THE SPIN REPRESENTATION OF THE SYMMETRIC
GROUP

A. O. MORRIS

1. Let I', be the representation group or spin group (9; 4) of the symmetric
group S,. Then the irreducible representations of T, can be allocated into
two classes which we shall call (i) ordinary representations, which are the
irreducible representations of the symmetric group, and (ii) spin or projective

representations.
As is well known (3; 5), there is an ordinary irreducible representation [A]
corresponding to every partition (A\) = (A, A, ..., Ay) of # with

M>2A>...2>2M>0.

Of fundamental importance in the study of the ordinary representation is the
concept of a hook graph (2;6; 8). Our aim in this note is to develop a similar
concept for the spin representations of T,.

There is an irreducible spin representation (\) of T, corresponding to every
partition (A\) = (A, Agy ..., Ap) Of # with Ay > A > ... > N, > 0. In the
following, we shall say that a partition satisfies Condition A if it has no equal
parts, where the parts are not necessarily in descending order.

Any partition (A\) = (A, X2, ..., \y) can be associated with a graph con-
sisting of rows of symbols called #nodes. \; in the first row, \; in the second
rOW, ..., A\, in the last row. The node in the 7th row and jth column of ()
is called its (4, j)-node.

Definition 1. An (4, j)w-bar (B =14,72+ 1,...,m) of (\) will consist of the
(7, j)-node together with the remaining A; — j nodes to the right of it and
(i) the \x — 7 + 1 nodes from the kth row of (\) if & > 4,
(ii) no further nodes if & = 1,
so that the resulting graph on deleting these nodes satisfies Condition A.

From this definition, it is clear that there is more than one (%, j)-bar
attached to the (¢, j)-node. In fact, if 7;; denotes the number of (7, j)()-bars
attached to the (7,j)-node, then 0 < 7;; < m — 7 + 1. Further, since the
resulting graphs on deleting the nodes have to satisfy Condition A, we have
that

rn=m—1-+1 z=1,2,...,m),
ruz{l, if 7> 1and j— 15 )\ for any &,
Y 0, if > 1 and j — 1 = \; for some k.
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Definition 2. The length of an (1, j)-bar is
S(_k>={xi—j+1 it k=
4 NEMN—2+2  if B>
In an (2, j))-bar (¢ > %), the number ¢ = A\, — j + 1 is called the arm length

of the (3, ) w-bar. An (7, j)»-bar with arm length ¢ will be called a g-bar. An
(4, 7)(»-bar will be called an O-bar.

We easily see that

S® _ {xi it k=1,
a NN i E>A
Let
Sil = I__I s?i)y
k=1
and

S, = Mq—j+1  if j>1and j— 13 )\ for any &,
Y1 if j>1and j — 1 =\, for some k.

Definition 3. The graph obtained by replacing the (¢, j)-node of (\) by S;;
is called the dar graph S(\). The bar product S is the product of all the S;;'s
in S(\), that is,

2. The degree of an irreducible spin representation (\) of I',. Schur
(9) has shown that the degree f» of (\) is given by the formula
n! A — A
ANl Al 1ardam A F Ay

where [x] denotes the greatest integer less than or equal to x. We now prove
the following.

(1) f)x _ 2[%(n—m)]

THEOREM 1. Let S* denote the bar product of an irreducible spin representation
(\) of T,. Then the degree f of {(\) is given by the formula
olite=—m]l

f)\_ SX—

The proof follows closely the proof of the corresponding theorem on the
degree of the ordinary representations of I, in terms of the hook product (2).
From § 1, we have

\i m
£I1 Siy = )\tkl;IH i+ ) H =7+ 1),
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wherej =2,..., MM+ 2,0 oy My M1 + 2,0 oo Ais, A F 2,00, A
Thus, we see that

Ad

H Sy =\ ﬁl()‘i + M) le N —Jj+ 1)/161:”!“(7\1 - N)

=1 k=it

m

Nt N
AT T
’,ﬂm—xk

I

Hence, it follows that

m A
St =TT TT Su= Ml ag! Mt N
=1 j=l 1<i<i<m M — Mg
and from (1)
\ 2[%(n—m)]n!
TS

Example. We find the degree of the irreducible spin representation (\) =(863)
of T17. (A\) has the graph

........

N
and the bar graph
S 14X11X8 7 6 1 4 3 11
9 X6 54 1 2 1
3 2 1
Hence,
A 2" x 17!
TIMXIIXIX8XTXOEX4E4X3IXEXIX4X2X3IX2X1
= 5,657,600.

3. The removal of a bar from a graph. First, we consider the effect of
removing an O-bar from the graph (\) corresponding to the partition (\) =
(A1, A2y« . oy A\p) of n. Suppose that an O-bar is removed from the (7, j)-node
of this graph, that is, the \; — j + 1 nodes from the ¢th row of this graph
to the right of and including the (7, j)-node, assuming that j — 1 £ \; for
any k. Then j — 1 > N\, and j — 1 < N\ for some value of %, ¢« < k& < m.
Move up the nodes which are below the empty spaces to obtain a graph
with parts in descending order, that is, the graph of the partition

AN = Oy Ny ey Ny Ny e ey Nemty 7 — 1 Ny vy )

of n — \; +j — 1. Sometimes, it is more convenient to consider removing
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the equivalent rim of the graph ()), that is, (\)’ is obtained from (\) by re-
moving \; — A1 nodes from the <th row, Ag1 — A2 nodes from the
(# + 1th row,..., -1 — j + 1 nodes from the kth row.

For example, we remove an O-bar from the (2,2)-node of the graph
(11,8, 6, 4, 3, 2).

is equivalent to

We shall call the equivalent rim removed a skew O-bar. An (%, j)-node on
the skew O-bar is called a leg node of the skew O-bar if the (: — 1,7 + 1)-node
also lies on the skew O-bar. The total number of leg nodes is called the leg
length of the skew O-bar. The leg length is clearly # — 7 — 1. In the above
example, the nodes indicated by X are leg nodes and thus the leg length
of the skew O-bar is 4.

Next, we consider the effect of removing a g-bar from the graph ()\), for
some value of ¢. Suppose that we remove an (i, 1)i-bar (kB > 7) from ()),
that is, ¢ = A\;. The resulting graph is

<}\>, = <)\ly )\21 v ey )\i~ly )\’H—l) s ey )\k—ly )\Ic-}-lr sy }\m>

of » — A\; — M. Thus, (\)’ is obtained from (\) by removing \; — \;4; nodes
from the ith row, A;41 — N2 nodes from the (¢ + 1)th row, ..., N1 — Ny
nodes from the (¢ — 1)th row, Ay — M1z nodes from the kth row, N1 + Meys
nodes from the (& + 1)th row,...,\,_2 — )\, nodes from the (m — 2)th
row, An—1 nodes from the (m — 1)th row, and )\, nodes from the mth row.
Hence, this is equivalent to removing two skew O-bars from (\); first remove
a skew O-bar of length \; and then remove a skew O-bar of length \;. This
equivalent rim removed is called a skew M\-bar. The total number of leg
nodes in both parts of the skew Ai-bar is called the leg length of the skew
M-bar. In a skew Ni-bar, A\, is the arm length defined in § 1.

This is now illustrated by an example. Suppose that we remove a (1, 1)3,-bar
from (\) = (11, 8, 6, 4, 3, 2). That is

©o o 6 0 0 o o o ©0 o0 o

o 00 0 o0 o or equivalently /

The leg length of this skew 6-bar is 4 + 3 = 7, and the arm length is 6.
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4. The spin characters of T,. Using the terminology of § 3, we can now
prove the following theorem, which corresponds to the well-known Murnaghan-
Nakayama formula (8) for the ordinary characters of T,.

THEOREM 2. Let T denote the graph corresponding to the partition (\) of n
and T — S, the graph obtained by removing a bar S; of length 1 from T. Let
¢ (T) denote the irreducible spin character of the positive class () = (1413%35%3,..)
of T, corresponding to the graph T, then

(D) =3, (_]_)hi+ki2[%(6'——e+1)]§'1r,(T - S),

where the summation runs over all possible bars S; of length i which can be
removed from T; h; and k; denote the arm length and leg length respectively of
S, 7' 1s obtained from m by deleting a cycle of length i; e and € are 0 or 1 accord-
ing as {(T) and ¢ (" — S;) are double or associate spin characters.

Schur (9) has shown that the irreducible spin characters of T, are generated
by a certain class of symmetric functions Q,, known as Q-functions (5), with
the property that

h:r Lip+mte) o N
where (\) = (A, Ny ooy M), () = (1213%3595 . . ), p =ar+az +as+ ...,
and ¢ = 0 or 1 according as ¢,* is a double spin character or an associate
spin character.

Remark. If ¢,» is a spin character, then {,» = (—1)* ¢}, where @ = 0 or 1
according as (p) is a positive or negative class, is a second spin character. {,}
and {,» are known as associate spin characters. If {,* = ¢,» for all classes
(p), then ¢,* is a double spin character.

In (4), certain rules have been proved whereby a Q, corresponding to a
partition (\) with some parts possibly negative or zero and not necessarily
in descending order is written in terms of a Qq), with positive parts in de-
scending order. These rules are

(1) if any two parts of Qy are equal, then Q) = 0;

(11) Q()\l)\2...)\r)\r+1...)\m) = ——Q()\l)\z--.)\r+l)\r...)\m)’

(i) Qame..om =0 if Ay < Oforany 1 <7 < mand [\, [Ne], ..., |\ are
all different,

(1v) Qarner.drdendm = 20— 1) Qe Arihrar.. 2w and

Qarna..rrvArvamy = 0.
In (5), it has been proved that

Cr = T k@2t mte—eDe

where the summation is taken over all partitions (u) = (u1, 2y« ., )
corresponding to the Q, obtained from Quapn,..nt.am (G=1,2,...,m)
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by means of rules (i)—(iv) above, k, is the coefficient of Q, and (7)’ is the
class obtained from (7) by deleting a cycle of length 7. Thus, in order to prove
this theorem, we must show that

2) k2 —mre—etD) = (_1)hitki QH(e—etD),

From the rules (i)-(iv) above, k¢, # 0 if and only if

@) \; — i # N\ forany k> j,

(b) >‘J' —1= 0»

(€) \;j— i34+ N\ =0, for some & > j.

Case (a) is equivalent to removing an O-bar of length 7 from (\). It
N — 10, m =m, and if k; denotes the arm length of the O-bar, k; = 0.
Use (i) repeatedly until the partition has parts in descending order to give
the value of k,. Clearly, by the definition of the leg length %; of the skew
O-bar, k, = (—1)":, and thus (2) follows in this case.

Incase (b), " =m — landthusm’ —m + 14+ ¢ — e =¢ — e =0and
by the same argument as for case (a), ky = (—1)", and thus (2) follows
in this case.

Case (c) is equivalent to removing a M-bar of length 7 from (\). Now
m' —m = —2, and thus

ki —miltd—o — 1p ob(+e—o

and by rules (i) and (iv) above, k, = (—1)*i+*i where ; is the length of
the skew M\-bar and k; = \; is the arm length of the skew \;-bar. Thus (b)
follows in this case again, and the proof of the theorem is complete.

It would be of interest to obtain a direct proof of this theorem of the same
type as the proof of the Murnaghan—Nakayama recursion formula given by
Robinson (7). In order that this may be done, a theory corresponding to the
theory of Young diagrams must be developed for the graph (\).

5. In a future publication, the theory of bar graphs will be applied to the
study of the modular representations of the group I',. It will be shown that
bar graphs play a similar role for the modular representations of T, as hook
graphs play for the modular representation of the group S,. For instance,
we shall prove a result corresponding to the well-known Nakayama con-
jecture (6) first proved by Brauer and Robinson (1). If we define the p-core
of a graph (A) to be the graph obtained after removing all possible bars of
length $ from (A), then we shall prove that irreducible spin representations of
T, belong to the same p-block if and only if their corresponding graphs have
the same p-core.
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