ANALYTICAL BOUNDS
FOR TWO VALUE-AT-RISK FUNCTIONALS

BY

WERNER HURLIMANN

ABSTRACT

Based on the notions of value-at-risk and conditional value-at-risk, we consider
two functionals, abbreviated VaR and CVaR, which represent the economic
risk capital required to operate a risky business over some time period when
only a small probability of loss is tolerated. These functionals are consistent
with the risk preferences of profit-seeking (and risk averse) decision makers
and preserve the stochastic dominance order (and the stop-loss order). This
result is used to bound the VaR and CVaR functionals by determining their
maximal values over the set of all loss and profit functions with fixed first few
moments. The evaluation of CVaR for the aggregate loss of portfolios is also
discussed. The results of VaR and CVaR calculations are illustrated and com-
pared at some typical situations of general interest.
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1. INTRODUCTION AND PRELIMINARIES

The present contribution shows how some elementary principles and methods
in measurement of risk can be used to calculate appropriate amounts of risk
capital required to operate a risky business over some time period. The empha-
sis is on distribution-free methods, which require for a practical implementa-
tion only the knowledge of the first few moments, namely the mean, variance,
skewness and kurtosis. The interest for such methods is widespread and still
actual (e.g. Li (1999)). First, a brief overview of the content follows. Then, we
introduce a minimal number of important notions, definitions and results,
which will be used throughout.

Based on the notions of value-at-risk and conditional value-at-risk, we
introduce in Section 2 two functionals, abbreviated VaR and CVaR, which
represent the economic risk capital required to operate a risky business over
some time period when only a small probability of loss is tolerated. It is recalled
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that VaR (resp. CVaR) is consistent with the risk preferences of profit-seek-
ing (resp. profit-seeking risk averse) decision makers. Both functionals preserve
the corresponding ordering of risks, namely the stochastic dominance order
(resp. the stop-loss order). When only incomplete information about the loss
and profit function of a risky business is available, then this order preserving
result is used to bound the VaR and CVaR functionals by determining their
extremal values over the set of all loss and profit functions with fixed first few
moments. This procedure is useful in practice, especially if one agrees to com-
pute capital requirements, not on the actual loss and profit function, but on a
stochastic upper bound for this loss in its moment space.

The maximum of VaR and CVaR by known range, mean and variance is
obtained in Theorem 3.1. In particular, it is shown that if the loss tolerance level
is sufficiently small, then these maximal values coincide. As an illustration, we
determine in Example 3.1 the minimum risk capital required by a company
whose loss and profit function is known to belong to a finite range with known
mean x and coefficient of variation k. It equals (1 + k2)- 4 and is related to
several other quantities of interest, namely the Karlsruhe price by Heilmann
(1987), the limiting CAPM fair premium in Hiirlimann(1994), Theorem 4.1,
and the Hardy-Littlewood price for large k introduced in Hiirlimann(1998a).

Similarly, the maximum of VaR and CVaR by known mean, variance,
skewness, kurtosis and range (—eo, =) is determined in Section 4. Corollary 4.1
shows that if the loss tolerance level is sufficiently small, then the maximum
of the VaR and CVaR functionals coincide and identify with a simple analyti-
cal expression.

The evaluation of the maximum VaR and CVaR for the aggregate loss of
portfolios is discussed in Section 5. It is recalled that the maximum CVaR for
the aggregate loss of a portfolio with fixed marginal losses is attained at the
portfolio with mutually comonotonic components, and that if the marginal losses
have absolutely continuous distributions, then the maximum CVaR is an addi-
tive functional. This result yields in Theorem 5.1 a simple recipe for the cal-
culation of the maximum CVaR for the aggregate loss of portfolios given
incomplete information about the marginal losses.

Section 6 illustrates and compares results of VaR and CVaR calculations
at some typical situations of general interest. Table 6.1 compares VaR and
CVaR for two-parameter distributions with fixed mean and variance by vary-
ing loss probability. Several anomalies are noted and suggest that a capital
requirement based on the right-tail risk measure of Wang(1998), extensively
studied in Hiirlimann(2000), is worth to be considered in future work. Table 6.2
compares VaR, CVaR and the maximum CVaR for a log-normal distribution
by varying parameters but fixed tolerance probability. Compared to the obtained
exact value, the maximum CVaR contains only a small implicit margin. Time-
dependent comparisons are made in Table 6.3 while Table 6.4 displays the
dependence upon the kurtosis parameter for two important symmetric distri-
butions. Finally, Table 6.5 discusses the capital requirements of a classical
insurance risk model.

Capital letters X, Y, ... denote random variables with distribution functions
F,(x), Fy(x), and finite means uy, uy. The survival function of X is denoted
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by Fy(x) = 1 - F(x). The stop-loss transform of a random variable X is defined
by

n,(x) = E[(X - x),] =f:°FX (9 dt, x in the support of X. (.Y

The random variable X is said to precede Y in stochastic order or stochastic
dominance of first order, a relation written as X <, Y, if Fy(x) < Fy(x) for all x
in the common support of X and Y. The random variables X and Y satisfy the
stop-loss order, or equivalently the increasing convex order, written as X <; Y
(or X< D), if 7y (X) < 7y (x) for all x. The attractiveness of the partial order
relations <, and <; is corroborated by several invariance properties (e.g. Kaas
et al.(1994), chap. I1.2 and III.2, or Shaked and Shanthikumar(1994)). For
example, both of <, and <, are closed under convolution and compounding,
and <;; is additionally closed under mixing and conditional compound Pois-
son summing.

Given a partial order between random variables and some class of random
variables, it is possible to construct extremal random variables with respect to
this partial order, which provide useful information about extreme situations in
probabilistic modelling (e.g. Stoyan(1977)). For example, the classical Chebyshev-
Markov probability inequalities yield the extremal random variables with respect
to the usual stochastic order for the class of random variables with a given
range and moments known up to a fixed number. Extremal random variables
with respect to the stop-loss order are of similar general interest. The extremal
random variables with respect to these main stochastic orders find important
actuarial and financial applications (e.g. Hiirlimann(1996,1997a/b,1998a/b,
1999,2001a).

The class of all random variables with given support, [4, B], —« < A<B
< oo, and known moments g, &, ..., i, is denoted by D,([A, Bl; i1, tta, - thy)
or simply D, in case the context is clear. For each fixed n=2,3 4,..., we denote

y ™ (%), ES”,},,,, (x) the Chebyshev-Markov extremal distributions, which are
solutlons of the extremal moment problems

sS4 max s min

F® (x)=)r(réi£{FX(x)} FO (x):)r(neaD):{FX(x)}. (1.2)

Random variables with distributions ", (x), F"..(x) are denoted by X;(,",Zm,
X, and are extremal with respect to the usual stochastic order, that is one
has X <, X £, X, for all X e D,. For fixed n = 2,3,4, the minimal and
maximal stop-loss transforms over the space D,, which are defined and denoted

by 7 (x):= mm {nX ®}, 7% (o= max{nx ()}, have been studied by Jansen

et al.(1986) and more recently in greater detall in Hiirlimann(1998b), Section I11.5.
Since there is a one-to-one correspondence between a distribution and its stop-
loss transform, this is (1.1) and the fact F y(x) = —7y’(x), one defines stop-loss
ordered minimal and maximal random variables X, X", by setting for their
distributions

F @ =1+4£20 (), FO ) =1+ %22 (). (1.3)

s1 min Tmin
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These are extremal in the sense that X, <, X <, X", for all Xe D,. For n =
2,3,4, the above extremal random variables have been described completely in
Hiirlimann(1998b).

The Appendix, whose four Sections are numbered with roman letters, offers
a self-contained derivation of the distribution functions of the maximal random
variables with respect to the stochastic dominance and stop-loss order in the
relevant moment spaces.

2. THE VAR AND CVAR RISK MEASURES

Consider a firm confronted with a risky business over some time period, and let the
random variable X represent the potential /oss or risk the firm incurs at the end of
the period. To be able to cover any loss with a high probability, the firm borrows at
the beginning of the time period on the capital market the amount ERC,, called eco-
nomic risk capital. At the end of the period, the firm has to pay interest on this at
the interest rate iz. To guarantee with certainty the value of the borrowed capi-
tal at the end of the period, the firm invests ERC, at the risk-free interest rate
iy < ip. The value of the economic risk capital at the end of the period is thus ERC
= ERC, - (1 + i, — ig). The risky business will be successful at the end of the period
provided the event {X > ERC} occurs only with a small tolerance probability.

There exist several risk management principles applied to evaluate ERC.
Two simple methods that have been considered so far are the value-at-risk and the
expected shortfall or conditional value-at-risk approach (e.g. Embrechts(1995),
Arztner et al.(1997/99), Arztner(1999), Wirch(1999), Wirch and Hardy(1999),
Delbaen(2000), Pflug(2000), Testuri and Uryasev(2000), Acerbi(2001), Acerbi
and Tasche(2001a/b), Bertsimas et al.(2001), Hiirlimann(2001b/e), Kusuoka(2001),
Rockafellar and Uryasev(2000/2001), Yamai and Yoshiba(2001a/b), Yoshiba and
Yamai(2001)). According to the value-at-risk method one identifies the eco-
nomic risk capital with the value-at-risk of the loss setting

VaR [ X]: = Oy (), 2.1

where Qy(u) = inf{x|Fy(x) > u} is a quantile function of X. This quantile
represents the maximum possible loss, which is not exceeded with the (high)
probability « (called confidence level). The expected shortfall or conditional
value-at-risk method is introduced as follows. Consider the upper conditional
value-at-risk (CVaR™) to the confidence level a:

CVaR [X)=E|X|X >VaR, [X]] (2.2

This quantity represents the conditional expected loss given the loss strictly
exceeds its value-at-risk. Next, consider the a-tail transform X* of X with dis-
tribution function

0, x<VaR, [X],

FyaX) =1 F, () -« x> VaR. [X] (2.3)
l-a * 7 — @ ’
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Rockafellar and Uryasev(2001) define conditional value-at-risk (CVaR) to the
confidence level « as expected value of the a-tail transform, that is by

CVaR,[X]=E[X*] (2.4)

The obtained measure is a coherent risk measure in the sense of Arztner et al.
(1997/99) and coincides with CVaR* in the case of continuous distributions.
Alternatively, the expected shortfall (ES) to the confidence level « is defined by

ES,[X]=1. [ 'VaR,[X)du, 2.5)

and represents the average of the 100&% worst losses, where ¢ = 1 —a denotes
the loss probability. The CVaR and ES quantities coincide and satisfy a lot of
equivalent formulas, as shown in Hiirlimann(2001e). In the present paper the
following result is used.

Proposition 2.1. One has
CVaR,[X]= ES,[X]= Q@+ 1 7, [0, @) (2.6)

Proof. Rearranging and making a change of variables, one obtains

1
ES,[X]=0,@+ % [(Qy@) - 0y @) du=0, @)+

L (= 0y @) dF (9= 0y @ + 1 [0 @),

QX (@

On the other side, by definition of CVaR, one has
o) 0
CVaR[X]=E[X*]= [F . dx~ [ Fru(dx.
0 —o0

Using (2.3) one obtains distinguishing between the two cases VaR,[X] 2 0 and
VaR,[X] < 0 without difficulty that

CVaR,[X] = VaR [X]++ m,[VaR,[X]| = ES,[X]) 0

Mathematically, VaR and CVaR, which have been defined as functions of random
variables, may be viewed as functionals defined on the space of probability
distributions associated with these random variables. Recall that both func-
tionals satisfy important risk-preference criteria in the economics of insurance.
Indeed, the value-at-risk and conditional value-at-risk methods are consistent
with ordering of risks in the sense that profit-seeking (risk averse) decision
makers require higher VaR (CVaR) by increasing risk, where risk is compared
using the stochastic order <, (stop-loss order <;;). Reciprocally, increasing VaR
(CVaR) is always coupled with higher risk (Hiirlimann(2001b), Theorem 1.1).
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It is well-known that the well established VaR capital requirement may fail
to be sudadditive, and thus stimulate diversification, and does not take into
account the severity of an incurred adverse loss event. In contrast to this, the
CVaR functional, which for continuous distributions is subadditive and scalar
multiplicative, is a coherent risk measure in the sense of Arztner et al.(1997/99)
and appears thus more suitable in general applications. A recent work devoted
to the analytical evaluation of economic risk capital and diversification using the
VaR and CVaR approaches is Hiirlimann(2001d).

In practice, often only incomplete information about losses are available.
For example, one knows only the range [4, B], —o £ A < B < oo, of the loss
and its first few n moments yy, ..., i, that is Xe D,: = D,([4, B, u, ---, i), the
set of all losses taking values in the interval [4, B} with fixed first » moments.
In this situation, Theorems 3.1, 4.1 and 4.2 may be applied to determine the
maximal values of VaR and CVaR over some sets D,, n = 2,4. In the notations
of Section 1 one has

s, max

; - ) _ )
jmin {VaR.[X]}=VaR. [X M min], Ar/ne%xn{VaRg [X]}=VaR. [X ] 2.7

Similarly, one has

- _ ® _ ®
)?élg{CVaRg[X]}—CVaRg[X ], Ar}leal;i{CVaRg[X]} CVaRE[XSLmaX]. (2.8)

s, min

3. THE MAXIMUM OF VAR AND CVAR BY KNOWN MEAN AND VARIANCE

Applying the usual linear transform X = y + ¢Z, the calculation of the maximum

of the VaR and CVaR functionals over all X € D, ([4, B]; u, 6) is reduced to the
same calculation over all Z € D, ([a, b]; £ =0,0=1) with a = ;ﬂ, b= Bf;”—.

Surprisingly, if the loss tolerance level is sufficiently small, these maximum
values coincide.

Theorem 3.1. The maximum of VaR and CVaR for the set D,:= D,([4, B]; u, o)
is determined as follows:

2

Casel: e<——% .
$= T (B—p)

max{VaR,[X]} = max{CVaR [X]} = B
, o w-4?
Case 2: T B <e< I
max{VaR, [X]} = max{CVaR [X]} =+ [152 o

~ A)(B - A)1-¢) - o
Xme'cgi{Va&[X ]}=#+(u (B)(—A)a —)((u —?1) =<

max{CVaR [X]}=u+ @-A)(152)

— A
Case 3: 82;%1
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The equality in Case 3 holds if and only if B— o,

Proof. It suffices to make calculations for the set D, ([a, b]; # =0, o = 1) with
A— u B- /1
b -

a= , and to transform back the result using the relation X =y +

oZ. The maxlmum of VaR is equal to the (1 -¢)-quantile of F\.,(x) and is obtained
without difficulty from the Table III.1. Similarly, to get the maximum of CVaR,
one first calculate the (1 —¢)-quantile of Fy,.,, (x) using Table IV.1, which is deter-

mined by the table:

)

condition st,max (1— &)
S; b
1+ b?
1 a 1 1-2¢
<g< v T
1+ b 1+d 2 Je(l-¢)
2
g>—4— a
1+a

Inserting this into the formula (obtained from (2.8) and (2.6))
- @ _ @ () _
)r(IéaD);{CVaRs [X]} - Qsl, max(1 8) + max[QsL max (1 8)]

yields the desired result Use that in Case 1 one has 7%, (5)=0, in Case 2 the

decreasing function L 3 \/ﬁ [ (@+a),> (b+b)] and in Case 3 72 (a)=—a.

2

If b << the inequality in Case 3 is strict because ¢ > T Y
a

Example 3.1. To illustrate, consider a firm whose loss and profit function is
known to belong to D, = D,([0, B]; i, o) for some unknown finite constant B,
which has to be determined. Suppose the firm operates on a coherent basis and
sets its required risk capital equal to CVaR. According to Theorem 3.1 the
maximum value of required CVaR equals

( 2

B e<—9%
ot + (B - py
1-¢ a 1
+ : <g<——
%ag({CVaRS =y e @ ot +(B-py TR
1 1
1158 o> —o,
( Bem e

where k = % is the coefficient of variation. Using the inequality (I1.5), which
guarantees the existence of random variables with parameters u, o, one must
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have 1 + :a’[i E;—'u <0, hence B> (1+k?) - u. If the firm desires to operate

at the lowest possible cost (for reasons of competitiveness), then the firm must
cut its loss and profit at B = (1+ k%) - u (buying reinsurance or/and financial
options) and the maximum required risk capital is equal to
2 1
(1 +k ) AR A W,
max{CVaR,[X]} =
XeD, : (1+1;8).,u, e >

1
1+ k%

This very simple formula might be useful in connection with the problem of
firm mergers discussed by Arztner(1999), p. 22. It is interesting and striking
to note that the amount (1+ k%) - 1 identifies with the Karlsruhe price intro-
duced by Heilmann(1987). It also identifies with the limiting CAPM fair pre-
mium in Hiirlimann(1994), Theorem 4.1, and for large k it is approximately
equal to the Hardy-Littlewood price introduced in Hiirlimann(1998a). Are these
relationships mere coincidence or does there exist a more theoretical explanation
for them?

4. KNOWN MEAN, VARIANCE, SKEWNESS AND KURTOSIS

Though it is possible to determine the Chebyshev-Markov and the stop-loss ordered
extremal random variables for the sets D,([4, B]; 4, ..., 4,) up to n =4 for arbi-
trary intervals [4, B], —ec £ A < B < e, which is done in Hiirlimann(1998b), we
will focus on the set D, := Dy((—o0, «0); s, 0, 7, ¥,) of all random variables defined
on (—oo, 00) with known mean u, variance ¢°, skewness y and kurtosis y,. This
does not only yield the simplest explicit analytical results, but is universally
applicable in the sense that any random variable can be thought of as defined
on (—eo, =), The possible loss in precision due to this restriction is compensated
by a higher mathematical tractability resulting in a wider practical usefulness.
The following auxiliary parameters will be used throughout:

A=2+y,-7, c:%(y—/4+y2), E=—c_1=%(y+/4+y2). @.1)

Their properties and role is described in the Appendix, Section II. The maximum
of the VaR and CVaR functionals are explicitly determined by the analytical
expressions in the next two results. As a corollary, we show that these expressions
coincide provided the loss tolerance level is sufficiently small (generalization of
Theorem 3.1).

Theorem 4.1. The maximum of VaR for the set D, equals

max{VaR.[X]}=u+x, o, 4.2)

XeD,
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where the (1 —¢)-quantile x, of the standardized Chebyshev-Markov maximal
distribution F." . (x) is obtained from the following equations:

. SN -
Casel: ¢<p()= 2[ \/‘_IT?Z]’ r(x,)=¢
Case2: ¢> p(c), ply(x,))=1-¢,
where the functions y(x) and p(x) are defined in (I1.12) and (I1.14) of the

Appendix.

Proof. The standardized Chebyshev-Markov maximal distribution functions
F . (x) are described in Table I11.2. Since lim p (v (x)) = 0 one must distinguish
between x, > ¢ (Case 1) and ¢ < x, <¢ (Case 2). For x> ¢ one notes that the
function p(x) in (11.14) is monotone decreasing. Therefore, the condition x, > ¢
for Case 1 is equivalent with the inequality ¢ = p(x,) < p(¢). Using (I1.13) one has

¢)= 1 C) = —1—— = l 1 — y :
q(©) = 0. Inserted in (I1.14) one gets p(©) 577 2 ( m) This shows

Case 1. Since w(¢) = ¢ one has p(y(¢)) = 1 — p(¢), hence F»..(x) is continuous
and strictly increasing. Case 2 follows immediately from Table II1.2. Q

Theorem 4.2. The maximum of CVaR for the set D, equals
= L (z®, :
max{CVaR [X]} = u+ {d(yg) w1 (=), d)(yg)} s, @3)

where the (1-¢)-quantile d(y,) of the standardized stop-loss ordered maximal
distribution F;.(x) is obtained from the following equations:

Casel: ¢<p@), pO)=s,
Case 2: &> p(0), p(y)=1-¢

with p(x) from (I11.14), d(x) from (IV.1), and (n%,,° d)(x) from Table IV.2.

Proof. The standardized stop-loss ordered maximal distribution function Fj,,
(d(x)) is described in Table IV.1. For x < ¢ the function p(x) is monotone
increasing, and for x >¢ it is monotone decreasing. Since p(c¢) =1 —p(¢) the dis-
tribution F,.. (d(x)) is continuous and strictly increasing. The formulas for
the (1-¢)-quantile d(y,) follow immediately. Setting Z = X, .., one obtains the

standardized maximal CVaR from (2.8) and (2.6), that is CVaR.[Z]=Q,(1 - ¢) +
% m,[0,(1-8)]=d@,) + % 7% (d(,)). The result follows by transformation

max

using the relation X=u +oZ. 0

Corollary 4.1. If the loss tolerance level satisfies the inequality ¢ < p(C), then the
maximum of VaR and CVaR coincide. More precisely, with p(x,) = ¢ one has

)x}leaDyi{VaRE (X1} = Ar,réal;i{CVa& [X]}=pu+x, 0, 4.4)
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Proof. Comparing Theorem 4.1 and 4.2 one notes that in Case 1 one has y, = x,.
But, from Table IV.2, one has in Case 1 that (7' o d)(x) = p(x) - (x - d(x)). Insert-
ing into (4.3) and using that p(y,) = ¢, one obtains (4.4). 0

Example 4.1. To get (4.4) it suffices to solve the biquadratic equation g(x)? +
Ax?—(52) A= 0. For a symmetric distribution with y =0 one gets the explicit

formula
x8=%_2—-‘/‘/y§+4(

If additionally y,= 0 (parameters of a normal distribution), one has x, = 4/ 23%.

55 (1,+3) - % -1 (4.5)

Remark 4.1. In Case 2 equality between (4.2) and (4.3) does not hold. With
¥. = w(x,) one obtains inserting the relation (o d)(x) = p(x) - (d(x) - x) — d(x)
from Table 1V.2 into (4.3):

max{CVaR [X]} = i~ <1_Tg)y/(x£)-a. 4.12)

For example, if y =y, =0, ¢ = 0.6, (Case 2), x = 1.15, ¢ = 0.25, one gets
= < =
)r(neali{VaRE [X]} =1.3425 )I(nEaD)i{CVaRE [X]} =1.3482.

One expects that strict inequality is always valid in Case 2.

5. THE MAXIMUM CVAR FOR PORTFOLIOS UNDER
INCOMPLETE INFORMATION

An important but complex problem is the evaluation of VaR and CVaR for
the aggregate loss of portfolios. Let X = (X, ..., X,) be a portfolio of multivari-
ate losses, where the marginal losses X; have distributions F(x), i =1, ..., n. Sup-
pose one is interested in the maximum VaR and CVaR for the aggregate loss
S(X)=X,+..+ X, whenever Xe D (F, ..., F,) belongs to the set of all multi-
variate losses with given marginals F(x). The evaluation of the maximum VaR
of a portfolio with fixed margins is related to Kolmogorov’s problem treated
among others in Makarov(1981), Riischendorf(1982), Frank et al.(1987),
Denuit et al.(1999), Durrleman et al.(2000), Luciano and Marena(2001), Cos-
sette et al.(2001), Embrechts et al.(2001). The determination of the maximum
CVaR of portfolios by fixed margins is much simpler. As shown in Hiirlimann
(2001b), Theorems 2.2 and 2.3 (also Dhaene et al.(2000), Corollary 6 and The-
orem 8), for absolutely continuous distributions one has

max ){CVaRg[S(X)]}:CVaRE[S(XC)]:i}CVaRS[Xi], (5.1
i=1

XeD, .. F,

where X¢ = (F7'(U), ..., F,;'(U)) e D(F,, ..., F,), with U uniformly distributed on
[0,1], is the portfolio with mutually comonotonic components. This result
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means that comonotonicity, which displays the strongest possible dependence
structure, corresponds to the riskiest portfolio under all portfolios with the same
marginal losses and requires the maximum CVaR under all these portfolios.
Furthermore, the maximum CVaR is an additive functional. In contrast to
this, the solution to Makarov’s problem shows that the maximum VaR is not
attained at X< = (F7!(U), ..., F,(U)). In the comonotonic situation one has only
the additive relation

VaRS[S(X”)] = i}VaRE[X,.]. (5.2)
i=1

The result (5.1) yields a simple recipe for the calculation of the maximum CVaR
for the aggregate loss of portfolios given incomplete information about the
marginal losses, say X; € Di, := D, ((—o0, 00); i, ..., pul), me{2,4}, i=1,..,n,
for which it is known that the correspondlng stop-loss ordered extremal ran-
dom variables X" B A, =ax Dave absolutely continuous distributions (Section 3 for
m = 2, Section 4, proof of Theorem 4.2 for m = 4),

Theorem 5.1. The maximum CVaR for the aggregate loss of a portfolio X =
X,...X)eD(F, .., F)with X; e D}, me {2,4}, is determined as follows:

max {CVa& [SOO} = Z max {CVa& [X.]}- (5.3)

XEDF,..F)X; €

6. SOME NUMERICAL COMPARISONS

It appears instructive to illustrate and compare results of VaR and CVaR cal-
culations at some typical situations of general interest.

Table 6.1 compares VaR and CVaR for two-parameter distributions with
fixed mean and variance by varying loss probability. Under these conditions
it is impossible to compare distributions in the stochastic dominance and stop-
loss order. As a consequence, Theorem 3.1 does not apply and there exists no
simple rule, which allows for comparison of VaR and CVaR values. Also, there
is no simple dependence on tail thickness and right-tail risk. If one identifies
higher right-tail risk with a higher-degree stop-loss order, as done in Hiirlimann
(2000), then it is possible to rank distributions with fixed mean and variance.
Up to the normal and the Benktander II distribution and some few exceptions,
which depend on the coefficient of variation, the distributions of Table 6.1
are ranked by increasing higher-degree stop-loss order (Hiirlimann(2000), The-
orem 4.1 and Proposition 5.3). One sees immediately that VaR and CVaR are
not consistent with an increase in right-tail risk. For ¢ > 0.05 the distributions
with highest right-tail risk require less VaR and CVaR than a normally distrib-
uted risk. Up to the normal, there is a big difference between VaR and CVaR,
and the results for VaR are quite counterintuitive. For example, if ¢ > 0.05 the
VaR of the Pareto is smaller than the VaR of the normal, though it is
well-known that the Pareto is able to model very dangerous insurance risks.
For ¢ £0.01 the CVaR of a normal distribution behaves more according to our
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intuition than VaR, but is not consistent with tail-thickness and right-tail risk,
even for small loss probabilities of the magnitude ¢ = 0.001.
TABLE 6.1

VaR AND CVAR COMPARISONS FOR TWO-PARAMETER DISTRIBUTIONS
WITH FIXED MEAN /4 = ] AND VARIANCE 02 =3 BY VARYING &

=010 £=0.05 &= 0.01 £ = 0.002 £ = 0.001

distribution

VaR CVvVaR VaR CVvVaR VvaR CVaR VvVaR CVaR VaR CVaR
normal 322 404 385 457 503 562 599 649 635 6.83
gamma 291 520 442 6.84 830 10.89 1246 1515 1430 17.02
inverse Gaussian 242 498 391 691 862 1239 14.61 18.88 1747 21.90
Weibull 2.67 505 411 682 835 11.73 13.67 17.66 1627 20.50
exp. inv. Gaussian 2.52 494 392 677 831 12.16 1431 19.15 17.38 22.65
log-normal 226 459 347 640 7.74 1253 14.81 2225 19.62 27.89
Benktander I1 235 468 358 648 785 1244 1471 21.56 18.69 26.71
Benktander I 233 459 351 635 7.62 1228 1444 21.88 18.55 27.57
Pareto 231 446 343 6.14 728 1192 13.87 21.81 18.00 28.00
para-logistic 205 387 292 531 6.13 1073 1229 21.25 1649 2845
inverse gamma 1.88 3.62 268 502 578 1043 11.94 2120 1621 28.67
log-logistic 1.87 347 261 475 542 977 11.11 1997 1511 27.17
inv. para-logistic 1.78 331 248 455 518 944 1072 19.50 14.65 26.64
inverse Weibull 1.71 3.04 237 415 498 8.50 10.37 17.40 14.22 23.68
log-Laplace 1.65 3.06 227 420 4.76 8.81 997 1845 13.71 25.37
maximum 6.20 8.55 18.23 39.69 55.74

Table 6.2 compares VaR, CVaR and the maximum CVaR for a log-normal
distribution by varying mean 4 and standard deviation & but fixed ¢ = 0.05.
The values of the skewness and kurtosis coeflicients are those of the log-normal
and given by

y=k-@G+k%), y,=k> (16 +15k* + 6k* + k%), k:%. (6.1)
The displayed distributions are able to model one-year accumulated returns of

equity indices in financial markets. Compared to the obtained exact value, the
maximum CVaR contains a relatively small implicit margin.

TABLE 6.2

VAR AND CVAR COMPARISONS FOR A LOG-NORMAL DISTRIBUTION WITH FIXED € = 0.05

H G VaR CVaR max{CVaR [X]}  implicit margin (in %)
Xe Dy
1.10 0.15 1.363 1.444 1.501 39
0.20 1.456 1.574 1.651 49
0.25 1.552 1.710 1.810 5.9
0.30 1.649 1.854 1.981 6.9
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Y7 c VaR CVaR }Ynal))( {CVaR [X]} implicit margin (in %)
€ Dy

1.15 0.15 1.412 1.492 1.548 3.7
0.20 1.505 1.621 1.698 4.7
0.25 1.600 1.756 1.855 5.6
0.30 1.697 1.898 2.024 6.6

1.20 0.15 1.461 1.541 1.598 3.7
0.20 1.554 1.669 1.745 4.6
0.25 1.649 1.803 1.901 5.5
0.30 1.745 1.943 2.067 6.4

1.25 0.15 1.511 1.590 1.646 36
0.20 1.603 1.716 1.792 4.4
0.25 1.698 1.849 1.947 53
0.30 1.794 1.988 2.110 6.1

The comparisons for one-year accumulated returns of equity indices is pursued
in Table 6.3. By fixed ¢ = 0.05, time-dependent comparisons are made between
VaR, CVaR and the maximum CVaR assuming respectively a normal and a
log-normal distribution with time dependent mean and standard deviation
described by

1 =01.08), o=/ "~1-pu, p= /1n{1+(ﬁ%8)2}=0.184. (6.2)

This corresponds to a Black-Scholes model, whose log-normal distribution
has time-dependent parameters [ln(1.08) -1 2] -tand B- /1, where 1.08 is the
one-year accumulated risk-free rate and § = 0.184 is the one-year volatility.
In the long-term, the VaR and especially the CVaR are underestimated using a
normal assumption. The maximum CVaR is calculated using the skewness and
kurtosis of a log-normal. The implicit margin contained in this distribution-free
upper bound increases over the time, which agrees with our intuition of increas-
ing uncertainty by increasing time horizon.

TABLE 6.3

TIME-DEPENDENT VAR AND CVAR COMPARISONS
FOR A NORMAL AND LOG-NORMAL DISTRIBUTION WITH FIXED € = 0.05

normal log-normal

VaR CVaR VaR Cvar  max{CVaR[X]}  implicit margin

Xe D, (in %)
1 1.409 1.493 1.436 1.555 1.632 5.0
2 1.673 1.802 1.729 1.936 2.066 6.7
3 1.936 2.107 2.021 2.325 2.516 8.2
4 2.211 2.427 2.327 2.740 3.007 9.7
5 2.505 2.768 2.654 3.190 3.550 11.3
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normal log-normal

VaR CVaR VaR CVaR max {CVaR [X]} implicit margin
XeD,

@in %)
6 2.823 3.137 3.006 3.683 4.155 12.8
7 3.168 3.538 3.387 4.224 4.832 14.4
8 3.545 3.975 3.800 4.820 5.590 16.0
9 3.957 4.454 4.250 5.477 6.438 17.6
10 4.408 4.979 4.741 6.201 7.385 19.1

Next, Table 6.4 displays the dependence of VaR, CVaR and the maximum
CVaR upon the kurtosis parameter for two important symmetric distributions,
namely the normal inverted gamma mixture and the symmetric double Weibull
distribution recently considered in Hiirlimann(2001c). The first distribution is
conditional on 6 normally distributed with mean x and variance 0!, where 6
follows a conjugate gamma prior I'(3 ¢2, ), a > 1. The corresponding density,
distribution and stop-loss transform are described by the formulas

- s c e -
g ey 0"

l1+ﬁ 2’ ;Z(X ﬂ)ﬂ) >J leua

[1 ﬂ 27 92(;#__)_Z>:|5 xsﬂ’

+e—p)

'@ ®)
I'a+b)’

F() = (6.3)

w00 = SEETB - (1- Feo),

where ¢ =o- /2 (x—1), o the standard deviation, and f(a, b; x) is a beta density
with parameters a and b. The kurtosis exists only for & > 2 and is given by

yy= =2 a>2. (6.4)

The standardized distribution of 7, = /2 (@ —1) - ( X ;'“) is a generalized Student t

and converges for a@ — o to a standard normal distribution with kurtosis y, = 0.
The density, distribution and stop-loss transform of a standardized symmetric
double Weibull distribution with parameter « > 0 are given by the formulas

f&) = $ad 21 exp(~,]21%), A=T(1+2)%,
%exp(—ia|z|“), z<0,
1—%exp(-/la|z|"), z=0,

7@ = 1A T+ ) {I-T 1+ 44,1214} - 2 (1- Fe)),

F@) = (6.5)
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where I'(f; x) is a gamma distribution with shape parameter . The kurtosis
of this distribution, which equals

Y2 = r(1_+g)2 -3, (6.6)
r(1+ )

covers the whole range [-2, «) of possible values. The dependence of VaR
upon the kurtosis is counterintuitive. Leptokurtic distributions require a decreas-
ing VaR by increasing kurtosis. On the other hand, the dependence of CVaR
behaves in accordance with our intuition of higher risk by increasing kurtosis.
The implicit margin in the maximum CVaR is moderate but increases by increas-
ing kurtosis. It is smaller for the symmetric double Weibull model.

TABLE 6.4

VAR AND CVAR DEPENDENCE ON KURTOSIS BY FIXED £ =0.05, £t =1.08, 0 =0.2

distribution kurtosis VaR CVvaR ;nax {CV“RE {x ]} “nph?lt margi
€D, (in %)
symmetric NIG 12 1.388 1.531 1.754 14.6
6 1.392 1.528 1.702 11.4
1.397 1.523 1.657 8.8
1 1.404 1.511 1.609 6.5
0.5 1.407 1.504 1.593 59
normal 0 1.409 1.493 1.573 54
symmetric DW 0 1.402 1.489 1.573 5.6
0.5 1.406 1.505 1.593 59
1 1.407 1.517 1.609 6.1
3 1.403 1.547 1.657 7.1
6 1.397 1.568 1.702 8.5
12 1.378 1.582 1.754 10.8

Finally, in Table 6.5 we compare VaR, CVaR and maximum CVaR for a nor-
mal and gamma approximation to a classical compound Poisson distribution,
which models the aggregate loss of an insurance portfolio. If the expected
value of the individual claims is one unit, and if 1 represents the expected
number of claims of the insurance portfolio, then the relevant parameters of
the gamma approximation are for some constant ¢ equal to

u=2, k= —/07 y =2k, y,=6k". (6.7)

The constant ¢ = 1.85 in our illustration corresponds to the risk of a typical
life insurance portfolio. For A4 < 1000 the difference between VaR and CVaR
is not negligible. The normal approximation underestimates systematically VaR
and CVaR of the gamma model, especially for small values of A. The maximum
CVaR for the set D, for large A is quite close to the CVaR of the gamma, while
for small A it is close to the maximum CVaR for the set D,.
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TABLE 6.5

VAR AND CVAR COMPARISONS FOR A GAMMA AND A NORMAL BY FIXED & = (.05

VaR CVaR

2 max {CVaR [X]} mplicit max {CVaR [X]}
normal gamma normal gamma margin X< P
1 4.04 4.61 4.82 7.31 9.00 23.1 9.06
2 6.30 7.27 7.40 10.33 12.34 19.4 13.40
5 11.80 13.14 13.53 16.87 19.11 133 23.03
10 19.62 21.15 22.07 25.58 28.17 10.1 35.50
20 33.61 35.26 37.07 40.70 43.95 8.0 56.06
50 71.52 73.28 76.98 80.72 85.59 6.0 107.0
100 130.4 1322 138.2 141.9 148.8 4.9 180.6
200 243.0 2449 254.0 257.8 267.6 3.8 314.0
500 568.0 569.9 585.3 589.2 605.0 2.7 680.3
1000 1096 1098 1121 1125 1147 2.0 1255
10000 10304 10306 10382 10385 10459 0.7 10806
100000 100962 100964 101207 101211 101446 0.2 102550

Appendix: Stochastic and stop-loss ordered bounds by known moments to order
four

To construct the stochastic and stop-loss ordered maximal distribution functions
F® .(x) and F,., (x) for the moments spaces D, := D,([4, BJ; i1, ..., it,), it is neces-

) L B
sary to solve the optimization problems Arpeagi{E [I[x’ ) (X)]} and )r{neag:{E [((X-x),]},

where I|, ..(z) is the Heaviside indicator function, defined to be 0 if z < x and
1 otherwise. Both belong to the class of extremal problems g(nan{E /1),
€0,

where f(x) is a piecewise linear function, and which have been extensively stud-
ied in Hiirlimann(1997a/b/98b). A general approach to solve these problems
is the well-known polynomial majorant method, which consists to bound f(x)
by some polynomial g(x) of degree less or equal to n, and to construct a finite
atomic random variable Z € D, such that all atoms cof f(Z) are simultaneously
atoms of ¢(Z). Indeed, suppose g(x) and Z have been found such that Pr(¢(Z)
= f(Z))=1 and ¢(x) = f(x) for all x €[4, B]. Then the expected value E[q(Z)]
= E[f(Z)] depends only on the first moments y;, ..., &4,, and thus necessarily Z
maximizes E[f(X)] over all X € D,. A brief outline of the Appendix follows.

In Section I we derive in a first step finite exhaustive lists of all polynomi-
als of a given degree, which can be used to construct polynomial majorants for
f(x)= I, (x) and f(x) = (x—d),. A second step in the construction of best
bounds for expected values by given range and known moments of higher
order consists in a detailed analysis of the algebraic moment problem for finite
atomic random variables. The most useful results are based on the explicit ana-
Iytical structure of bi- and triatomic random variables by given range and known
moments up to order four as presented in Section II. Then, in Section 111 we
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derive the stochastic ordered bounds and in Section IV the corresponding stop-
loss ordered bounds.

I. Polynomial majorants for the Heaviside indicator and the stop-loss functions

The Heaviside indicator function f(x) = I, ..,(x) and the stop-loss function f(x)
= (x—d),, d the deductible, belong to the class of piecewise linear functions f(x)
on an interval I = [a, b], —o0 < @ < b < oo. For these simple but most important
prototypes, one can decompose [ into two disjoint adjacent pieces such that
I=1, UL, and the function of interest is a linear function f(x) = £,(x)=a; + fix
on each piece I, i = 1, 2. If g(x) is a polynomial of degree n >2, then g(x) — f(x)
is a piecewise polynomial function of degree n, which is denoted by Q(x) and
which coincides on I, with the polynomial Q;(x) = g(x) — £,(x) of degree n. For
the construction of polynomial majorants ¢(x) > f(x) on I, one can restrict
the attention to finite atomic random variables X with support {x,=a, x|, ...,
X,, X,+1 = b} c I such that Pr(g(X) = f(X)) (e.g. Karlin and Studden(1966),
Theorem XI1.2.1). By convention, if @ = —oo then x, = a is removed from the
support and if b = oo then x,,, = b is removed. In general, the fact that x, = a
or/and x,,, = b does no belong to the support of X is technically achieved by
setting the corresponding probabilities equal to zero. If an atom of X, say x;,
is an interior point of some 7, then it must be a double zero of Q;(x). Indeed
q(x) 2 £,(x) for x €1, is only fulfilled if the line £;(x) is tangent to g(x) at x,
that is ¢'(x;) = £;(x;). From this simple observation, one derives finite exhaus-
tive lists of all polynomials of a given degree, which are used to construct poly-
nomial majorants (Tables I.1 and 1.2).

Consider first the indicator function f(x) = [ ..,(x). We decompose the inter-
val I = [a, b] into the pieces I; = [qa, 1], I, = [, b], such that f(x) = £,(x) =0 on [,
and f(x)= £,(x)=1 on I, For a fixed me {1, ..., r} the atom x,, =t belongs
always to the support of a maximizing finite atomic random variable X. We
show that a polynomial majorant of fixed degree is always among the finite
many possibilities listed in Table L.1.

Proposition LI.1. Let {x, = a, x|, ..., X, =, ..., X,, X,+1 = b}, x, < x, for r <,
me{l, ..., r}, be the support of a random variable X on /, and let g(x) be a
polynomial majorant such that Pr(g(X) = f(X)) =1 and ¢(x) = f(x) on I. Then
q(x) is uniquely determined by the conditions in Table I.1.

TABLE 1.1

POLYNOMIAL MAJORANTS FOR THE HEAVISIDE INDICATOR FUNCTION

case support with x,, = ¢ Qi(x)=0,j=1,2 0i(x)=0,j=1,2 deg ¢(x)
) {a, x(, ..., x,, b} i=0,..,r+1 i#0,mr+1 2r

(2) {a, x1, ..., x,} i=0,..,r i#z0,m 2r—1
3) {x1y .0 X, b} i=1,.,r+l izmr+1 2r-1
4) {X1 oo X} i=1,..,r izm 2r-2
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Proof. Restrict the attention to case(1) (the other cases are shown similarly).
One must show the existence of a unique polynomial ¢(x) of degree n=2r as
in Figure I.1.

y I[l,w)('x)
Pt 27T~
TN //' \\\Yz/ N
/ \
7 N\
/ \
/
o~ /
PR R e ‘\\\ //
v ~e ~_ >
e
IXp=a X Xt X = Xy X, X, =b x

Figure I.1: Polynomial majorant g(x) > I, ..,(x), x€la,b]

Consider the unique polynomial g(x) of degree n = 2r such that

0, i=0,...m-1
qx;) = . s q'(x)=0, i#0,mr+l1.
1, i=m,., r+l

By definition of Q;(x), j=1, 2, the conditions of Table 1.1 under case (1) are
fulfilled. By the theorem of Rolle, the derivative ¢’(x) vanishes at least once
on each of the r subintervals (x;, x;.1),0 <i<r, i # m—1. In fact one has
exactly (r— 1)+ r =n—1 zeros of ¢'(x) on I. Furthermore, one has ¢’(x) > 0 on
(X1, Xm). More precisely, one has ¢’(x) > 0 on (x,,_,, x,,) because g(x,, ;)
= 0<gq(x,) = 1. It follows that ¢(x) is local minimal at all x;, i #0, m, r+1,
and local maximal between each consecutive minima, as well as in the inter-
vals (a, x;) and (x,, b). These properties imply the inequality g(x) > I, m)(x)
x €[a, b].

Consider now the stop-loss function f(x) = (x —d),, d €[a, b} the deductlble,
I,=[a, d], I,=[d, b]. Then the stop-loss function f(x) may be viewed as the
piecewise linear function defined by f(x) = £(x)=0on I}, f(x)= L(x)=x—d
on I,. By convention me {1, ..., r} is fixed such that x,, < d < x,,.{. A polyno-
mial majorant of fixed degree for f(x) belongs always to one of the finitely
many types listed in Table 1.2 below. The notations g(x; £, d) and Q,(x; ¢, d)
mean that these functions depend upon the parameter vector & = (xy, ..., X,+,)
and the deductible d.

Proposition 1.2. Let {xy=a, x, ..., x,, X,+; = b}, x,<x, for r<s, x,,<d< X4,
be the ordered support of a random variable X defined on I, and let g(x) be
a polynomial majorant such that Pr(g(X) =f(X)) =1 and ¢(x) = f(x) on I
Then g(x) is a polynomial uniquely determined by the conditions in Table 1.2.
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TABLE 1.2

253

POLYNOMIAL MAJORANTS FOR THE STOP-LOSS FUNCTION

case support Qi(x)=0, Q/(x)=0, deg g(x) condition on

X, <d<x,., j=12 j=12 deductible 4
(la) {a,x;,..x,b} i=0,.,r+1 i=1,...,r-1 2r 05(x,; E,d)=0
by {a,xyy.,x,b}y i=0,..,r+1 i=1,..,r 2r+1 0,p; &, d)= 0, ye(—o0,4d]
(ley  {a,xp,...,x,b} i=0,..,r+1 i=1,.,r 2r+1 0-(z; &, d)= 0, z€[b, )
(2a) {x),...,x, b} i=1,.,r+1 i=1,..,r 2r Os(z;&,d)= 0, z€[b, )
@by {x,....x, b} i=1l.,r+l  i=2,..,r 2r—1 O{(x;;&,d)=0,
(3a) {a,xy..,x} i=0,..,r i=1,..,r 2r 0:(3; &, d)=0, ye(—oo,4d]
3b)  {a,x,..,x,} i=0,..,r i=1,..,r-1 2r-1 Qx5 &, =0
4a) {x,..,x} i=1,..,r i=1,..,r=1 2r-2 0,(x;E,d)=0
(4b)  {x,..,x} i=1,..,r i=1,..,r 2r—1 0,(y; &, d)= 0, ye(—o0,q]
4oy  {x,...x} i=1,..,r i=1,..,r 2r—-1 Q:(z:&,d)= 0, z€[b, )

Proof. There are essentially two typical cases for which a proof is required, say
(1a) and (1b). The other cases are shown by the same method and omitted for
this reason. In case (1a) one shows the existence of a unique polynomial g(x)
of degree n=2r as in Figure 1.2. Consider the unique polynomial ¢(x) of degree
n=2r such that

0, i=0,....m 0, i=1,....m
q{x;) = . , q’(xi): . .
x—d, i=m+1,..,r+1 1, i=m+1,..,r—1
y=(x_d)+
PSRN /,“\\\
4 \\ // >
/. pred SN
// Xx,=a x X, d x,, .. x x,=b x

Figure 1.2: Polynomial majorant ¢(x) = (x —d),, x €[a, b], case (la).

By definition of Q,(x), j=1,2, the conditions of Table 1.2 under case (1a) are
fulfilled. In order that g(x) 2 (x —d),, the line £,(x) = x — d must be tangent of
g(x) at the remaining atom x = x,, that is ¢'(x,) =1 or Q3(x,; £, d)=0. This
condition is an implicit equation for the deductible d and restricts its range of
variation. The theorem of Rolle implies the following facts:
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(1)  Q1(x)=¢'(x) vanishes at least once on each of the m subintervals (x;, x;1;),
i=1,..,m.

(1) Q5(x)=q'(x)—1 vanishes at least once on each of the r—m subintervals,
(X, Xiep), i=m+1, ., 1.

(iii) Q1(x)=0 on (x,, d] and Q3(x)#0 on [d4, x,,+;). More precisely one has
Qi(x)>0 on (x,, d] since Q;(x,,) =0 < Qy(x,+1) = X+~ d, and Q5(x) <0
on [d7 xm+1) SinCC QZ(xm) = d_xm >0= QZ(xm+l)'

In particular there are exactly n— 1 zeros of ¢'(x) on I. It follows that Q,(x) is
local minimal at all x;, i =1, ..., m, and local maximal between each consecu-
tive minima, as well as in the interval (a, x;). Similarly @,(x) is local minimal
atall x;, i =m +1, ..., r, and local maximal between each consecutive minima,
as well as in the interval (x,, b). These properties imply that Q;(x) =20 on I,
and Q,(x) = 0 on I,, which together means that g(x) 2 (x—d), on I, UL, =1
In case (1b) one shows the existence of a unique polynomial g(x) of degree
n=2r+1 as in Figure 1.3, where y is a further zero of g(x) in (—o0, al].

y=(x-d),

N
~
~

}‘\.._—

Figure 1.3: Polynomial majorant ¢(x) = (x —d)., x €[a, b], case (1b)

Consider the unique polynomial ¢(x) of degree n=2r + 1 such that
0, i=0,....m

x—d, i=m+1,.,r+l

0, i=1,..,m

x.) = ’ )
() 1, i=m+1,..r

; q’(x,»)={

By definition of Q;(x), j= 1,2, the conditions of Table I.2 under case (1b) are ful-
filled. In order that ¢(x) is a polynomial of odd degree, there must exist a further
zero y of g(x) in (—eo, a], which yields the implicit equation Q,(y; &, d) =0, for
the deductible d. The rest of the proof follows similarly to case (1a). 0

I1. Structure of finite atomic random variables by known moments to order four

The algebraic-analytical structure of the required sets of finite atomic random
variables by given range and known moments to order four is implicit in Jansen
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et al.(1986), Section 2. However, by considering without loss of generality only
standardized random variables, much calculation can been simplified and some
results find improvement. Our derivation uses the solution of the algebraic
moment problem by Mammana(1954), which itself is a direct application of
the mathematical theory of orthogonal polynomials.

Consider a real random variable X with an infinite number of non-zero
finite moments y, = E[X*], k=0,1,2,... By convention one sets po(x) =g = 1.

Definition I1.1. The orthogonal polynomial of degree n > 1 with respect to the
moment structure {y;},-o. 2,1, also called orthogonal polynomial with respect
to X, is the unique monic polynomial p,(x) of degree n, which satisfies the »
linear expected value equations

E[p,,(X)~X"j:o, i=0,1,..,n—-1 (1L.1)

Note that the terminology “orthogonal” refers to the scalar product induced
by the expectation operator (X, Y) = E[XY], where X, Y are random variables
for which this quantity exists. The orthogonal polynomials are also called clas-
sical Chebyshev polynomials.

Given the first 2n -~ 1 moments of some real random variable X, the alge-
braic moment problem of order n (AMP(n)) asks for the existence and con-
struction of a finite atomic random variable with ordered support {xi, ..., x,,}
such that x, < x, <... < x,, and probabilities {pi, ..., p,} such that the system of
non-linear equations

L pxE =, k=0,..2n-1, (I1.2)

is solvable. For computational purposes it suffices to know that if a solution
exists, then the atoms of the random variable solving AMP(n) must be iden-
tical with the distinct real zeros of the orthogonal polynomial of degree n, as
shown by the following precise recipe.

Lemma I1.1. (Mammana(1954)) Given are positive numbers p,, ..., p, and real
distinct numbers x; < x; < ... < x,, such that the system AMP(n) is solvable.
Then the x;’s are the distinct real zeros of the orthogonal polynomial of degree
n, that is p,(x)=0,i=1,...,n, and

p=T1(x~x) " E|T1(Z-x)} i=Ln, (IL.3)
J#i J#i
where Z denotes the discrete random variable with support {xi, ..., x,} and

probabilities {p, ..., p,} defined by AMP(n).

As a next preliminary step, it is important to state the conditions under which
there exist random variables on a finite interval with given moments to order
four (e.g. Jansen et al.(1986)). A recent general proof for the existence of
moment spaces, or equivalently for the existence of random variables with

https://doi.org/10.2143/AST.32.2.1028 Published online by Cambridge University Press


https://doi.org/10.2143/AST.32.2.1028

256 WERNER HURLIMANN

known moments up to a given order, is in De Vylder(1996), part II, Chapter 3.3.
From now on the attention is restricted to the set D(a, b) of all standard
random variables with support [a, b], —0 < a < b < e, mean u = 0 and standard
deviation ¢ = 1.

Lemma I1.2. (Moment inequalities) There exist non-degenerate standard ran-

dom variables in D(g, b) if and only if the following two conditions hold:
a<0<p (inequalities on the mean y = 0) (1L.4)
1+ ab< 0 (inequality on the variance o2 = 1) (IL.5)

There exist non-degenerate standard random variables in D (~oo, o) with given
moments to order four if and only if the following inequality holds:

A=y,—y"+22>0, (IL6)

where for X € D(—oo, ) the parameter y = E[X?] denotes the skewness and y, =
E[X*]-3 denotes the kurtosis.

Proof. The first two inequalities follow by taking expectations in the following
random inequalities, which are valid with probability one for all X e D(a, b):

a< X<b, (I1.4)
(b-X)(X—a) 20, (11.5))

where for a non-degenerate random variable, the inequalities in (I1.4°) must be
strict. The inequality (I1.6) follows from the inequality

(X—c- (X202 20, (I1.6")
wherec:%(y—/4+y2), E=—c‘1=%(y+/4+y2). 0

Remark I1.1. The inequality (I1.6) between skewness and kurtosis has been
known for a long time (e.g. Pearson(1916), Wilkins(1944) and Guiard(1980)).

Theorem 11.1. (Characterization of standard biatomic random variables on [a, b])
Suppose that a <0 <b and 1 + ab < 0. The support {x;, x,}, x; < x, and proba-
bilities {p,, p,} of a biatomic standard random variables X € D(a, b) are uniquely
determined by

x,= x€[a,b), x,=x€[a,b], (I1.7)
p=rts p=is (L)
1+x 2 1+x

where the upper bar denotes a strictly increasing involution function such that
X =x, whichmaps x #0toX =~1/x.
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Proof. By Lemma II.2 the conditions (I1.4) and (II.5) are required. By Lemma II.1
(solution of AMP(2)) the atoms x;, x, are the distinct real zeros of the stan-
dard quadratic orthogonal polynomial p,(x) = x2—yx —1, where y is a variable
skewness parameter. The Vieta formulas imply the relations x; + x, =y, x;x,=-1.
Setting x; = x one must have x, =X and x <0< X. If x € (b, 0) then X € (b, =) and
the support {x, X} is not feasible. Therefore one must have x (a,b), which
determines uniquely the support {x, X}. The formulas (II.8) for the probabil-
ities follows from (IL.3), that is from

_ X=X _ ol X=x
Pl—E[}__}—Z], Pz’E[x—x]~ 0

Proposition I1.2. (Characterization of standard triatomic random variables on
(—eo, %) with skewness y and kurtosis y,) Suppose that A=y,-y2+2 2> 0. The
support {xi, X,, X3}, X; < X, < x5, and probabilities {p,, p,, p;} of a triatomic
random variable X € D(—oo, o) with skewness y and kurtosis y,, are uniquely
determined as follows:

X =x€ (~xo,¢c), x,=p(xyk)elcc], x=ykX) e[t,x), (1.9)
pi:p(xi)’ i=1,2939 (IIIO)

where ¢ = %(y - /4+ yz), t=—-c'= %(y +/4+ yz), and the functions ¢ (u, v),
v (u), and p(u) are defined by

—U=-v
ply) =T (L.11)

146 - /4@ +49@)B@)
v =27 q@) :

(11.12)

AW)=yq)+Au, B)=A+q), q(u)=1+yu—u2, (I1.13)

A
g+ A +u?)

p)= (I11.14)

Furthermore, the function y (1) defines a strictly increasing involution such
that w2 (u) = u, which maps the interval (- o, ¢] to the interval [, o).

Proof. By Lemma II.2 the condition (I1.6) is required. By Lemma 1.1 (solution
of AMP(3)) the atoms are the distinct real zeros of the standard cubic orthog-
onal polynomial of degree three p;(x), which satisfies the three linear expected
value equations

E[X'p,0]|=0, i=0,1,2. (IL15)
The condition

E[p3(X)]:E[(X—xl)(X—x2)(X—x3)]=y—(x1+x2+x3)—x1x2x3=0
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implies the relationship x, = ¢(x,, x3). Inserted into the condition
E[Xp,(X)]=E[X(X = x)(X = x,)(X = x3)] =y, + 3= (x;+ 2, +x;)p+
(2, + X, x5+ %, %3) =0,

one obtains that x; is solution of the quadratic equation g(x;)x3—A4(x;)x; -
B(x)) =0, hence x; = w(x;) as defined in (I1.9). The probabilities take the values

b= 1+x, x, )= —(1+x,x3) b= 1+x,x,
: (xz—xl)(XB_xl), g (x2—x1)(x3—x2)’ ; (x3—x1)(x3——x2)

. (IL16)

Since x, < x, < x; one must have 1+ x,x; 20, 1+ x;x; €0, 1+ x,x, > 0. Since
x1x3 < —1 one must have x; <0 < x3, hence also X; <0 <X,. It follows that

% (l+xx)=%-x,<0,

X+ xx)=%—x20,

X1+ xx)=X~x,20,
which implies the inequalities x; < X; < 0, X3 < X, < X,. Since x, = ¢(x, x;) the
second inequalities in (I1.19) are equivalent with x3—yx;—120, x{—yx;—~12>0.
Since x; <0 < x; one must have (x,, x;) €(—e, ] x[C, =) and x, e[¢, ¢]. This

shows (I1.9). To obtain (I1.10), note that x, = ¢(x;, w(x,)) and x, = w(x,) are
solutions of the quadratic equation g(x,)x*—A4(x,)x — B(x;) = 0. One calculates

A B
(Xz_x1)(x3_x1)=xlz_(x2+x3)x1+x2x3:x12— Q((;Cll)) T q((;cll)) )

_q(x1)2+A(l+x12)
q(x)

A
N 1+x2x3=——m.

Inserted into (I1.16) one gets p; = p(x;). Making cyclic permutations of x,, x,
X3 one obtains p; = p(x), i =2,3. ¢

ITII. Stochastic ordered bounds

Based on the preceding two Sections, we give an explicit proof of how to con-
struct the stochastic ordered maximal random variables in the situations applied
in the present paper.

Theorem III.1. The distribution function of the standardized (Chebyschev-
Markov) stochastic ordered maximal random variable X2, for the set D, :=
Dy([a, b]; u =0, o =1) is described in Table 111.1.

Proof. By Table 1.1, quadratic polynomial majorants ¢,(z) for the Heaviside

indicator function I, .., are obtained either for ordered biatomic supports
{x, X}, {X, x} (case (4)) or for a triatomic support {a, x, b} (case (1)). With
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Proposition I1.1, one has necessarily x € [a, b] if {x, X} is the extremal support,
and x €[q, b] if {X, x} is the extremal support. Similarly, the triatomic support
{a, x, b} is only feasible if x €[b,d]. These supports define standard bi- and tri-
atomic random variables Z, such that Pr(q,(Z,) = I .,(Z,)) = 1. The displayed
extremal values follow from the calculation of F{?,..(x) = 1 — E[I}, .(Z,)] for
each of the three cases.

TABLE III.1

STOCHASTIC ORDERED MAXIMAL STANDARD DISTRIBUTION FOR THE SET D,

condition F@ . (x) extremal support of Z,
as<x<h 0 {x, X}
T _ 1+ bx
hb<x<ag F-ax—a {a, x, b}
2

<x<b X X, X
a=x 1+ x7 %}
x=b 1

Theorem II1.2. The distribution function of the standardized (Chebyschev-
Markov) stochastic ordered maximal random variable X, for the set D,:=

Dy((—o0,0); £ =0, a=1,y,y,) is described in Table I11.2 with the notations of
Proposition 11.2.

TABLE II1.2

STOCHASTIC ORDERED MAXIMAL STANDARD DISTRIBUTION FOR THE SET D,

condition FY . (x) extremal support of Z,
x<c 0 {x, o(x, w(x), w(x)}
c<x<?e p(y(x)) {w(x), x, o(x, w(x))}
xX2C 1-p(x) {o(x, w(x)), y(x), x}

Proof. By Table 1.1, case (4), and Proposition 11.2, one observes that biqua-
dratic polynomial majorants ¢,(z) = I, ..,(z) can only be obtained at the ordered
extremal supports displayed in Table IT1.2. These supports define standard tri-
atomic random variables Z, such that Pr(¢,(Z,) = I «(Z,)) = 1. The displayed
extremal values follow from the calculation of F{),..(x) =1~ E[I}, .(Z,)] for
each of the three cases. 0

IV. Stop-loss ordered bounds

The present Section contains an explicit proof of how to construct the stop-loss
ordered maximal random variables in the situations applied in the present paper.
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Theorem IV.1. The maximal stop-loss transform n(z) @)= max {E (X—-d) ]} for

the set D,:= D,([a,b]; =0, 0 =1) and the distribution functlon FP . (x) of
the corresponding standardlzed stop-loss ordered maximal random variable

X are described in Table IV.1.

TABLE IV.1

MAXIMAL STOP-LOSS TRANSFORM AND STOP-LOSS ORDERED MAXIMAL DISTRIBUTION FOR D,

condition F2o(d) 3 (d) extremal support

_ 1 1+ad _
a<d<i@+a o (—a)H—‘;2 {a,a}
la+ay<d<ip+h) %[1+ d 2] (1+d-d) {a-/1+d, a+ 1+

J1+d
2

lep+B)y<d<b b b-d B.b
F6+5) .y = {B.b}
d=b 1 0

Proof. The distribution function Fy(x) and the stop-loss transform ny(x) of a
random variable X are related by the relationship Fy (x) =1+ ny'(x). There-
fore, it suffices to determine the maximal stop-loss transform. By Table 1.2
quadratic polynomial majorants ¢(X) 2 (X —d),, d the deductible of the stop-
loss function, can only be obtained at diatomic supports of the forms {a, a}
(case (3a), {x X} (case (4a)) or {b, b} (case (2a)).

Case (1): extremal support {a, a}
The unique quadratic polynomial ¢(X) = ¢(X; a, @, d) such that g(a) =0, ¢@) =
a-d, qg'(@ =1, is given by

d-aX-a’

gX) = +(X~-d).
@-ay
Solving the condition Q,(x;a, a,d)=q(x;a,a,d)=0, x <a, one finds for the
deductible
_ d*—ax
T 2a-a-x’ x=a,

which implies the desired results (note that for x — —oo one has d — « and for
X =a one has d:%(a+a)).

Case (2): extremal support {x, X}

By Proposition II.1 the ordered diatomic support {x, X} is feasible exactly
when x e[a, b]. The unique quadratic polynomial ¢(X) = ¢(X; x, X, d) such that
g(x)=4q'(x) =0, is given by
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_ G- -’
Solving the condition Q,(X; x, X, d) = ¢'(X)— 1= 0, one finds
d= %(x+f), a<x<h,

from which all statements follow.

Case (3): extremal support {b, b} B _ B

The unique quadratic polynomial ¢(X) = g(X; b, b, d) such that g(b) = q'(b) =0,
q(b) = b—d, is given by

(b - &)X - by’

q(X) = (b _ 5)2

Solving the condition Q,(x; b, b, d) = g(x)—(x—d)=0, x > b one finds

= Mj_ >
d= x+b-2b x2b,
and the stated results are immediately checked. 0

Theorem IV.2. The maximal stop-loss transform n;‘gx(d) = ;na[);{E [(X -d )+]} for
€

the set Dy := Dy((—o0,0); £ =0, ¢ = 1,7, y,) and the distribution function F® (@

of the corresponding standardized stop-loss ordered maximal random variable

X .. are implicitly described in Table IV.2 using the “deductible” function

1 {pey®@)-x} {x+y )} +2x {y &) -x}

2 {o(x. ¥y ())—x}+{y ) —x} ’

and the notations introduced in Proposition 11.2.

d(x) = (IV.1)

TABLE IV.2

MAXIMAL STOP-LOSS TRANSFORM AND STOP-LOSS ORDERED MAXIMAL DISTRIBUTION FOR D,

condition F® . (d(x)) 7 (d(x)) extremal support of Zy,,
x<c p(x) p(x) - (d(x)—x)—d(x) {x, o(x, w(x), y(x)}
x2c 1-p(x) p(x)" (x—d(x)) {o(x, y(x)), y(x), x}

Proof. Applying the chain rule of differential calculus to the identity Fy(x) =
1+ 7,/ (x) between the distribution function and stop-loss transform of a ran-
dom variable X, one obtains the relationship
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nod) (x
F, @d()=1+ %)(—). (IvV2)
Therefore, it suffices to determine the maximal stop-loss transform. From
Table 1.2, case (4a), and Proposition 11.2, it follows that biquadratic polyno-
mial majorants g(X) 2 (X -d), can only be constructed for supports contain-
ing the three atoms x, p(x, w(x)), w(x). Set f(x) = (x—d), and let us partition
the interval I = (—eo, o0} in the two pieces I} = (-0, d], I, = (d, =] such that f(x)
=4,(x)=0on I, f(x) = £,(x) = x—d on I,. The piecewise biquadratic function
Q(x) = g(x)—f(x) coincides on I; with the polynomial Q;(x) = g(x)-£;(x),
i = 1,2. Furthermore, let u < v < w represent zeros of Q,(x), i =1,2. Two cases
can occur.

Case (1): uel, is a double zero of Q,(x), v, wel, are double zeros of Q,(x)
as in the following figure:

Suppose first that u is a simple zero. Since a biquadratic polynomial is uniquely
determined by five conditions, there exists a unique ¢{(x) with the required con-
ditions, namely

0, - 4,®)

g(x) = R T— (=) (e~ w) + 0, (x).

Solving the additional Q(u) =0 condition for a double zero, one obtains

d_l{vw+u(v+w)—3uzjl_ 1v—wu+w)+2w—wu
2 v+w—2u -2 v—uy+w-u) ‘

The extremal support {u, v, w} = {x, ¢(x, w(x)), w(x)}, feasible by (11.9) provided
x < ¢, yields the formula for d(x) as well as the maximal stop-loss transform

2® (@)= po)- 0 —-d)+pw) w—d)=—p@u—(1-p@w)d=pw - d-u-d.
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Case (2): u,vel, are double zeros of Q,(x), wel,, is a double zero of Q,(x)
as in the following figure:

Suppose first that w is a simple zero. By symmetry to case (1), the unique
biquadratic polynomial with the required conditions is

Qz(w) - Ql w)

100 = (= u)’ (x =) +0,().

The additional condition Q5(u) =0 for a double zero yields

_1=Vut+tw)+2mw-ww

A= = ror-u

The extremal support {u, v, w} = {o(x, w(x)), w(x), x}, which by (I1.9) and the
involution property of w(x) is feasible provided x> ¢, yields the formula for
d(x) as well as the maximal stop-loss transform 7%, (d) = p(w) - (w—d).

Finally, it remains to be shown that (7 o d)(x) is a well-defined function. In
case (1) and for the limiting case x — ¢ the triatomic extremal support {x, ¢(x,
w(x)), w(x)} converges to the biatomic support {c, ¢} and d(x) converges to 3 y.
By symmetry, the same holds in case (2) for the limiting case x — ¢. Furthermore
d(x) is strictly increasing. Therefore, in case (1) the function d (x) maps (-, (]
one-to-one on (-, %], and in case (2) it maps (c, -] one-to-one on [+ 7, o).
It follows that (7 o d)(x) is a well-defined function.
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