death processes; the accuracy of previous estimates of the decay
parameter is both extremely variable and highly dependent on the particular birth–death process
being studied. Having upper and lower bounds which are a constant multiple of each other
ensures the triviality of Corollary 1 as a consequence of Theorem 2.

We now present an example for which we can explicitly evaluate some of the bounds and
show that the upper bound for λC in Theorem 2(a) is sharp, in the sense that 1 is the smallest
constant that can multiply R−1, and the better lower bound δ′′−1

1 is sharp, in the sense that
it is sometimes equal to λC (in particular for the example we present). The example we use
is the random walk on the nonnegative integers with an absorbing barrier at zero. This is a
birth–death process with λi = λ and µi = µ for i ≥ 1, and λ0 = 0. In order that almost all
sample paths are absorbed at zero, we must insist that λ ≤ µ. Seneta [23] showed that the
decay parameter for this process is λC = (

√
λ − √

µ)2. Clearly λC = 0 if λ = µ (this also
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follows from Corollary 1 as πi = 1 for all i), so we restrict attention to the case in which λ < µ.
It is a relatively simple matter to evaluate Rn. We find that

Rn = µ

(µ − λ)2

(
1 −

(
λ

µ

)n)
,

which is (strictly) increasing, and so R = supn≥1 Rn = limn→∞ Rn = µ/(µ − λ)2.
Theorem 2(a) therefore provides the bounds

(µ − λ)2

4µ
≤ λC ≤ (µ − λ)2

µ
.

Now, if we fix µ and let λ approach zero then both λC and the upper bound, R−1, approach
µ, which is the decay parameter of each state i ≥ 1 of the pure death process obtained in the
limit. In this way we can, given any ε > 0, find a BDP for which R−1 − λC < ε. For this
example we can also evaluate the better upper bound, δ′−1

1 . By firstly writing
∑∞

m=1 πmφ2
m∧k =∑k

m=1 πmφ2
m + φ2

k

∑∞
m=k+1 πm, we find that

δ′
1 = sup

k≥1

µ + λ

(µ − λ)2 − 2k

(µ − λ)((µ/λ)k − 1)
.

It is clear that the latter term of this expression decreases monotonically to zero, so

λC ≤ δ′−1
1 = (µ − λ)2

µ + λ
,

which, it is plain to see, is strictly less than the previous upper bound of (µ − λ)2/µ. We can
also make analytical progress with the better lower bound, δ′′−1

1 . We can easily show that

δ′′
1,i = 1√

φi

i−1∑
m=1

πmφ
3/2
m + √

φi

∞∑
m=i

πm

√
φm,

from which it follows that δ′′
1,i ≤ (

√
λ−√

µ)−2, and so λC ≥ δ′′−1
1,i ≥ (

√
λ−√

µ)2. Therefore,
we have shown that the lower bound is, in this instance, sharp, which is a clear improvement
on the original lower bound of (4R)−1.

In general it is not easy to explicitly evaluate R, δ′
n, or δ′′

n , so the bounds for the decay
parameter given by Theorem 2 will only rarely yield a closed form expression. However, by
using monotonicity properties and/or bounds for Rn it will frequently be possible to determine
at least, the finiteness or otherwise of R = supn Rn and, hence, whether the decay parameter is
zero or positive, which – at least in processes with infinite state space – is the most important
conclusion to be made.

Even if no such analytical handle can be found, we can resort to numerical calculation
of the Rns and infer from a plot of Rn against n the behaviour of Rn as n tends to infinity
and, thus, whether or not supn Rn can be expected to be finite. From this same plot one
can also read off n∗ = arg supn≥1 Rn and, by numerically calculating Rn∗ , obtain (at least
formal) bounds on λC . It is easy to show that the upper bound calculated in this way re-
mains an upper bound for the birth–death process we are considering. If, however, not only
supn≥1 Rn but also

∑∞
i=n πi does not yield a closed form expression then we may resort to
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approximating
∑∞

i=n πi by
∑M

i=n πi for some large M; this is the same as truncating the state
space of the process to {0} ∪ {1, 2, . . . , M}. It is again easy to show that the upper bound
obtained in this manner is still a valid upper bound for the decay parameter of the original
process and also that it is a worse upper bound than that obtained by considering the first M

values of Rn. See also Breyer and Hart [3], which deals extensively with finite truncations.

5. Finite state space

The chief usefulness of Theorem 2 when C is an infinite set is in the necessary and sufficient
condition of Corollary 1 for λC > 0. This always holds when C is finite, again following from
Theorem 2, because Rn is nonzero for only finitely many n and, hence, R = supn Rn is trivially
finite. However, the bounds for λC offer the potential for analytical expressions that determine
the order of the decay parameter and indeed describe the dependence of the decay parameter on
model parameters. In general the only way to estimate λC is numerically: −λC is the eigenvalue
of the restricted q-matrix QC with largest real part (being real and negative) [11]. For some
specific models there are estimates of λC . For example, Nåsell [17], [18] provided estimates
for λC in the stochastic logistic model (which we explore numerically below). We also remark
that C being a finite set ensures that absorption at zero always occurs with probability 1.

Our main result, now stated for finite-state birth–death process, is as follows.

Theorem 3. For a birth–death process on {0} ∪ {1, 2, . . . , N},
(a) if we define

Rn =
n∑

j=1

1

µjπj

N∑
j=n

πj , n = 1, . . . , N,

and put R = max1≤n≤N Rn, then (4R)−1 ≤ λC ≤ R−1, and in addition

(b) if we put

δ′′
1,i = 1√

φi

i∑
j=1

(µjπj )
−1

N∑
k=j

πk

√
φk,

and

δ′
1,k = 1

φk

N∑
m=1

πmφ2
m∧k,

then δ′′
1 = max1≤i≤N δ′′

1,i and δ′
1 = max1≤k≤N δ′

1,k satisfy (4R)−1 ≤ δ′′−1
1 ≤ λC ≤

δ′−1
1 ≤ R−1.

Remarks. We have simplified the statement of the above theorem by describing only the
bounds which we will numerically evaluate later in this section. All four of the approximating
sequences given in Theorem 2(b) have obvious analogues in finite-state models. In addition
we have simplified the expression for δ′

1,k using Proposition 1.

Whilst we now lose the significance of being able to determine positivity of λC (this always
being true), we can compute all of the finite number of Rn values (at least numerically) and
therefore find the bounds exactly (to numerical precision), and of course the same applies to the
better bounds. We compare the results of this procedure applied to the stochastic logistic model
with the results of Nåsell [17], [18], who developed methods of approximating λC specifically
for this model.
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The stochastic logistic model (SLM), or SIS epidemic model, is the birth–death process on
S = {0} ∪ {1, 2, . . . , N} with birth and death rates respectively given by

λi = λi

N
(N − i) and µi = µi, i ∈ S.

This process is perhaps the simplest stochastic model of a population which incorporates
retardation of population growth at higher population sizes (due to increased competition for
resources, for example). It has also found application as a model for the transmission of
infectious diseases which confer no long-term immunity and in the study of metapopulations
– populations which inhabit discrete patches of habitat.

5.1. Numerical implementation

In evaluating the bounds given in Theorem 3, we must be careful to ensure that numerical
errors are kept to a minimum; the errors of particular relevance here are those of numerical
overflow and/or underflow. Even if the value we seek to calculate is of moderate magnitude,
some of the intermediate quantities may be extreme, that is, too large or too close to zero to
be handled within numerical precision. Typically such values would be rounded to infinity or
zero, either of these occurring obviously renders any subsequent computations meaningless.
For example, for the SLM with (N, λ, µ) = (500, 10, 9) we have (µ500π500)

−1 ≈ 10196 even
though the decay parameter in this instance is only about 0.05.

In the following paragraphs we briefly describe the techniques we use for avoiding such
overflow or underflow in the computation of the two better bounds. We have also developed
similar methods for calculating R, but these are superfluous as the other bounds are better –
the significance of R for finite-state BDPs is its relative simplicity and the resultant possibility
that it might yield explicit formulae describing the dependence of the decay parameter on the
parameters of a given model (in a manner similar to Nåsell [17, Section 8] for the SLM). We
therefore include these bounds in our plots below so that we may see how they perform. We
also stress that the expressions given in the rest of this subsection were developed with the SLM
in mind: though they may very well (and appear to usually) work for other BDPs this is by no
means guaranteed.

We firstly look at the better lower bound, δ′′−1
1 , we find that it is useful to write δ′′

1,i recursively
as follows: δ′′

1,0 = 0 and

δ′′
1,i = δ′′

1,i−1
√

ρi−1

√
gi−1 + 1

gi + 1
+

N∑
k=i

1

µk

√
ρi · · · ρk−1

√
gi−1 + 1

gi + 1
, (2)

where ρi = λi/µi and gi = ∑i−1
j=1 (µjπj )

−1/(µiπi)
−1, i = 1, . . . , N , is precalculated using

g1 = 0 and gi+1 = ρi(1 + gi), again to avoid overflow or underflow problems. Also, by
observing that the sum over k in (2), call it si , can be written as si = σi/

√
gi + 1, where

σN = √
gN + 1/N and

σi = σi+1
√

ρi + µ−1
i

√
gi + 1, i = N − 1, . . . , 1,

we reduce the computation time for δ′′
1 from O(N2) to O(N).

In order to compute the better upper bound, δ′
1, without introducing overflow or underflow

problems, we again proceed by deriving the following recurrence: writing

δ′
1,k =

∑N
m=1 πmφ2

m∧(k−1) + (µkπk)
−1((µkπk)

−1 + 2φk−1)
∑N

m=k πm

φk−1 + (µkπk)−1 ,
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we find that

δ′
1,k = δ′

1,k−1 + hk(g
−1
k + 2)

1 + g−1
k

,

where gk is as in the previous paragraph and hk = (µkπk)
−1 ∑N

m=k πm is calculated as
hN = µ−1

N and hi = hi+1ρi + µ−1
i , i = N − 1, . . . , 1. Again, this yields an algorithm

with execution times linear in N .

The above methods for calculating both δ′
1 and δ′′

1 can be copied virtually straight into any
programming environment (MATLAB®, C®, C++®, etc.): calculate, in order, (ρi), then (gi),
(σi) and (δ′′

1,i ), or (ρi), then (gi), (hi) and (δ′
1,k).

We do not deal with further terms in the upper and lower approximating sequences, (δ′−1
n )

and (δ′′−1
n ), respectively, on account of it being much more difficult to deal with the overflow or

underflow issues which arise; we have not been able to satisfactorily resolve these difficulties.
We also point out that the calculation of the upper bounds, (δ′−1

n ), for n > 1 will take time
which is quadratic in N ; for even though we can show that arg inf i≥1 IIi(f

(n,k)) = k for all
n, k ≥ 1, f (n,k) depends on the whole sequence f (n−1,k), not just the kth component.

5.2. Other numerical approaches

We will compare the numerical methods obtained from the bounds ofTheorem 3 (as described
in Section 5.1) with two other methods of finding λC for the SLM. The first of these is an
essentially exact method which relies on the fact that, for a finite-state absorbing Markov
process, −λC is the eigenvalue of QC with maximum real part.

We implement this approach using MATLAB’s eigs routine to find the eigenvalue closest
to zero. It yields the exact (to numerical precision) value of λC , but runs into trouble when
the eigenvalue it seeks is of order similar to or smaller than machine epsilon. For these
reasons, we take the decay parameter computed in this way to be the true value to which
the approximations considered are compared. We emphasise that this method is applicable to
all finite-state absorbing Markov processes, not just birth–death processes.

The other methods we consider are those developed by Nåsell in a series of results aiming
to approximate (amongst other things) the expected time to extinction of the SLM starting
from the quasi-stationary distribution. As noted in Section 2, this quantity is exactly 1/λC ,
so Nåsell’s results can also be used to approximate the decay parameter of the SLM. Nåsell
developed these results in a series of papers culminating in [19] (this paper described such
results for the Verhulst logistic model which is a generalisation of the SLM). Nåsell’s methods
are based on the identity λC = µ1m1 relating the decay parameter to the elements of the QSD,
m = (mi, i ∈ C), corresponding to states from which direct transition to the absorbing state
is possible. Nåsell approximates the QSD by the stationary distribution of a closely related
process and then uses this identity to approximate λC ; see [19, Section 2] for further details.

Nåsell’s approximations are delineated into three cases: where λ/µ is markedly less than
one, approximately equal to one, and markedly greater than one. This is necessary because
the approximation of the QSD used in each of these three situations is different. Many of
Nåsell’s results are not asymptotically exact, but nonetheless provide quite good estimates,
particularly for large values of N . Their chief drawback is the lack of error bounds, there being
no indication how accurate the approximation is, but they have the advantage of being simple
and fast to evaluate.
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Figure 1: Behaviour of the relative bounds and approximations of λC for the SLM with varying N , where
λ = 1.2, µ = 1, and ρ > 1.
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Figure 2: Behaviour of the relative bounds and approximations of λC for the SLM with varying N , where
λ = 1, µ = 1, and ρ = 1.

5.3. Numerical results

We now compare the two approximation methods, namely Chen’s bounds and Nåsell’s
approximations, to the true value of the decay parameter for the SLM (remembering the
shortcomings of MATLAB’s eigs routine when λC is too close to zero). We pay particular
attention to the more interesting situation where λ ≥ µ, when extinction occurs over moderate
to long timescales (see Nåsell [17], [18], or [19] for further discussion).
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Figure 3: Behaviour of the relative bounds and approximations of λC for the SLM with varying ρ (= λ),
where N = 150 and µ = 1.

Because of the vastly different orders of magnitude the decay parameter can take, we will
look at the estimates relative to the true value calculated by the eigenproblem solver. Perhaps the
first thing we observe from our numerical experimentation is that the behaviour of the bounds,
and approximations relative to the true value of λC , depends on λ and µ almost exclusively
through their ratio ρ = λ/µ. For this reason we fix µ = 1 for our analysis.

Figures 1 and 2 show the relative bounds and approximations of λC for the SLM with varying
N and (λ, µ) = (1.2, 1) and (1, 1), respectively. Figure 3 shows the behaviour when N is fixed
and λ(= ρ) varies.

We observe that when ρ is near one, the two upper bounds are quite different, with the better
upper bound approximating λC reasonably well. When ρ is not near one the two upper bounds
differ only marginally and as ρ deviates further away from one, these upper bounds get closer
to the true value of λC (quite quickly for ρ increasing and relatively slowly for ρ decreasing).
This qualitative behaviour is the same for different values of N , but the larger the value of N the
more quickly these changes occur. In particular we note that as ρ increases above one the better
upper bound very quickly becomes a very good approximation for λC . As ρ decreases below
one the upper bounds become closer and then, rather slowly, become good approximations to
λC . We also observe that for ρ > 1 the better upper bound is a very good approximation to
λC , and that as N increases it very quickly becomes an excellent approximation. The better
lower bound can be seen to be quite a good approximation of the decay parameter for all values
of ρ and N , but again particularly when either ρ or N are large. There are some values of N

where Nåsell’s approximations are better but their error, and importantly, the sign of the error,
are unknown. Even at their worst, the better bounds are still reasonable approximations, as can
clearly be seen in Figures 4 and 5. Note that for large parts of both contour plots (where λ and
N are large) λC is so small that eigs becomes unreliable. The boundary of this area is marked
by an additional dashed ‘contour’ on the plots.

In the less interesting cases when the SLM typically sees absorption within a relatively
short period of time (ρ < 1), Nåsell’s approximations are better than our bounds. How-
ever, it should be noted that in this parameter region Nåsell’s ρ = 1 approximation always
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Figure 4: Contour plot of the ratio of the upper bound, δ′−1
1 , and λC for various N and λ with µ = 1.

Contours are at 1.4, 1.35, 1.3, 1.2, 1.1, 1.01, and 1.001, with the innermost contour being at 1.4. The
dashed ‘contour’ marks where λC becomes so small that eigs is unreliable.
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Figure 5: Contour plot of the ratio of the lower bound, δ′′−1
1 , and λC for various N and λ with µ = 1.

Contours are at 0.87, 0.9, 0.95, 0.99, and 0.999, with the innermost contour being at 0.87. The dashed
‘contour’ marks where λC becomes so small that eigs is unreliable.

overestimates λC , whereas his ρ < 1 approximation, although usually closer to the true value,
underestimates it.

In different situations it may be desirable to have an estimate which we are certain either
overestimates or underestimates λC . In more theoretical work regarding the existence of QSDs
a lower bound is more important. However, if we are, for example, modelling the abundance
of a threatened species, an overestimate of the decay parameter is much more desirable; as an
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underestimate of λC leads to an overestimate of the viability of the population concerned, an
error with potentially grave consequences for the threatened species. We have seen that Chen’s
bounds are frequently very good approximations for the decay parameter and, although other
approximations may be more accurate, these bounds have the advantage of the certainty as
to whether we have overestimated or underestimated the decay parameter, which is often an
important consideration.
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