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Abstract

In this paper, we introduce the Newton decomposition on a connected reductive p-adic group G.
Based on it we give a nice decomposition of the cocenter of its Hecke algebra. Here we consider
both the ordinary cocenter associated to the usual conjugation action on G and the twisted cocenter
arising from the theory of twisted endoscopy. We give Iwahori–Matsumoto type generators on the
Newton components of the cocenter. Based on it, we prove a generalization of Howe’s conjecture
on the restriction of (both ordinary and twisted) invariant distributions. Finally we give an explicit
description of the structure of the rigid cocenter.
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Introduction

0.1. Cocenter-representation duality. A basic philosophy in representation
theory is that characters tell all. This is the case for finite groups. More precisely,
let G be a finite group. Let H = C[G] be its group algebra and R(G) be the
Grothendieck group of finite dimensional complex representations of G. Then
the trace map induces an isomorphism

Tr : H̄ → R(G)∗,

where H̄ = H/[H, H ] is the cocenter of H . In other words, for finite groups,
the cocenter is ‘dual’ to representations.

Now how about p-adic groups?
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Let G be a connected reductive group over a nonarchimedean local field
F of arbitrary characteristic and G = G(F). Let H be the Hecke algebra of
compactly supported, locally constant, C-valued functions on G. Let R(G) be
the Grothendieck group of smooth admissible complex representations of G.
In [2, 19], Bernstein et al. established the duality between the cocenter and the
representations of G in the following sense:

Tr : H̄
∼=
−→ R(G)∗good,

where R(G)∗good is the space of ‘good forms’ on R(G). Such a relation is further
studied by Dat in [7].

One may also consider the twisted version arising from the theory of twisted
endoscopy. The recent work of Henniart and Lemaire [12] established the duality
between the cocenter and the representations in the twisted version.

0.2. Hecke algebras. The main purpose of this paper is to investigate the
structure of the cocenter of the Hecke algebra H . Here we consider both the
ordinary and the twisted cocenter, and the Hecke algebra we consider is not
an algebra of C-valued functions, but its integral form, that is, the algebra of
Z[p−1

]-valued functions instead, where p is the residual characteristic of F .
The structure of the integral form helps us to understand not only the ordinary
representations of p-adic groups, but the mod-l representations as well. It will
be used to study the relation between the cocenter and the mod-l representations
in a future joint work with Ciubotaru [5].

Note that invariant distributions on G are linear function on the cocenter of H .
Thus knowledge of the structure of H̄ will also help us to understand the invariant
distributions. We will discuss some application in this direction later in this
paper.

For the group algebra of a finite group, the structure of the cocenter is very
simple: it has a standard basis indexed by the set of conjugacy classes.

The main difference between the Hecke algebra of a connected reductive p-
adic group and the group algebra of a finite group comes from the two conditions
in the definition of Hecke algebra:

• The ‘locally constant’ condition, which means that in the cocenter, one cannot
separate a single conjugacy class from the others. This suggests that we should
seek for a decomposition of the p-adic group G into open subsets, each of
which is a union of (ordinary or twisted) conjugacy classes.

• The ‘compact support’ condition, which suggests that the sought-after open
subset should be of the form G · X , where · is the conjugation action and X is
an open compact subset of G.
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0.3. Newton decomposition. In this paper, we introduce the decomposition
of G into Newton strata, which satisfy the desired properties mentioned
above.

THEOREM A (See Theorem 3). We have the Newton decomposition

G =
⊔
ν

G(ν).

Here each Newton stratum G(ν) is of the form G · Xν , where Xν is an open
compact subset of G.

Let us provide some background on the Newton strata. We may realize G as
G(F̆)σ , where F̆ is the completion of the maximal unramified extension of F and
σ is the morphism on G(F̆) induced by the Frobenius morphism of F̆ over F .
The σ -twisted conjugacy classes of G(F̆) are classified by Kottwitz in [21, 22],
in terms of the Newton points together with the image under the Kottwitz map.
For split groups, by taking the intersection of G with σ -twisted conjugacy classes
of G(F̆), we obtain a decomposition of G. The situation is more subtle if the
group is not quasisplit, as the Newton map of G does not coincide with the
Newton map of G(F̆). The difficulty is overcome by the Iwahori–Matsumoto
type generators which we discuss later in Section 0.5.

For any Newton point ν, let H(ν) be the subspace of H consisting of
functions supported in G(ν) and H̄(ν) be its image in H̄ . We obtain the desired
decompositions for H and H̄ .

THEOREM B (See Theorem 10). We have the Newton decomposition for the
Hecke algebra H and its cocenter H̄ :

H =
⊕
ν

H(ν), H̄ =
⊕
ν

H̄(ν).

0.4. Newton decomposition at a given level. Let K be an open compact
subgroup of G and H(G,K) be the Hecke algebra of compactly supported,
K-biinvariant functions on G. We have H = lim

−→
K

H(G,K). To understand the

representations of G, we need to understand not only the structure of the cocenter
of H , but the structure of the cocenter of H(G,K) as well. Unfortunately, for
any given K, H(G,K) does not have the Newton decomposition as the Newton
strata of G are not stable under the left/right action of K. However, we show
that
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THEOREM C (See Theorem 11). Let n ∈ N and In be the nth congruence
subgroup of an Iwahori subgroup I (see Section 4.2). Then

(1) The cocenter of H(G,In) has the desired Newton decomposition

H̄(G,In) =
⊕
ν

H̄(G,In; ν).

(2) For each ν, any element in the Newton component H̄(G,In; ν) is
represented by a function of H(G,In) that is supported in the open
compact subset Xν .

This is the main result of this paper. The two key ingredients of the proof are

• Newton decompositions on G, H and H̄ that we discussed above.

• Iwahori–Matsumoto type generators that we are going to discuss in
Section 0.5.

In the body of the paper, we consider a more general case by allowing twists
by an automorphism θ of G and a character ω of G. Theorems A–C are proved
under this general setting.

0.5. Iwahori–Matsumoto type generators. Let I be an Iwahori subgroup
of G and W̃ be the Iwahori–Weyl group. Then we have the decomposition
G =

⊔
w∈W̃ IẇI . It is known that the Iwahori–Hecke algebra H(G,I) has the

Iwahori–Matsumoto presentation with basis given by {Tw}w∈W̃ , where Tw is the
characteristic function on IẇI .

In the joint work with Nie [16], we discovered that the cocenter H̄(G,I)
has a standard basis {Tw}, where w runs over minimal length representatives
of conjugacy classes of W̃ . This is the Iwahori–Matsumoto type basis of the
cocenter of Iwahori–Hecke algebra H(G,I).

Now come back to our general situation H(G,K), where K is a congruent
subgroup of I . We define Xν =

⋃
w IẇI , where w ∈ W̃ runs over the minimal

length elements in the conjugacy class associated to the given Newton point ν.
We show that Xν is the sought-after open compact subset in Theorems A and C.
The proof is based on

• Some remarkable properties on the minimal length elements established
in [16].

• The compatibility between the reduction method on H(G,K) in Section 4 and
the reduction method on G introduced in [13].
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0.6. Howe’s conjecture. Now we discuss some applications.
In [17], Howe conjectured that for any open compact subgroup K and compact

subset X of G, the restriction of invariant distributions J (G · X) supported in
G · X to H(G,K) is finite dimensional. This conjecture is proved by Clozel [6]
over p-adic fields and later by Barbasch and Moy [1] over any nonarchimedean
local field. The twisted invariant distribution has not been much studied yet.

Howe’s conjecture plays a fundamental role in the harmonic analysis of p-adic
groups (see for example [8, 11]). It will also play a crucial role in the future joint
work with Ciubotaru [5] in the proof of trace Paley–Wiener theorem for mod-l
representations of p-adic groups.

In Section 5, we give a different proof of Howe’s conjecture, which is
valid for both the ordinary and the twisted invariant distributions. Note that
G · X is contained in a finite union of G(ν) and the ordinary/twisted invariant
distributions supported in G(ν) are linear functions on H̄(ν). It is also easy to
see that for any given Newton point ν, there are only finitely many minimal
length elements w associated to it. Now Howe’s conjecture follows from the
Newton decomposition of H̄(G,K) and the Iwahori–Matsumoto type generators
of H̄(G,K; ν).

THEOREM D (See Theorem 18). For any open compact subgroup K and
compact subset X of G,

dim J (G · X) |H(G,K)<∞.

In fact, in the proof we mainly use the part H̄(G,K) =
∑

ν H̄(G,K; ν). The
fact that this is a direct sum will play an important role later (see for example [5])
when we study the relation between the cocenter and the representations.

0.7. The structure of the rigid cocenter. As another application, we
describe the structure of the rigid cocenter in terms of generators and relations.

As discussed in Section 0.1, the cocenter is ‘dual’ to the representations. Based
on the Newton decomposition, we may decompose the whole cocenter into the
rigid part and nonrigid part. The rigid cocenters of various Levi subgroups form
the ‘building blocks’ of the whole cocenter.

We have mentioned in Section 0.5 (see also Theorem 11) that the cocenter
has the Iwahori–Matsumoto type generators. The next problem is to describe
the relations between these generators. In Theorem 23, we solve this problem
for the rigid cocenter: the Iwahori–Matsumoto type generators of the rigid
cocenter are given by the cocenters of Hecke algebras of parahoric subgroups
P , and the relations between these generators are given by the (P,Q, x)-graphs
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(see Section 6.4 for the precise definition). The proof is based on the Iwahori–
Matsumoto type generators of the cocenter and Howe’s conjecture.

It is shown in [4] that the rigid cocenter of affine Hecke algebras plays an
important role in the study of representations of affine Hecke algebras. We expect
that the rigid cocenter of the Hecke algebra H plays a similar role in the study
of ordinary and mod-l representations of p-adic groups.

1. Preliminaries

1.1. Notations. Let F be a nonarchimedean local field of arbitrary
characteristic. Let OF be its valuation ring and k = Fq be its residue field.
Let G be a connected reductive group over F and G = G(F). Fix a maximal
F-split torus A. Let A be the apartment corresponding to A. Fix an alcove
aC ⊂ A , and denote by I the associated Iwahori subgroup.

Let Z be the centralizer of A and NG A be the normalizer of A. Denote by
W0 = NG A(F)/Z(F) the relative Weyl group. The Iwahori–Weyl group W̃ is
defined to be W̃ = NG A(F)/Z0, where Z0 is the unique parahoric subgroup of
Z(F) (see [3, Section 5.2.7]). The group W̃ acts on A by affine transformations
as described in [25, Section 1]. Let G0 be the subgroup of G generated by all
parahoric subgroups, and define N0 A = G0 ∩ NG A(F). Let S̃ be the set of
simple reflections at the walls of aC . By Bruhat and Tits [3, Proposition 5.2.12],
the quadruple (G0,I, N0 A, S̃) is a (double) Tits system with affine Weyl group
Wa = N0 A/N0 A ∩ I . We have a semidirect product

W̃ = Wa oΩ,

where Ω is the stabilizer of the alcove aC in W̃ . Thus W̃ is a quasi-Coxeter
system and is equipped with a Bruhat order 6 and a length function `.

For any K ⊂ S̃, let WK be the subgroup of W̃ generated by s ∈ K . Let K W̃ be
the set of elements w ∈ W̃ of minimal length in the cosets WKw.

Set V = X∗(Z)Gal(F̄/F) ⊗R, where F̄ is the completion of a separable closure
of F . By choosing a special vertex of aC , we may identify A with the underlying
affine space of V and by [10, Proposition 13],

W̃ ∼= X∗(Z)Gal(F̄/F) o W0 = {tλw; λ ∈ X∗(Z)Gal(F̄/F), w ∈ W0}.

1.2. Hecke algebras. Let I ′ be the pro-p Iwahori subgroup of G. Following
[26, Ch. I, Section 2], we define a Z[1/p]-valued Haar measure µG by

µG(K, µ) =
[K : K ∩ I ′]
[I ′ : K ∩ I ′] for any open compact subgroup K of G.

Note that [I ′ : K ∩ I ′] is a power of p. Thus µG(K, µ) ∈ Z[1/p] for all K.
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Let H = H(G) be the space of locally constant, compactly supported Z[1/p]-
valued functions on G. For any open compact subgroup K of G, let H(G,K) be
the space of compactly supported, K ×K-invariant Z[1/p]-valued functions on
G. Then for K′ ⊂ K, we have a natural embedding H(G,K) ↪→ H(G,K′) and

H = lim
−→
K

H(G,K).

Note that for any open compact subgroup K, H(G,K) has a canonical Z[1/p]-
basis {1KK gK; g ∈ K\G/K}, where 1KgK is the characteristic function on KgK.

The space H is equipped with a natural convolution product

f f ′(g) =
∫

G
f (x) f ′(x−1g) dµ for f, f ′ ∈ H, g ∈ G.

It can be described in a more explicit way as follows.
(a) Let X, Y be open compact subsets of G and K be an open compact pro-p

subgroup of G such that KX = X and YK = Y . Then

1X1Y =
∑

g∈K\XY/K

µG×G(p−1(KgK))
µG(KgK) 1KgK,

where p : X × Y → XY is the multiplication map.
Since the volume of each double coset of K is a power of p,

µG(p−1(KgK))/µG(KgK) ∈ Z[1/p].

1.3. Commutators. Let R be a commutative Z[1/p]-algebra and HR =

H ⊗Z[1/p] R. We define the twisted action of G on HR as follows. Let θ be
an automorphism of G that stabilizes A and I . We denote the induced affine
transformation on V and the length-preserving automorphism on W̃ still by θ .
We assume furthermore that the actions of θ on V and on W̃ are both of finite
order. Let ω be a character of G, that is, a homomorphism from G to R× whose
kernel is an open subgroup of G. We define the (θ, ω)-twisted G-action on HR

by
x f (g) = ω(x) f (x−1gθ(x)) for f ∈ HR, x, g ∈ G.

We define the (θ, ω)-twisted commutator of HR as follows.
Notice that HR is generated by the elements 1X , where X is an open compact

subset of G such that ω |X is constant. Let [HR, HR]θ,ω be the R-submodule of
HR spanned by

[1X ,1X ′]θ,ω = 1X1X ′ − ω(X)−11X ′1θ(X),

where X, X ′ are open subsets of G such that ω |X is constant.
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PROPOSITION 1. The R-submodule [HR, HR]θ,ω of HR equals the R-submodule
of HR spanned by f − x f , where f ∈ HR and x ∈ G.

REMARK 2. The untwisted case is stated in [20, Proof of Lemma 3.1].

Proof. We first show that f − x f ∈ [HR, HR]θ,ω.
Let K be a θ -stable open compact pro-p subgroup K of G such that f is left

K-invariant and ω(K) = 1. We may write f as a linear combination of 1Kg for
g ∈ G. We have x1Kg = ω(x)1xKgθ(x)−1 . By definition,

ω(x)1xKgθ(x)−1 =
ω(x)
µG(K)

1xK1Kgθ(x)−1 ≡
1

µG(K)
1Kgθ(x)−11θ(x)K

=
µG(K)
µG(KgK)1KgK mod [HR, HR]θ,ω.

In particular, by taking x = 1, we have 1Kg ≡ µG(K)/µG(KgK)1KgK
mod [HR, HR]θ,ω. Hence 1Kg ≡

x1Kg mod [HR, HR]θ,ω.
Now let X, X ′ be open subsets of G such that ω |X is constant. We show that
[1X ,1X ′]θ,ω lies in the span of f − x f .

We choose a θ -stable open compact pro-p subgroup K such that X is left K-
invariant, X ′ is right K-invariant and ω(K) = 1. We may write 1X as a sum of
1Kg and write 1X ′ as a sum of 1g′K. Then [1X ,1X ′]θ,ω =

∑
g,g′[1Kg,1g′K]θ,ω.

We have

[1Kg,1g′K]θ,ω = 1Kg1g′K − ω(g)−11g′K1Kθ(g)

=
µG(K)2

µG(Kgg′K)1Kgg′K − ω(g)−1µG(K)1g′Kθ(g)

=
µG(K)2

µG(Kgg′K) (1Kgg′K −
ω(g)−1µG(Kgg′K)

µG(K)
1g′Kθ(g)).

Set n = µG(Kgg′K)/µG(K). We have that 1Kgg′K =
∑n

i=1 1ki gg′K for some
ki ∈ K. Note that (ki g)−1(ki gg′K)θ(ki g) = g′Kθ(ki)θ(g) = g′Kθ(g) and
ω(ki g) = ω(g). Thus ω(g)−11g′Kθ(g) =

(ki g)−1
1ki gg′K and

[1Kg,1g′K]θ,ω =
µG(K)2

µG(Kgg′K)

n∑
i=1

(1ki gg′K −
(ki g)−1

1ki gg′K).

The proposition is proved.

1.4. Cocenters. Let H̄R = HR/[HR, HR]θ,ω. This is the (θ, ω)-twisted
cocenter of HR . The distributions on G are the R-valued linear functions on HR .
We say that a distribution is (θ, ω)-invariant if it vanishes on f − x f for all
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f ∈ HR and x ∈ G. In other words, the twisted action of G on HR induces
a twisted action of G on the set of distributions via x j ( f ) = j (x−1

f ) for any
distribution j , f ∈ HR and x ∈ G. A distribution j is (θ, ω)-invariant if and only
if j = x j for any x ∈ G. We denote by J (G) = H̄ ∗R the set of all (θ, ω)-invariant
distributions on G.

2. Newton decomposition of G

2.1. Two arithmetic invariants. The θ -twisted conjugation action on W̃ is
defined by w ·θ w′ = ww′θ(w)−1. Let clθ (W̃ ) be the set of θ -twisted conjugacy
classes of W̃ . Since the action of θ on V is of finite order, each θ -orbit on Ω is a
finite set. Therefore

(a) Each θ -twisted conjugacy class of W̃ intersects only finitely many Wa

cosets.
Following [16], we define two arithmetic invariants on clθ (W̃ ).
Note that each θ -twisted conjugacy class of W̃ lies in a single θ -orbit on the

cosets W̃/Wa
∼=Ω . LetΩθ be the set of θ -coinvariants ofΩ . The projection map

W̃ → Ωθ factors through clθ (W̃ ). The induced map κ : clθ (W̃ )→ Ωθ gives one
invariant.

Recall that W̃ = X∗(Z)Gal(F̄/F) o W0. We regard θ as an element in the group
W̃ o 〈θ〉 and we extend the length function ` on W̃ to W̃ o 〈θ〉 by requiring that
`(θ) = 0. For any w ∈ W̃ , (wθ)m|W0| ∈ X∗(Z)Gal(F̄/F), where m is the order of
the automorphism θ on W̃ and |W0| is the order of the relative Weyl group.

For w ∈ W̃ , we set νw = λ/n ∈ V , where n is a positive integer and λ ∈
X∗(Z)Gal(F̄/F) with (wθ)n = tλ. It is easy to see that νw is independent of the
choice of the power n. We denote by νw the Newton point of w. Let ν̄w be the
unique dominant element in the W0-orbit of νw. The map w 7→ ν̄w is constant on
each conjugacy class of W̃ . This gives another invariant.

Let V+ be the set of dominant elements in V . Set ℵ = Ωθ × V+. We have a
map

π = (κ, ν̄) : clθ (W̃ )→ ℵ.

2.2. Newton strata. Let W̃min be the subset of W̃ consisting of elements of
minimal length in their θ -twisted conjugacy classes of W̃ . For any ν = (τ, v) ∈ ℵ,
we set

Xν =

⋃
w∈W̃min;π(w)=ν

IẇI and G(ν) = G ·θ Xν .

Here ·θ means the θ -twisted conjugation action of G defined by g ·θ g′ =
gg′θ(g)−1. We call G(ν) the Newton stratum of G corresponding to ν.
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The main result of this section is

THEOREM 3. We have the Newton decomposition

G =
⊔
ν∈ℵ

G(ν).

The proof is based on some remarkable combinatorial properties of the
minimal length elements of W̃ established in [16] and the reduction method
in [13].

2.3. Minimal length elements. We follow [16]. For w,w′ ∈ W̃ and s ∈ S̃,
we write w

s
−→θ w

′ if w′ = swθ(s) and `(w′) 6 `(w). We write w →θ w
′ if

there is a sequencew = w0, w1, . . . , wn = w
′ of elements in W̃ such that for any

k, wk−1
s
−→θ wk for some s ∈ S̃. We write w ≈θ w′ if w→θ w

′ and w′→θ w. It
is easy to see that if w→θ w

′ and `(w) = `(w′), then w ≈θ w′.
The following result is proved in [16, Theorem A].

THEOREM 4. Letw ∈ W̃ . Then there exists an elementw′ ∈ W̃min withw→θ w
′.

2.4. Reduction method. Now we recall the reduction method in [13].
Let w ∈ W̃ and s ∈ S̃. We have an explicit formula on the multiplication of

Bruhat cells

I ṡIẇI =
{
I ṡẇI if sw > w,

I ṡẇI t IẇI if sw < w.

IẇI ṡI =
{
IẇṡI if ws > w,

IẇṡI t IẇI if ws < w.

We have the following simple but very useful properties:

(1) G ·θ IẇI = G ·θ Iẇ′I if w ≈θ w′;

(2) G ·θ IẇI = G ·θ I ṡẇI ∪ G ·θ I ṡẇθ(ṡ)I for s ∈ S̃ with sws < w.

PROPOSITION 5. Let X be a compact subset of G. Then there exists a finite
subset {ν1, . . . , νk} of ℵ such that

X ⊂
⋃

i

G(νi).
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Proof. Since any compact subset of G is contained in a finite union of I-double
cosets, it suffices to prove the statement for IẇI for any w ∈ W̃ .

We argue by induction on `(w).
If w ∈ W̃min, the statement is obvious. If w /∈ W̃min, then by Theorem 4,

there exist w′ ∈ W̃ and s ∈ S̃ such that w ≈θ w′ and sw′θ(s) < w′. Then by
Section 2.4,

G ·θ IẇI = G ·θ Iẇ′I ⊂ G ·θ I ṡẇ′θ(ṡ)I ∪ G ·θ I ṡẇ′I.

Note that `(sw′), `(sw′θ(s)) < `(w), the statement forw follows from inductive
hypothesis on sw′ and on sw′θ(s).

2.5. Straight conjugacy classes. Since G =
⊔

w∈W̃ IẇI , by Proposition 5,
G =

⋃
ν∈ℵ G(ν). In order to show that

⋃
ν∈ℵ G(ν) is a disjoint union, we use

some properties on the straight conjugacy classes of W̃ .
By definition, an element w ∈ W̃ is θ -straight if `((wθ)k) = k`(w) for all k ∈

N. A θ -twisted conjugacy class is straight if it contains a θ -straight element. It
is easy to see that the θ -straight elements in a given straight θ -twisted conjugacy
class O are exactly the minimal length elements in O.

Let clθ (W̃ )str be the set of straight conjugacy classes. It is proved in [16,
Theorem 3.3] that

THEOREM 6. The map π : clθ (W̃ ) → ℵ induces a bijection between clθ (W̃ )str

and Im(π).

In other words, we have a well-defined map clθ (W̃ )→ clθ (W̃ )str which sends
a conjugacy class O of W̃ to the unique straight conjugacy class in π−1(π(O)).
It is proved in [16, Proposition 2.7] that this map is ‘compatible’ with the length
function in the following sense.

THEOREM 7. Let O ∈ clθ (W̃ ) and O′ be the associated straight conjugacy class.
Then for any w ∈ O, there exists a triple (x, K , u) with w →θ ux, where x is
a straight element in O′, K is a subset of S̃ such that WK is finite, x ∈ K W̃ and
Ad(x)θ(K ) = K , and u ∈ WK .

REMARK 8. We call (x, K , u) a standard triple associated to w. By Theorem 7
and Section 2.4(1), we have the following alternative definition of Newton
stratum

G(ν) =
⋃

(x,K ,u) is a standard triple;ux∈W̃min,π(x)=ν

G · I u̇ ẋI.
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COROLLARY 9. For any ν ∈ ℵ, there are only finitely many w ∈ W̃min with
π(w) = ν. In particular, each fiber of the map π : clθ (W̃ )→ ℵ is finite.

Proof. Let ν ∈ Im(π) and O′ be the associated straight conjugacy class. Let l be
the length of any straight element in O′. Note that there are only finitely many
K ⊂ S̃. In particular,

(a) max{`(u); u ∈ WK for some K ⊂ S̃ with WK finite} is finite.
We denote this number by n. Then by Theorem 7, for any w ∈ W̃min with

π(w) = ν, `(w) 6 l + n. By 2.1 (a), O′ intersects only finitely many Wa cosets
and hence any element w ∈ W̃min with π(w) = ν is contained in one of those
cosets. Since in a given coset of Wa , there are only finitely many elements of a
given length, there are only finitely many such w.

2.6. Proof of Theorem 3. We have shown that G =
⋃

ν∈ℵ G(ν). It remains
to show that it is a disjoint union.

Let ν1 6= ν2 be elements in ℵ. It is easy to see that if ν1 and ν2 have different
Ωθ -factor, then G(ν1) ∩ G(ν2) = ∅. Now assume that ν1 and ν2 have the same
Ωθ -factor. Then they have different V -factor.

The remaining part of the proof is a bit technical and we first explain the main
idea. Suppose that G(ν1) ∩ G(ν2) 6= ∅. Then there exists an element g1 ∈ G(ν1)

and g2 ∈ G(ν2), and an element g ∈ G that (twisted) conjugate g1 to g2. Then g
also (twisted) conjugate a (twisted) power of g1 to a (twisted) power of g2. But
as the Newton factors of ν1 and ν2 are different, the ‘difference’ between the
(twisted) nth powers of g1 and g2 goes to ‘infinity’ as n goes to infinity, and thus
cannot be (twisted) conjugated by a fixed element g ∈ G.

Now we go back to the proof. Suppose that G(ν1)∩G(ν2) 6= ∅. By definition,
there exists w1, w2 ∈ W̃min with π(wi) = νi and that G ·θ Iẇ1I ∩G ·θ Iẇ2I 6= ∅.
By Theorem 7, there exist standard triples (xi , Ki , ui) associated to wi for i = 1,
2. Since wi ∈ W̃min, wi ≈θ ui xi . By Section 2.4(1), G ·θ IẇiI = G ·θ I u̇i ẋiI .
Hence

G ·θ I u̇1 ẋ1I ∩ G ·θ I u̇2 ẋ2I 6= ∅.

Let hi ∈ I u̇i ẋiI and g ∈ G with gh1θ(g)−1
= h2. By our assumption on xi

and Ki , we have for any n ∈ N,

(I u̇i ẋiI)θ(I u̇i ẋiI) · · · θ n−1(I u̇i ẋiI)⊂
( ⋃
w∈WKi

IẇI
)
(I ẋiθ(ẋi) · · · θ

n−1(ẋi)I)

= (I ẋiθ(ẋi) · · · θ
n−1(ẋi)I)

( ⋃
w∈WKi

IẇI
)
. (a)
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Thus hiθ(hi) · · · θ
n−1(hi) ∈ (I ẋiθ(ẋi) · · · θ

n−1(ẋi)I)(
⋃

w∈WKi
IẇI).

Let n0 be a positive integer such that (xiθ)
n0 = tλi ∈ W̃ o 〈θ〉 for some λi ∈

X∗(Z)Gal(F̄/F). Since the V -factors of ν1 and ν2 are different, λ1 is not in the
W0-orbit of λ2. For any l ∈ N, we have

gh1θ(h1) · · · θ
n0l−1(h1)θ

n0l(g)−1
= h2θ(h2) · · · θ

n0l−1(h2).

Hence

g(It lλ1I)
( ⋃
w∈WK1

IẇI
)
θ n0l(g)−1

∩ (It lλ2I)
( ⋃
w∈WK2

IẇI
)
6= ∅

and thus

g(It lλ1I)
( ⋃
w∈WK1

IẇI
)
θ n0l(g)−1

( ⋃
w∈WK2

IẇI
)
∩ (It lλ2I) 6= ∅.

We have that g ∈ I żI for some z ∈ W̃ . Then for any l ∈ N,

(I żI)(It lλ1I)
( ⋃
w∈WK1

IẇI
)
(Iθ n0l(ż)−1I)

( ⋃
w∈WK2

IẇI
)
∩ It lλ2I 6= ∅.

Let N0 = maxw∈WK1
`(w)+ `(z)+maxw∈WK2

`(w). Then

I żI,
( ⋃
w∈WK1

IẇI
)
(Iθ nl(ż)−1I)

( ⋃
w∈WK2

IẇI
)
⊂

⋃
y∈Wa ;`(y)6N0

I ẏI

and

(I żI)(It lλ1I)
( ⋃
w∈WK1

IẇI
)
(Iθ nl(ż)−1I)

( ⋃
w∈WK2

IẇI
)

⊂

⋃
y,y′∈Wa ;`(y),`(y′)6N0

I ẏt lλ1 ẏ′I.

In particular, for l = 2N0 + 2](W0) + 1, there exists y, y′ ∈ Wa with `(y),
`(y′) 6 N0 such that t lλ2 = yt lλ1 y′. Assume that y = y0tχ and y′ = tχ

′

y′0 for
y0, y′0 ∈ W0 and χ, χ ′ ∈ X∗(Z)Gal(F̄/F). Then y0tχ+lλ1+χ

′

y′0 = t lλ2 . Hence lλ2 =

y0(χ+ lλ1+χ
′) and l(λ2− y0λ1) = y0(χ+χ

′). Notice that λ2− y0λ1 6= 0. Thus

`(t y0(χ+χ
′)) = `(tχ+χ

′

) 6 `(tχ )+ `(tχ
′

) 6 `(y)+ `(y0)+ `(y′)+ `(y′0)
6 2N0 + 2](W0) < l 6 `(t l(λ2−y0λ1)).

That is a contradiction.
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3. Newton decompositions of HR and H̄R

3.1. Main result. Recall that G =
⊔

ν∈ℵ G(ν). For ν ∈ ℵ, let HR(ν) be the
R-submodule of HR consisting of functions supported in G(ν) and let H̄R(ν)

be the image of HR(ν) in the cocenter H̄R . We first establish the Newton
decompositions of HR and H̄R .

THEOREM 10. We have that

(1) HR =
⊕

ν∈ℵ HR(ν).

(2) H̄R =
⊕

ν∈ℵ H̄R(ν).

3.2. Admissibility. A key ingredient in the proof is the admissibility of
Newton strata.

Following Grothendieck, a subset X of G is called admissible if for any open
compact subset C of G, X ∩C is stable under the right multiplication of an open
compact subgroup of G. We show that

(a) For any ν ∈ ℵ, G(ν) is admissible.
In [14, Theorem A.1], we show that each Frobenius-twisted conjugacy class

of a loop group is admissible. The argument works for the Newton strata of G as
well.

Another, and probably simpler argument to prove (a) is pointed out to me
by Ju-Lee Kim. Note that each G(ν) is open and closed. Thus for any open
compact subset C , G(ν)∩C is open and compact. As G(ν)∩C is open, for any
g ∈ G(ν)∩C , there exists an open compact subgroupK such that gK ⊂ G(ν)∩C .
As G(ν)∩C is compact, there exist finitely many elements gi and open compact
subgroups Ki such that G(ν) ∩ C =

⋃
i giKi . Set K =

⋂
i Ki . Then G(ν) ∩ C

is stable under the right multiplication of K.

3.3. Proof of Theorem 10. (1) Let K be an open compact subgroup of G
and f ∈ HR(G,K). Let X be the support of f . Then X is a compact subset
of G. By Proposition 5, there exists a finite subset {ν1, . . . , νk} of ℵ such that
X =

⊔
i(X ∩ G(νi)). By Section 3.2(a), there exists an open compact subgroup

K′ of K such that for 1 6 i 6 k, X∩G(νi) is stable under the right multiplication
of K′. Set fi = f |X∩G(νi ). Since f is invariant under the right action of K, fi is
invariant under the right action of K′. Moreover, the support of fi is X ∩ G(νi),
which is a compact subset of G. Thus fi ∈ HR(νi). So HR =

∑
ν∈ℵ HR(ν).

On the other hand, suppose that f =
∑

ν fν , where fν ∈ HR(ν) and only
finitely many fν’s are nonzero. Since G =

⊔
ν G(ν), fν = f |G(ν). In particular,
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fν is determined by f . Thus the decomposition HR =
∑

ν∈ℵ HR(ν) is a direct
sum decomposition.

(2) Let f ∈ HR and x ∈ G. By (1), we may write f as f =
∑

ν fν , where
fν ∈ HR(ν). By definition, x fν ∈ HR(ν). Thus

f − x f =
∑
ν

( fν − x fν) ∈
⊕
ν

([HR, HR]θ,ω ∩ HR(ν)).

The direct sum decomposition H̄R =
⊕

ν H̄R(ν) follows from HR =
⊕

ν HR(ν)

and [HR, HR]θ,ω =
⊕

ν([HR, HR]θ,ω ∩ HR(ν)).

4. Newton decomposition and IM type generators of H̄R(G,In)

4.1. Hecke algebra at level K. Let K be an open compact subgroup of G.
Recall that HR(G,K) is the Hecke algebra of compactly supported, K × K-
invariant functions on G. For any ν ∈ ℵ, we denote by HR(G,K; ν) the R-
submodule of HR(G,K) consisting of functions supported in G(ν).

Note that G(ν) is not stable under the right action of K. In other words, there
exists a K×K-orbit X that intersects at least two Newton strata. By Theorem 10
(1), 1X =

∑
ν;G(ν)∩X 6=∅ 1X∩G(ν) with 1X∩G(ν) ∈ HR(ν). As X ∩G(ν) 6= X for any

ν, we see that 1X∩G(ν) /∈ HR(G,K; ν). Thus

HR(G,K) %
⊕
ν

HR(G,K; ν).

4.2. Main result. Let In be the nth Moy–Prasad subgroup associated to the
barycenter of aC . Since the (In)n form a fundamental system of open compact
subgroups of G, we have HR = lim

−→
HR(G,In).

For any w ∈ W̃ , let Hw be the R-submodule of HR consisting of locally
constant functions supported in IẇI . For any w ∈ W̃ and n ∈ N, set HR(G,
In)w = HR(G,In) ∩ Hw.

Let H̄R(G,In), H̄R(G,In; ν) and H̄R(G,In)w be the images of HR(G,
In), HR(G,In; ν) and HR(G,In)w in H̄R , respectively. The main results of
this section are the Newton decomposition and the Iwahori–Matsumoto type
generators of H̄R(G,In).

THEOREM 11. Let n ∈ N with ω(In−1) = 1. Then:

(1) we have H̄R(G,In) =
⊕

ν∈ℵ H̄R(G,In; ν);

(2) for any ν ∈ ℵ, we have H̄R(G,In; ν) =
∑

w∈W̃min;π(w)=ν
H̄R(G,In)w.
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Since HR = lim
−→

HR(G,In), as a consequence of Theorem 11(2), we have the
Iwahori–Matsumoto type generators of H̄R .

COROLLARY 12. Let ν ∈ ℵ. Then

H̄R(ν) =
∑

w∈W̃min;π(w)=ν

H̄w,

where H̄w is the image of Hw in H̄R .

We first establish the following multiplication formula.

PROPOSITION 13. Let w,w′ ∈ W̃ with `(w) + `(w′) = `(ww′). Then for any
g ∈ IẇI and g′ ∈ Iẇ′I ,

1In gIn1In g′In = µG(In)1In gg′In .

REMARK 14. This formula was known for GLn by Howe [18] and for split
groups by Ganapathy [9].

4.3. From Ğ to G. Recall that F̆ is the completion of the maximal
unramified extension of F with valuation ring OF̆ and residue field k̄ and
σ is the Frobenius morphism of F̆ over F . Set Ğ = G(F̆). We denote the
Frobenius morphism on Ğ again by σ . Then G = Ğσ . In order to prove
Proposition 13, we use some facts on Ğ.

Let S be a maximal F̆-split torus of G which is defined over F and contains A.
Denote by ˘A the apartment corresponding to S over F̆ . By [3, 5.1.20], we have
a natural isomorphism A ∼= ˘A σ . Denote by ăC the unique σ -invariant facet of
˘A containing aC and denote by Ĭ the associated Iwahori subgroup over F̆ . Then

I = Ĭ σ . Let ˘̃W be the Iwahori–Weyl group over F̆ and W̆a be the associated

affine Weyl group. Let ˘̀ be the corresponding length function on ˘̃W .

We have a natural isomorphism W̃ ∼= ˘̃W σ . It is proved in [24, Proposition 1.11
and Sublemma 1.12] that for w,w′ ∈ W̃ , ˘̀(ww′) = ˘̀(w) + ˘̀(w′) if `(ww′) =
`(w)+ `(w′).

LEMMA 15. Let g ∈ G. Then (ĬngĬn/Ĭn)
σ
= IngIn/In .

Proof. We identify ĬngĬn/Ĭn with Ĭn/(Ĭn ∩ gĬng−1) and IngIn/In with
In/(In ∩ gIng−1). The natural map In → (ĬngĬn/Ĭn)

σ has kernel In ∩ gIng−1
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and induces an injective map

In/(In ∩ gIng−1)→ (Ĭn/(Ĭn ∩ gĬng−1))σ .

Note that Ĭn ∩ gĬng−1 is a pro-p subgroup of Ĭn . Thus any element in
(Ĭn/(Ĭn ∩ gĬng−1))σ can be lifted to an element in Ĭσn = In . So the map
In/(In ∩ gIng−1)→ (Ĭn/(Ĭn ∩ gĬng−1))σ is also surjective.

LEMMA 16. Let w ∈ W̃ and g ∈ IẇI . Then ]IngIn/In = q ˘̀(w).

Proof. Note that for any τ ∈ Ω and w ∈ W̃ , In τ̇ ẇIn = τ̇InẇIn and
]In τ̇ ẇIn/In = ]InẇIn/In . Thus it suffices to consider the case where w ∈ Wa .

We fix a reduced expression w = s1s2 · · · sk with si ∈ S̃ for all i . Set g′ =
ṡ1ṡ2 · · · ṡk . Suppose that g = hg′h′ for h, h′ ∈ I . Then IngIn = hIng′Inh′. It
suffices to prove the statement for g′.

Let R̆ be the set of affine roots of Ğ. We define R̆(w) = {α ∈ R̆;α > 0,
w(α) < 0}. By [24, Sublemma 1.12], R̆(w) = R̆(s) t sR̆(ws) for any s ∈ S̃
with ws < w. Define the action of Ĭk on Ĭ ṡ1Ĭ × · · · × Ĭ ṡk Ĭ by (i1, . . . , ik)·

(g1, . . . gk) = (g1i−1
1 , i1g1i−1

2 , . . . , ik−1gki−1
k ). Let Ĭ ṡ1Ĭ×Ĭ · · ·×Ĭ Ĭ ṡk Ĭ/Ĭ be the

quotient space. By standard facts on Tits systems (see [23, Theorem 5.1.3(i)]),
the multiplication map

Ĭ ṡ1Ĭ ×Ĭ · · · ×Ĭ Ĭ ṡk Ĭ/Ĭ → Ĭg′Ĭ/Ĭ
is bijective.

Similarly, the map

Ĭn ṡ1Ĭn ×Ĭn
· · · ×Ĭn

Ĭn ṡk Ĭn/Ĭn → Ĭng′Ĭn/Ĭn

is bijective.
Note that the multiplication map is σ -equivariant. Thus by Lemma 15,

Ing′In/In
∼= (Ĭn ṡ1Ĭn ×Ĭn

· · · ×Ĭn
Ĭn ṡk Ĭn/Ĭn)

σ

∼= In ṡ1In ×In · · · ×In In ṡkIn/In.

Therefore ]Ing′In/In = ](In ṡ1In/In)](In ṡ2In/In) · · · ](In ṡkIn/In).
It remains to show that for any s ∈ S̃, ]In ṡIn/In = q ˘̀(s).
Let Φ̆ be the set of roots of Ğ relative to S. and Φ̆ ′ be the set of nondivisible

roots in Φ̆. Let T be the centralizer of S. As in [25, Section 3.1], for any a ∈
Φ̆ ′, there exist αa, βa ∈ R̆ whose vector parts are a and such that the product
mappings

Πa∈Φ̆ ′Xαa × T0 → Ĭ,
Πa∈Φ̆ ′Xβa × T0 → Ĭ ∩ ṡĬ ṡ−1
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are bijective (for any ordering of the factors of the product), where Xα is the
affine root subgroup corresponding to the affine root α as in [25, Section 1.2]
and T0 is the unique parahoric subgroup of T (F̆).

By the definition of Ĭn , the product mappings

Πa∈Φ̆ ′Xαa+n × Tn → Ĭn,

Πa∈Φ̆ ′Xβa+n × Tn → Ĭn ∩ ṡĬn ṡ−1

are also bijective. Hence

Ĭn ṡĬn/Ĭn
∼= Πa∈Φ̆ ′Xαa+n/Πa∈Φ̆ ′Xβa+n

∼= Πa∈Φ̆ ′Xαa/Πa∈Φ̆ ′Xβa
∼= Ĭ ṡĬ/Ĭ.

By [24, Proof of Proposition 1.11], Ĭ ṡĬ/Ĭ is an affine space over k̄ of
dimension ˘̀(s). By Lemma 15, I ṡI/I = (Ĭn ṡĬn/Ĭn)

σ is the set of k-valued
points of an affine space of dimension ˘̀(s). Therefore, ]In ṡIn/In = q ˘̀(s).

4.4. Proof of Proposition 13. Define the action of In on IngIn × Ing′In by
h · (z, z′) = (zh−1, hz′). Let IngIn ×In Ing′In be the quotient. We consider the
map induced from the multiplication

IngIn ×In Ing′In/In → G/In.

It is obvious that Ingg′In/In is contained in the image. By Lemma 16,

]Ingg′In/In = q ˘̀(ww
′),

]IngIn ×In Ing′In/In = ]IngIn/In · ]Ing′In/In = q ˘̀(w)q ˘̀(w
′).

Since `(ww′) = `(w)+ `(w′), ˘̀(ww′) = ˘̀(w)+ ˘̀(w′). Therefore

]IngIn ×In Ing′In/In = ]Ingg′In/In.

Thus the image of the map IngIn×In Ing′In/In → G/In is Ingg′In/In and the
map is bijective. Now the statement follows from Section 1.2(a).

Similar to Section 2.4, we have the following inductive result.

LEMMA 17. Let n ∈ N with ω(In−1) = 1. Let w ∈ W̃ and s ∈ S.

(1) If `(swθ(s)) = `(w), then H̄R(G,In)w = H̄R(G,In)swθ(s).

(2) If swθ(s) < w, then H̄R(G,In)w ⊂ H̄R(G,In)swθ(s) + H̄R(G,In)sw.
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Proof. Without loss of generality, we may assume that sw < w. By definition,
HR(G,In)w is spanned by 1In gIn with g ∈ IẇI . Since sw < w, for any g ∈
IẇI , there exist g1 ∈ I ṡI and g2 ∈ I ṡẇI with g = g1g2. Since Ing1In ⊂

g1In−1, we have ω |In g1In is constant. By Proposition 13,

1In gIn =
1

µG(In)
1In g1In1In g2In

≡
ω(g1)

−1

µG(In)
1In g2In1Inθ(g1)In mod [HR(G,In), HR(G,In)]θ,ω.

If `(swθ(s))=`(w), then swθ(s) > sw and 1In g2In1In g1In ∈ HR(G,In)swθ(s).
Thus H̄R(G,In)w ⊂ H̄R(G,In)swθ(s). Similarly, H̄R(G,In)swθ(s) ⊂ H̄R(G,In)w.
Part (1) is proved.

If swθ(s) < w, then 1In g2In1In g1In ⊂ HR(G,In)swθ(s)+HR(G,In)sw. Part (2)
is proved.

4.5. Proof of Theorem 11. By Theorem 10,
∑

ν H̄R(G,In; ν) is a direct
sum. By definition, for any w ∈ W̃min, H̄R(G,In)w ⊂ H̄R(G,In;π(w)). Thus
it suffices to show that

H̄R(G,In) =
∑
w∈W̃min

H̄R(G,In)w.

Since HR(G,In) =
⊕

x∈W̃ HR(G,In)x , we argue by induction on `(x) that

H̄R(G,In)x ⊂
∑
w∈W̃min

H̄R(G,In)w.

If x ∈ W̃min, then the statement is obvious.
If x /∈ W̃min, then by Theorem 4, there exist x ′ ∈ W̃ and s ∈ S̃ such that x ≈θ x ′

and sx ′θ(s) < x ′. Then by Lemma 17, H̄R(G,In)x = H̄R(G,In)x ′ ⊂ H̄R(G,
In)sx ′ + H̄R(G,In)sx ′θ(s). Since `(sx ′), `(sx ′θ(s)) < `(x), the statement follows
from inductive hypothesis on sx ′ and sx ′θ(s).

4.6. Reformulation. By Theorem 7 and Lemma 17(1), the Iwahori–
Matsumoto type generators of H̄R(G,In; ν) can be formulated as follows:

(a) Any element in H̄R(G,In; ν) can be represented by an element in HR(G,
In) with support in

⋃
(x,K ,u) is a standard triple;ux∈W̃min,π(x)=ν I u̇ ẋI .
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5. Howe’s conjecture

5.1. Howe’s conjecture. Let X be a compact subset of G. Recall that

G ·θ X = {gxθ(g)−1
; g ∈ G, x ∈ X}.

We denote by J (G ·θ X) the set of (θ, ω)-invariant distributions of G supported
in G ·θ X . Let K be an open compact subgroup of G. Howe’s conjecture asserts
that

THEOREM 18. The restriction J (G ·θ X) |HR(G,K) is finite dimensional.

REMARK 19. For ordinary invariant distributions, this is proved by Clozel [6],
Barbasch and Moy [1]. For twisted invariant distributions, this is a new result.
Our approach here is different from both [6] and [1].

5.2. Invariant distributions. Let n ∈ N with ω(In−1) = 1 and ν ∈ ℵ. Then
In is an open compact subgroup of G and Xν is a compact subset of G. By
definition, the Newton stratum G(ν) is G ·θ Xν .

Recall that R is a commutative Z[1/p]-algebra. For any R-module M , we set
M∗ = HomR(M, R). By the Newton decomposition G =

⊔
ν∈ℵ G(ν), we have

that
J (G) =

⊕
ν∈ℵ

J (G(ν)) and J (G(ν)) = H̄R(ν)
∗.

We first consider J (G(ν)) |HR(G,In) and give an upper bound of its rank. We will
show in Section 5.3 how the general case in Howe’s conjecture can be reduced
to this case.

THEOREM 20. Let ν ∈ ℵ. Then there exists a constant Nν ∈ N such that for any
n ∈ N with ω(In−1) = 1, J (G(ν)) |HR(G,In) is generated by Nν[I : In] elements.

Proof. We have that

J (G(ν)) |HR(G,In) = J (G(ν)) |H̄R(G,In)
= J (G(ν)) |⊕

v′∈ℵ H̄R(G,In ;v′)

= J (G(ν)) |H̄R(G,In ;ν)
= H̄R(G,In; ν)

∗.

Here the first and last equalities follow from the definition of invariant
distributions, the second equality follows from the Newton decomposition
H̄R(G,In) =

⊕
ν∈ℵ H̄R(G,In; ν) (Theorem 11(1)) and the third equality

follows from the fact that G(ν) ∩ G(ν ′) = ∅ for ν 6= ν ′ (Theorem 3).
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By the Iwahori–Matsumoto type generators of H̄R(G,In; ν) (Theorem 11(2)),
we have a surjection ⊕

w∈W̃min;π(w)=ν

HR(G,In)w � H̄R(G,In; ν).

By Corollary 9, there are only finitely many w ∈ W̃min with π(w) = ν. We
denote this number by Nν . For each such w and for any g ∈ IẇI , by Lemma 16,
we have

](IẇI/In)= ](IẇI/I)[I : In] = q ˘̀(w)[I : In], and ](IngIn/In)= q ˘̀(w).

Thus IẇI is a union of [I : In] double cosets of In .
In particular, rankHR(G,In)w = [I : In]. Therefore H̄R(G,In; ν) is generated

by
∑

w∈W̃min;π(w)=ν
rankHR(G,In)w = Nν[I : In] elements.

5.3. Proof of Theorem 18. By Proposition 5, X is contained in a finite union
of Newton strata G(ν). Therefore J (G ·θ X) is a subset of a finite union of
J (G(ν)). For any open compact subgroup K of G, there exists n ∈ N such that
ω(In−1) = 1 and In ⊂ K.

Hence HR(G,K) ⊂ HR(G,In) and J (G(ν)) |HR(G,K)⊂ J (G(ν)) |HR(G,In).
Now the statement follows from Theorem 20.

6. Rigid cocenter

6.1. Rigid cocenter. For any ν = (τ, v) ∈ ℵ, we denote by Mν the centralizer
of v in G, that is, the subgroup of G generated by Z(F) and the root subgroups
Ua(F) for all roots a with 〈v, a〉 = 0 (see [21, Section 6.1]). This is a Levi
subgroup of G.

We define the rigid and nonrigid part of G by

G rig =
⊔

ν∈ℵ;Mν=G

G(ν), Gnrig =
⊔

ν∈ℵ;Mν 6=G

G(ν).

Let H rig
R and H nrig

R be the subset of HR consisting of functions supported in G rig

and Gnrig, respectively and let H̄ rig
R and H̄ nrig

R be their images in H̄R , respectively.
We call H̄ rig

R the rigid cocenter and H̄ nrig
R the nonrigid part of cocenter. We have

H̄ rig
R =

⊕
ν∈ℵ;Mν=G

H̄R(ν), H̄ nrig
R =

⊕
ν∈ℵ;Mν 6=G

H̄R(ν).
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By the Newton decomposition on H̄R (Theorem 10), we have

H̄R = H̄ rig
R ⊕ H̄ nrig

R .

We denote by J (G)rig the set of (θ, ω)-invariant distributions supported in G rig

and J (G)nrig the set of (θ, ω)-invariant distributions supported in Gnrig. We have

J (G)rig = (H̄
rig
R )
∗, J (G)nrig = (H̄

nrig
R )∗ and J (G) = J (G)rig ⊕ J (G)nrig.

The main purpose of this section is to give an explicit description of the rigid
cocenter. In a future work [15], we will establish the Bernstein–Lusztig type
generators of the cocenter, and realize the nonrigid cocenter as a direct sum of
+-rigid parts of cocenters of proper Levi subgroups.

6.2. Standard pairs. We first study J (G)rig.
Let P be a standard parahoric subgroup of G, that is a parahoric subgroup of

G containing I . Let τ ∈ Ω . We say that (P, τ ) is a standard pair if τ̇ θ(P)τ̇−1
=

P . Let WP be the (finite) Weyl group of P . Then the conjugation action of τ
induces a length-preserving automorphism on WP . We denote by StP the set of
all standard pairs.

We have that

PROPOSITION 21. The rigid part of G equals
⋃

(P,τ )∈StP G ·θ P τ̇ .

Proof. Let (P, τ ) be a standard pair. Let n be a positive integer such that (τθ)n =
tλ. Since τ ∈ Ω , tλ ∈ Ω and thus 〈λ, a〉 = 0 for any root a of G. Therefore
Mλ = G and Mπ(τ) = G. Note that τ̇ θ(P)τ̇−1

= P . Similar to the proof of
Proposition 5, we have

P τ̇ =
⋃
w

P ·θ Iẇτ̇I,

where w ∈ WP such that wτ is of minimal length in {xwτθ(x)−1
; x ∈ WP}. Let

w be such an element. Then it is easy to see that π(wτ) = π(τ). Moreover, for
any x ′ ∈ W̃ , we may write x ′ as x ′ = x1x2 for x1 ∈ W̃P and x2 ∈ WP . Then
x2wτθ(x2)

−1
∈ WPτ and

`(x1x2wτθ(x2)
−1θ(x1)

−1) > `(x1x2wτθ(x2)
−1)− `(x1)

= `(x1)+ `(x2wτθ(x2)
−1)− `(x1)

= `(x2wτθ(x2)
−1) > `(wτ).

Hence wτ ∈ W̃min. Thus we have

P τ̇ ⊂ G(π(τ)).

https://doi.org/10.1017/fmp.2018.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2018.1


Newton decomposition 23

On the other hand, let w ∈ W̃min with central Newton point, that is 〈νw, a〉 = 0
for all roots a of G. Then by [16, Corollary 2.8], we have w ∈ WPτ for some
standard pair (P, τ ), where WP is the Weyl group of P . Then IẇI ⊂ P τ̇ and
G ·θ IẇI ⊂ G ·θ P τ̇ . Thus

G rig =
⋃

(P,τ )∈StP

G ·θ P τ̇ .

6.3. The structure of J(G)rig. For any (P, τ ) ∈ StP, we denote by
HR(P τ̇ ) ⊂ HR the R-submodule consisting of functions supported in P τ̇ .
Note that P τ̇ is stable under the θ -twisted conjugation action of P . We denote
by JP(Pτ) the set of (P, θ, ω)-invariant distributions on P τ̇ , that is, the set of
distributions j on P τ̇ such that j ( f ) = j (p f ) for any p ∈ P and f ∈ HR(P τ̇ ).
Then it is easy to see that the restriction of any (θ, ω)-invariant distribution on
G to P τ̇ is (P, θ, ω)-invariant.

THEOREM 22. The restriction map J (G) →
⊕

(P,τ )∈StP JP(P τ̇ ) gives a
bijection from J (G)rig to the R-submodule of

⊕
(P,τ )∈StP JP(P τ̇ ) consisting of

the elements ( j(P,τ ))(P,τ )∈StP ∈ ⊕JP(P τ̇ ) satisfying the condition

∀(P, τ ), (Q, γ ), x ∈ P W̃Q, ( jP,τ |P τ̇∩ẋQγ̇ θ(ẋ)−1) = ẋ( jQ,γ |Qγ̇∩ẋ−1P τ̇ θ(ẋ)). (*)

Proof. For any standard pair (P, τ ), we denote by HR(P τ̇ ) the subset of HR

consisting of functions supported in P τ̇ . By Proposition 21, we have a surjection

prig :
⊕

(P,τ )∈StP

HR(P τ̇ )� H̄ rig
R . (a)

Therefore the restriction map j 7→ ( j |P τ̇ )(P,τ )∈StP from J (G)rig to the direct
sum of distributions on P τ̇ is injective. It is also easy to see that j |P τ̇ is
(P, θ, ω)-invariant. Moreover, for all standard pairs (P, τ ), (Q, γ ) and x ∈
P W̃Q, the θ -twisted conjugation action by ẋ sends Qγ ∩ ẋ−1P τ̇ θ(ẋ) to P τ̇ ∩
ẋQγ̇ θ(ẋ)−1. Thus j |P τ̇∩ẋQγ̇ θ(ẋ)−1=

ẋ( j |Qγ̇∩ẋ−1P τ̇ θ(ẋ)).
On the other hand, given ( j(P,τ ))(P,τ )∈StP ∈ ⊕JP(P τ̇ ) satisfying the condition

(∗), we construct a distribution j ∈ J (G)rig using the sheaf-theoretic description
of distributions.

First, we set j |Gnrig= 0. For any g ∈ G rig, by Proposition 21 we may choose a
small neighborhood U of g such that U ⊂ G rig and that there exists h ∈ G with
hUθ(h)−1

⊂ P τ̇ for some standard pair (P, τ ). We define

j |U= h−1
( j(P,τ ) |hUθ(h)−1).
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It remains to show that
(b) The family ( j |U ) we obtained above is independent of the choice of h and

(P, τ ).
Once (b) is proved, we automatically have ( j |U ) |U∩U ′= ( j |U ′) |U∩U ′ for any

open subsets U,U ′ of G rig, and thus the family ( j |U ) defines a distribution j of
G supported in G rig. The (θ, ω)-invariant condition for j follows from the fact
that ( j |U ) is independent of the choice of h.

Now we prove (b). Let U,U ′ be small neighborhoods of g and h, h′ ∈ G with
hUθ(h)−1

⊂ P τ̇ and h′U ′θ(h′)−1
⊂ Qγ̇ . After θ -twisted conjugation, we may

and do assume that h′ = 1. Then U ′ ⊂ Qγ̇ and Qγ̇ ∩ h−1P τ̇ θ(h) 6= ∅.
We write h as h = pẋq for p ∈ P , x ∈ P W̃Q and q ∈ Q. Then

h−1
( j(P,τ ) |hUθ(h)−1) = q−1 ẋ−1

( j(P,τ ) |ẋqUθ(ẋq)−1) as j(P,τ ) is (P, θ, ω)-invariant

=
q−1
( j(Q,γ ) |qUθ(q)−1) by the condition (*)

= j(Q,γ ) |U as j(Q,γ ) is (Q, θ, ω)-invariant.

This finishes the proof.

6.4. The structure of H̄rig
R . Let (P, τ ), (Q, γ ) be standard pairs and x ∈

P W̃Q. We define

H(P,τ ),(Q,γ ),x = {( f,−ẋ f ); f ∈ HR(P τ̇ ) with support in P τ̇ ∩ ẋQγ̇ θ(ẋ)−1
}.

We call it the (P,Q, x)-graph in HR(P τ̇ )⊕ HR(Qγ̇ ).
We have seen in the proof of Theorem 22 that H̄ rig

R is generated by HR(P τ̇ ).
Since τ̇ θ(P)τ̇−1

= P , we have [HR(P), HR(P τ̇ )]θ,ω ⊂ HR(P τ̇ ). This gives
some relations in H̄ rig

R . Now we show that the remaining relations in H̄ rig
R are

given by the (P,Q, x)-graphs.

THEOREM 23. The kernel of the surjective map

prig :
⊕

(P,τ )∈StP

HR(P τ̇ )� H̄ rig
R

is spanned by [HR(P), HR(P τ̇ )]θ,ω ⊂ HR(P τ̇ ) and H(P,τ ),(Q,γ ),x ⊂ HR(P τ̇ )⊕
HR(Qγ̇ ).

Proof. By definition, [HR(P), HR(P τ̇ )]θ,ω and H(P,τ ),(Q,γ ),x are contained in the
kernel of prig.

Now we prove the other direction. Let ( f(P,τ )) ∈ ⊕HR(P τ̇ )with
∑

f(P,τ ) = 0
in H̄R . Let Ω ′ = {τ ∈ Ω; f(P,τ ) 6= 0 for some P} and let Ω0 = 〈θ〉 · Ω

′ be the
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smallest θ -stable subset of Ω that contains Ω ′. Since the action of θ on Ω is of
finite order, Ω0 is a finite subset of Ω . Let StP0 = {(P, τ ) ∈ StP; τ ∈ Ω0}. As
there are only finitely many standard parahoric subgroups, StP0 is a finite subset
of StP. By definition, there exists n ∈ N such that f(P,τ ) ∈ HR(P τ̇ ,In) for any
(P, τ ) ∈ StP0. For any standard pair (P, τ ), HR(P τ̇ ,In) is finite dimensional.
In particular,

(a) The restriction
⊕

(P,τ )∈StP0
JP(P τ̇ ) |HR(P τ̇ ,In) is finite dimensional.

Let G0
rig = {g ∈ G rig; κ(g) ∈ Ω0} and G1

rig = G rig − G0
rig. Let J (G)0rig and

J (G)1rig be the set of (θ, ω)-invariant distributions supported in G0
rig and G1

rig,
respectively. We define (H̄ rig

R )0 and (H̄ rig
R )1 in a similar way. Then

J (G)rig = J (G)0rig ⊕ J (G)1rig, H̄ rig
R = (H̄

rig
R )0 ⊕ (H̄

rig
R )1, and

J (G)0rig = (H̄
rig
R )
∗

0.

Since Ω0 is θ -stable, for any standard pair (P, τ ), P τ̇ ⊂ G0
rig if (P, τ ) ∈ StP0

and P τ̇ ⊂ G1
rig if (P, τ ) /∈ StP0. Thus the image of

⊕
(P,τ )∈StP0

HR(P τ̇ )→ H̄ rig
R

equals (H̄ rig
R )0 and the restriction map J (G)0rig → J (P τ̇ ) equals 0 for any (P,

τ ) /∈ StP0.
By Theorem 22 and (a) above, the map J (G)0rig →

⊕
(P,τ )∈StP0

JP(P τ̇ ) is
injective and there exists a finite subset A of the 5-tuples (P, τ,Q, γ, x) with
(P, τ ), (Q, γ ) ∈ StP0 and x ∈ P W̃Q such that(

J (G)rig →
⊕

(P,τ )∈StP0

JP(P τ̇ ) |HR(P τ̇ ,In)

)
= V |⊕

(P,τ )∈StP0
HR(P τ̇ ,In),

where V is the subspace of
⊕

(P,τ )∈StP0
JP(P τ̇ ) defined by the equations

( jP,τ |P τ̇∩ẋQγ̇ θ(ẋ)−1) = ẋ( jQ,γ |Qγ̇∩ẋ−1P τ̇ θ(ẋ)) for (P, τ,Q, γ, x) ∈ A. (b)

Therefore V |⊕
(P,τ )∈StP0

HR(P τ̇ ,In)= (
⊕

(P,τ )∈StP0
HR(P τ̇ ,In) → H̄ rig

R )
∗. Since

both spaces are finite dimensional, the kernel of the map
⊕

(P,τ )∈StP0
HR(P τ̇ ,

In)→ H̄ rig
R ) consists precisely of the elements vanishing on V .

Notice that for any standard pair (P, τ ),

JP(P τ̇ ) = (HR(P τ̇ )/[HR(P), HR(P τ̇ )]θ,ω)∗.

So the elements of
⊕

(P,τ )∈StP0
HR(P τ̇ ,In) vanishing on

⊕
(P,τ )∈StP0

JP(P τ̇ ) are
exactly

⊕
(P,τ )∈StP0

[HR(P), HR(P τ̇ )]θ,ω ∩ HR(P τ̇ ,In).
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The subspace V of
⊕

(P,τ )∈StP0
JP(P τ̇ ) is defined by the equations in (b).

Taking the dual, we see that the elements vanishing on V are spanned by⊕
(P,τ )∈StP0

[HR(P), HR(P τ̇ )]θ,ω ∩ HR(P τ̇ ,In) and

∑
(P,τ,Q,γ,x)∈A

H(P,τ ),(Q,γ ),x .
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