
ON THE AVERAGE NUMBER OF TREES IN CERTAIN MAPS 

R. C. MULLIN 

1. Introduction. For a formal definition of "map" the reader is referred to 
(7, §2). The maps in this paper are rooted by specifying an orientation for one 
of the edges. This also specifies a root vertex, the negative end of the root, 
and a root face, the face on the left of the root edge. Counting is, as usual, 
defined on isomorphism classes. 

Regular maps of even valence have been enumerated in a recent paper by 
Tutte. In this paper we determine the average number of trees in such maps, 
and include similar results for regular tri valent maps, that is, maps with three 
edges incident on every vertex. In the development for the latter, a formula 
for the number of trivalent maps with 2/ vertices is produced. 

2. Almost regular maps of even valence. An almost regular rooted map is 
a map in which all vertices with the possible exception of the root vertex have 
the same valence. Maps of even valence are in 1-1 correspondence with rooted 
bicubic maps as defined in (7, §4). Indeed if one contracts the faces of root 
colour in a bicubic map of (7), one obtains a regular map of even valence, and 
the operation can be reversed to recover the bicubic map. Since the number of 
rooted bicubic maps in which the root face has valence 2t, and there are just 
qs other faces of root colour with valence 25 (s = 1, 2, 3 . . .), is shown to be 

, 9 n (» - Dl (20! ft i (2*- l ) !y* 
V'l> (k -l)\(n-k + 2)! t\ (t - 1)! i i \sl (s - 1)!] ' 

where 2n is the total number of vertices, and k is the number of faces of the 
root colour, thus the number of rooted maps with v vertices, each non-root 
vertex of valence 2s and root vertex of valence 2t, is 

(9 9, [fr-pj-n-1]» (2/)! / ( f r -p l l - 1 . 
K ' } (v - 1)! [(v-l)s + t - v + 2]! t\ (t - 1)! \s\ 0 - l)!j 

Let us denote the class of such maps by M (s, t, v) for future reference. 

3. Trivalent maps. Unfortunately no formula corresponding to (2.2) is 
known for regular maps of odd valence. However, we shall develop a formula 
in the case of maps in which every vertex is trivalent. The enumeration will 
be done in terms of the dual maps as defined in (7). In general both these maps 
will be singular, that is loops are permitted. Thus one edge may be incident 
with multiplicity two on a vertex. Also a face may not be bounded by a simple 
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closed curve, but, by the topology of the plane, may be incident with multi­
plicity two on certain edges (called isthmuses) of its boundary. Thus in the case 
of loops each loop is counted twice when determining the number of edges 
incident with a vertex, and in the case of isthmuses each is counted twice when 
determining the number of edges incident with a face. Let us consider maps in 
which every face is incident with three (not necessarily distinct) edges. We 
shall call such maps triangular, noting that these maps differ from those 
triangular maps that occur in other papers, such as (4, 5, 6, and 7), where only 
non-singular maps are permitted. The root face, edge, and vertex in the original 
are mapped onto the root vertex, edge, and face respectively under duality. 

Let lv be the number of such maps with v non-root faces in which the root 
face is exceptional inasmuch as it is bounded by a loop, and mv be the number 
of triangular maps with v non-root faces and a root face which is a (non-
singular) digon. 

Let us define formal power series 

oo oo 

L(x) =^2 hx\ M{x) = 22 wivX13-
v—l v=l 

Removing the root from a map whose root face is bounded solely by a loop 
produces either a pair of maps, both of which have loop roots (Fig. 1(a)), or a 

(a) (b) 

FIGURE 1 

triangularized digon (Fig. 1(b)), and the construction can be reversed. Thus 

(3.2) L(x) = x[L\x) + M(x)], 
that is, 

(3.3) xL(x) = [1 - V ( l - 4x2lf(x))]/2, 

where the radical represents the series with constant term 1. Let dn represent 
the number of triangulations of a triangle in which there are n vertices not 
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incident with the root face (for the definition of triangulation cf. 1). Let us 
define the formal power series 

(3.4) D*(x) = x £ dnx\ 

Let us refer to a triangulation of an n-gon as a triangulated n-gon and a tri-
angularization of an n-gon as a triangularized n-gon. 

Removing the root from a triangularized digon produces either a triangular­
ized loop digon pair (Fig. 2(a)), or a triangularized non-singular triangle 

w 
(a) (b) 

FIGURE 2 

(Fig. 2(b)). The reduced entities may be rooted as in the figures. The maps of 
loop-digon pair variety are enumerated by 2xL(x)M(x). It can be shown that 
any triangularizations of a non-singular triangle can be obtained by replacing 
edges in a triangulated triangle by triangularized digons. Thus such triangu­
larized triangles are enumerated by 

oo 

(3.5) x 2 dnx
u+1[M(x)fn+3 = D*[x2M\x)], 

71=0 

and therefore 
M(x) = 1 + 2xL(x)M(x) + D*[x2M*(x)], 

where 1 is included to enumerate the degenerate case of a single edge. Employing 
(3.3) yields 
(3.6) D*[x2Mz(x)] - M(x)V[l ~ 4x2M(x)] + 1 = 0 . 
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As shown in (1), if 
x = u(l — u)z

} 

(3.7) D*(x) = u(l - 2u). 

Define r(pc)by 

(3.8) r(x) = u[x2Mz(x)]. 

Then 

(3.9) x2M*(x) = r ( l - r)\ 

(3.10) D[x2M*(x)] = r(l - 2r), 

and (3.6) yields 

(3.11) M(x) = (1 - r)( l + 8 r ) i y 

thus 

(3.12) r = x2(l + 8r)3/2, 

(3.13) xL{x) = | (l - J^+l) • 

(3.14) i: 2M-1 

Applying Lagrange's power-series theorem (8) to (3.12) and (3.13), we obtain 

(31/2) ( _ 1 2 3 ' 

0 + 1 ) ! ' 
where (x)r = x(x — 1). . . (x — r + 1) for r > 0, (x)0 = 1, 0*0-i = l / (x + 1). 
Dualizing, one obtains the number of rooted trivalent maps "on a stick," 
that is, trivalent maps in which the root vertex is monovalent. By removing the 
root edge and rooting the homeomorphically reduced graph by an appropriate 
convention, one obtains a regular rooted trivalent map. The number of such 
maps with 2/ vertices is again ht+i> 

4. Plane trees and sequences. The enumeration in the following section is 
based on the fact that one may list the vertices of a plane tree as they are 
encountered as one proceeds in a fixed direction around the tree beginning at 
the root vertex and proceeding along the root edge (see Fig. 3). Let us assume 

C 

FIGURE 3. sequence ABACADEDAFGFA. 
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that in such a sequence the root vertex is included as the final member of the 
sequence. (All trees and sequences considered are finite.) We list necessary and 
sufficient conditions that a sequence of characters correspond thus to a tree. 
The sequence Ak, Ak+i, . . . , As is said to be a segment (with end point x) of the 
sequence Ai,A2,...,Ak, Ak+1, . . . , As, . . . , Au if Ak = As = xand At ^ x, 
i = 1, 2, . . . , k — 1 and i = s + 1,. . . , /, where 1 < k < 5 < t. 

A sequence is dendritic if (1) no consecutive symbols are identical and 
(2) no element is in both a segment and its complement. 

A sequence Sc is said to be a contraction of 5 if every segment of the sequence 
5 is replaced by its end point x. The operation is well defined for dendritic 
sequences. A monovalent of a sequence is an element of that sequence that 
occurs precisely once. A sequence Ai, A2, . . . , A21+1 is symmetric about A t+i 
HA H-i-H = At+i_i, i = 1,2,. . . ,/. 

A dendritic sequence 5 is arboreal if for every monovalent m of S the sequence 
PcmQc is symmetric about m, where 5 = PmQ. (Again we note that the opera­
tion is well defined since the sequence is dendritic.) 

An elementary induction proves that a sequence is the vertex listing of a 
rooted plane tree if and only if it is arboreal, and that if the tree has v vertices, 
the corresponding sequence contains 2v — 1 symbols. Having made these 
observations we return to the problem of finding the average number of trees 
in regular maps. To do so we shall take each map of the class with which we are 
dealing and further root it by distinguishing in it a spanning tree. By counting 
all such maps (called tree-rooted maps) that can be formed by taking all 
possible choices of spanning subtree, and dividing by the number of maps in the 
original class, we obtain an average value for the number of trees per map. 

5. Tree-rooted maps. A rooted map is said to be tree-rooted if a spanning 
tree is distinguished as a root tree in the map. A tree-rooted map in which every 
face (possibly singular) is an (r + 2)-gon, with the possible exception of the 
root-face which is a t-gon, and in which the total number of vertices is v> is 
said to be of type [r, /, v]. 

Let P(r, n) denote the class of all rooted plane polygons with n + 1 vertices, 
whose non-root-face is partitioned into (r + 2)-gons by non-intersecting 
diagonals. Let us define an (r, /, v)-tree-perm as a sequence (Pi, P2, . . . ,Pt' T), 
where Pt £ P(r, nt) and 

t 

Y<ni = 2v-21 

and T is a rooted plane tree with v vertices. We assume that r > 1. 

LEMMA 1. (r, /, v)-tree-perms are in 1-1 correspondence with tree-rooted maps of 
type [r, t, v]. 

Before beginning the proof of the lemma, it is first necessary to root the root-
tree in each map, that is to orient one of the edges in the root-tree of the map 
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by a suitable convention. For example, let us consider the non-loop edges radi­
ating from the root vertex w of the original map as being listed in order of 
occurrence as one goes around the vertex such that one crosses the negative 
end of the root edge from left to right in some neighbourhood of w sufficiently 
small that the direction is uniquely defined. (That such a neighbourhood exists 
is proved in the forthcoming book on graph theory by W. T. Tutte.) That not 
all edges at the vertex are loops is guaranteed by the fact that in the case we are 
considering r > 1, that is, no non-root face is bounded solely by a loop; thus 
interior to each loop must be a non-loop edge. Since the root-tree is spanning, 
there will be some edge of the root-tree T which occurs as the first edge of T 
in the listing of edges at the root vertex as described above. This edge, oriented 
away from w, serves to root the spanning tree. Let us call the rooted root-tree 

Proof of Lemma 1. Choose any tree-rooted map M of type [r, t, v]. Let us 
label the edges of the root-face E = Pi , P2 , . . . , Et as they occur in cyclic 
order about the root-face in the orientation induced by the root edge. These 
edges are to be oriented consistent with the root-face. Let us trace around the 
root-tree T* as in Section 4, beginning along the left side of the root edge of 
T* (see Fig. 4). In the tree T* there is a unique arc At joining the ends of 
Eui = 1,2,. . . ,/. 

Let us construct the tree-perm to be associated with the above tree-rooted 
map as follows. For the tree component select the root-tree P*. If the arc A t 

described above is the edge Eu take the ith entry in the partitioned polygon 
portion of the vector to be the degenerate polygon Pt consisting of an oriented 
edge. U Ai 5* Et, then the closure of A t \J Et bounds two residual domains. 

Let Ri be the residual domain of A t VJ Et which does not include the root-
face. There is a path P*^ joining the ends of Eu obtained by listing vertices 
and edges encountered as one traces the residual portion Tt of P*, beginning 
with one end of E and keeping T' on the left, never crossing T. 

Construct a rooted plane polygon whose vertices and edges correspond in 
sequence to those of the circular path Et\J P* t and orient it according to the 
orientation on Et. The interior of this polygon can be partitioned into (r + 2)-
gons by means of the sequence of faces along the path P"% in the "natural" 
way. The edges in the partition can be shown to be diagonals. Call this polygon 
P j . Now form the tree-perm (Pi, P2 , . . . , Pt' P*)- In this, P* has v vertices, 
and considering the class of P* as being P(r, w*), one observes that 

t 

^ nt = 2n — 2, 

because the sequence of vertices listed in going around the tree contains 
2v — 2 characters if the root vertex is not included at the end, since the ends 
of each Et are counted twice. The construction can be reversed. Indeed, if the 
first member of the perm is a single edge, the root of the tree is the root of the 
map. Otherwise the non-root exterior edge incident with the root vertex of the 
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first member of the tree-perm is identified with the left side of the root edge of 
the tree. The construction continues as suggested by Fig. 4, the root edges of the 
tree-perm members bounding the root-face of the map being constructed. 

(a) 

FIGURE 4 

LEMMA 2. The number of (r, t, v)-tree perms with a specified rooted tree com­
ponent is 

t(k[r+l] + t - 1)! 
kl(kr + t)l 

where 2v = kr + / + 2. 

Proof. I t is observed in (2) that the number of non-isomorphic members of 
P (rj n) is the coefficient of xn in that power series solution of 

(5.1) y = x + yr 

that is analytic at x = 0. Thus the number of tree-perms in question is the 
coefficient of x2v~2 in the expansion of y\ where y is defined by (5.1). By 
Lagrange's theorem, if D = d/dx, 

^.Z) y - x + J L ^ v \x j - z , k\(kr + t)l X ' 

Hence the lemma follows. 

COROLLARY. The number of tree-rooted maps of type [r, t, v] is 

(5.3) 

where 

t(2v + k - 3)1 
(v - ly.vlkl 

2V = kr + t + 2. 
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This follows from the well-known result (3) that there are 

(5 4) Jfr^ZV 
{bA) v\(p-l)l 

rooted plane trees with v vertices. Standard arguments with the Euler poly­
hedron formula show that the parameter k in the preceding formula is the 
number of non-root-faces in the [r, t, z»]-map. Sincethere is a 1-1 correspondence 
between trees in a map and trees in the dual, the preceding result may be 
restated as follows. 

The number of tree-rooted maps in which there are v vertices, the non-root 
vertices of valence u, and the root vertex of valence t is 

(,V t(2x + v-4)l 
{ } (*)! (pc- 1)1 (v- 1 ) ! ' 

where 

(5.6) x = * [ ( » - \){u- 2) + t + 2]. 

6. Ratios. We may now deduce the statistical average of trees per map in 
M (s, t, v) by dividing the number of tree-rooted maps in M (s, t, v) by the 
number of maps in M (s, t, v). Thus the statistical average of trees per map 
in M (s, t, v) is, for s > 2, 

ran K 2 . - 1) + 2(t - s)]\ t\ {f - 1)1 js\ (s - I ) ! ) , - 1 

V>-1> [(„ _ i ) ( 5 _ i ) + t\\ [(„ _ i)s + t-l}\ (2t - 1)! I (2s - 1)! J ' 

Clearly for t = s, that is, for regular maps, this average is 

[v(2s - 1)]! js\ (s - 1)! 
K ' [v(s - 1) + 1]! (vs - 1)! I (2s - 1)! 

The formula is evidently valid for 5 = 1. Further, the average number of trees 
per rooted trivalent map with It vertices is 

3(4Q!  
(6.3) 

(* + 2)! ( 2 * - 1)! (Zt/2)t_12
i 

7. Asymptotic formulae. Asymptotic approximations will be included for 
results concerning regular maps which occur in this paper. Letting j = ( in 
(2.2), the number of rooted regular maps with v vertices of valence 2s is 

( 7 U (25) (vs - 1)! / (25 - 1) 
y ' (v - 1)! [v(s - 1) + 2]! Is! (s -1)1 

which, for fixed s ^ 1, as v —» °° , is approximately 

( 7 - 2 ) V ~i (s - 1)»<-1> Is! (s - l ) ! j • 
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The average number of trees for such a map is approximated asymptotically by 

(7* , - (1/2) ( 2 5 - I ) ' » - » * j k ! ( 5 - l ) ! V 
{''6>

 V 2 T S"-1/2(S - iyX-»+w \ (2s - 1)! / • 

The number of rooted trivalent maps with 2t vertices is asymptotically 

/•y £\ 1 o(3<+D/222M-^-W2) 

and the average number of trees in such a map is estimated by 

(7 .5) 1 2 4 ( 3 - i (3 «-«_ 

•y irt 

The author wishes to thank W. T. Tutte and the referee for their useful 
suggestions in the preparation of this paper. 
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