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We discuss energetic restrictions on the entrainment coefficient α for axisymmetric jets
and plumes. The resulting entrainment relation includes contributions from the mean
flow, turbulence and pressure, fundamentally linking α to the production of turbulence
kinetic energy, the plume Richardson number Ri and the profile coefficients associated
with the shape of the buoyancy and velocity profiles. This entrainment relation
generalises the work by Kaminski et al. (J. Fluid Mech., vol. 526, 2005, pp. 361–376)
and Fox (J. Geophys. Res., vol. 75, 1970, pp. 6818–6835). The energetic viewpoint
provides a unified framework with which to analyse the classical entrainment models
implied by the plume theories of Morton et al. (Proc. R. Soc. Lond. A, vol. 234, 1955,
pp. 1–23) and Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1954, pp. 144–157).
Data for pure jets and plumes in unstratified environments indicate that to first order
the physics is captured by the Priestley and Ball entrainment model, implying that
(1) the profile coefficient associated with the production of turbulence kinetic energy
has approximately the same value for pure plumes and jets, (2) the value of α for
a pure plume is roughly a factor of 5/3 larger than for a jet and (3) the enhanced
entrainment coefficient in plumes is primarily associated with the behaviour of the
mean flow and not with buoyancy-enhanced turbulence. Theoretical suggestions are
made on how entrainment can be systematically studied by creating constant-Ri flows
in a numerical simulation or laboratory experiment.

Key words: free shear layers, wakes/jets, plumes/thermals

1. Introduction
The entrainment hypothesis is the standard turbulence closure used in integral

descriptions of turbulent jets and plumes. It links the entrainment velocity, the rate
at which ambient fluid is entrained into the plume, to a typical velocity inside the
plume by a single coefficient of proportionality α, the entrainment coefficient. For
axisymmetric releases, the entrainment hypothesis takes the form (Turner 1986)

−(ru)r=∞ = αr̂ŵ, (1.1)

where r and u denote the radial direction and radial velocity, and r̂ and ŵ are the
characteristic plume radius and velocity respectively. The entrainment coefficient α is
generally the only parameter representing the effect that turbulence has on the mean
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334 M. van Reeuwijk and J. Craske

flow, and it is remarkable that the behaviour of a flow as complex as a turbulent
plume can be captured by a closure as simple as (1.1). In this respect it could be
regarded as the free-shear equivalent of the quadratic friction relation for wall-bounded
flows under fully rough conditions, which links the wall shear stress to the free-stream
velocity via a single friction coefficient.

The value of α is subject to significant variability: typical values for the ‘top-hat’
entrainment coefficient are in the range 0.065<α< 0.080 in jets and 0.10<α< 0.16
in pure plumes (Fischer et al. 1979; Carazzo, Kaminski & Tait 2006). Here, the term
‘top-hat’ refers to a description that assumes a uniform value of profiles of velocity
and buoyancy over a finite radius. The flux-balance parameter Γ (Morton 1959),
which will be rigorously defined in § 2, allows one to distinguish between jets and
pure plumes. In neutrally stratified environments, vertically (denoted z) oriented flows
evolve in such a way that Γ (z) either remains constant or approaches an asymptotic
limit. For a pure jet, which has no buoyancy, Γ (z)= 0. Plumes that have an excess
of momentum at their source are called ‘forced’, and Γ is in the range 0 < Γ < 1;
plumes that have a deficit of momentum at their source are called ‘lazy’, and have
Γ > 1 (Hunt & Kaye 2005). Both forced and lazy plumes will transition to a pure
plume (Γ = 1) as the flow develops. A review of jets and plumes can be found in,
e.g., Hunt & van den Bremer (2011).

There is significant variation in α between different experiments, as is evident
from the large range of observed values. This can be attributed to differences in
experimental set-ups, experimental error and uncertainty (Turner 1986; Kaminski,
Tait & Carazzo 2005), and also source conditions (George 1989; Redford, Castro &
Coleman 2012). However, it is evident that there is a systematic difference between
the reported value of α for jets and plumes, which suggests a dependence of α on Γ .

In this paper we consider restrictions imposed upon the entrainment coefficient
α by the equation for the mean kinetic energy. We will refer to this restriction
as an entrainment relation hereafter. The entrainment relation couples α to various
physical processes such as turbulence production and buoyancy effects. We will refer
to entrainment models as the closed relations that are obtained once the various
coefficients in the entrainment relation are parameterised. The aim of this paper is
to provide a hierarchy of energy-consistent entrainment relations that can be used
either in a diagnostic mode, clarifying the physics of turbulent entrainment, or in
a prognostic mode, leading to entrainment models that can be used for predictive
purposes.

To date, no distinction has been made between an entrainment relation and an
entrainment model, perhaps because much of the discussion in the literature has
focused on the reconciliation of the plume theories of Morton, Taylor & Turner
(1956, MTT) and Priestley & Ball (1955, PB). These theories are obtained by
integrating the axisymmetric Reynolds-averaged Navier–Stokes equations across a
plane perpendicular to the mean-flow direction, resulting in a system of coupled
ordinary differential equations (ODEs) in terms of integral quantities. The MTT
plume equations comprise three ODEs in terms of the volume flux Q, the momentum
flux M and the buoyancy flux F. Entrainment into the plume is quantified by a
constant parameter α (the entrainment coefficient) which features in the volume
conservation equation. The PB plume equations consist of three coupled ODEs for
M, F and the flux of mean kinetic energy E. The PB plume equations rely on a
parameterisation of the production of turbulence kinetic energy, or equivalently the
Reynolds stress.

A lucid description of how the two models are related was provided by Fox (1970);
by simultaneously considering the conservation equations of volume, momentum,
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Energy-consistent entrainment relations for jets and plumes 335

buoyancy and mean kinetic energy, he linked the two models and was the first to
highlight the constraints imposed on α by the conservation equation for mean kinetic
energy, i.e. the entrainment relation. The analysis was restricted to fully self-similar
profiles (i.e. the far field), and his model took into account the possibility of the
velocity and buoyancy profiles having different widths. Apart from deriving the
far-field entrainment relation, Fox derived the PB entrainment model, given by (Fox
1970; List & Imberger 1973)

α = αj + (αp − αj)Γ, (1.2)

where αj and αp are the entrainment coefficients for a pure jet and a pure plume
respectively. A few years later List & Imberger (1973), starting from the observation
that jets and plumes spread at practically the same rate (see also List 1982), derived
an entrainment model compatible with (1.2). This is indeed consistent – solutions to
the PB model are straight-sided, with identical spreading rate regardless of the value
of Γ , including forced and lazy plumes (Priestley & Ball 1955, see also § 5). The PB
entrainment model provides predictions for α that are in reasonably good agreement
with laboratory experiments on forced plumes in an unstratified ambient (Wang & Law
2002; Matulka et al. 2014; Ezzamel, Salizzoni & Hunt 2015).

In a response to Fox’s analysis, Morton (1971) highlighted that for a plume rising
in a linearly stratified ambient, both models were equally appropriate; however, near
the source and the neutral buoyancy level the MTT approach was preferable because
it was able to predict plume necking and spreading respectively. Here, necking refers
to the observation that lazy plumes tend to contract relatively close to the source
(see, e.g., Fannelop & Webber 2003), and spreading refers to the widening of a
plume once it reaches a location where the buoyancy of the environment is identical
to that of the plume (the neutral buoyancy level). Indeed, a problem with (1.2) in
stratified environments is that it admits a sign change in α, which motivated the
empirical model for the entrainment coefficient proposed by Fischer et al. (1979,
p. 371). More sophisticated among attempts to model entrainment in plumes is the
approach of Telford (1966). Recognising that the assumption of self-similarity is
often violated in the context of atmospheric convection, Telford (1966) suggests that
the entrainment coefficient is proportional to the turbulence intensity, and solves an
additional equation for the turbulence kinetic energy.

Kaminski et al. (2005) should be credited for reintroducing energy-based entrain-
ment relations to the plume literature. Indeed, they built on the foundations laid by
Fox (1970), and extended the analysis by relaxing the assumptions regarding the radial
profile dependences. This led to an entrainment relation valid for both the near field
and the far field, which exposed the physics of entrainment in terms of leading-order
quantities. While the main focus of Kaminski et al. (2005) was on turbulent fountains,
they argued that the ratio of the width of the velocity profile to the buoyancy (reduced
gravity) profile, denoted λ, could help to reconcile the spread in α for pure plumes.
In particular, they showed evidence that small variations of λ in the vertical direction
had an effect on entrainment, a process they termed similarity drift. A disadvantage of
their derivation is the use of top-hat scales for r̂ and ŵ that depend on the buoyancy
flux, which is not standard procedure and is not a logical extension of the scales
one defines in jets. This greatly complicates the use of their entrainment relation,
as the relation between α and the Kaminski entrainment coefficient αe is not trivial
(see appendix A for details). The framework was further extended with turbulence
and pressure contributions by Ezzamel et al. (2015), who provide an entrainment
relation directly in terms of the Gaussian entrainment coefficient αG. They remark
that similarity drift does not feature in αG in the same way as in αe (see also § 3),
which, as noted above, is a result of the different scale definitions employed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.534


336 M. van Reeuwijk and J. Craske

Consideration of a mean energy budget becomes crucial once the restriction of a
steady state is lifted. This is because the various profile coefficients characterising
the mean and turbulent profiles of velocity and buoyancy play an independent role
in defining the structure of the governing integral equations (Craske & van Reeuwijk
2015a,b). Moreover, a mean kinetic energy equation for unsteady jets and plumes
can be readily obtained without significant approximation, thereby circumventing
the difficulties that are associated with obtaining a conservation equation for the
volume of the plume (see, e.g., Scase & Hewitt 2012). Indeed, due to the underlying
assumptions, one finds significant differences between existing unsteady plume
models (e.g. those of Delichatsios 1979; Yu 1990; Vul’fson & Borodin 2001; Scase
et al. 2006), whose properties and consistency can be checked with respect to an
overarching framework by appealing to the mean energy equation (Craske & van
Reeuwijk 2015b). In the context of entrainment, the use of a momentum–energy
framework allows one to deduce that under certain conditions both unsteady jets
and plumes remain straight-sided (Craske 2015; Craske & van Reeuwijk 2015b), and
allowed Craske & van Reeuwijk (2015a) to obtain a decomposition of the entrainment
coefficient for jets, similar to that of Kaminski et al. (2005), but with the important
distinction that (1) both turbulence and pressure contributions are included and (2)
standard (top-hat) definitions for radius and velocity scales are used.

In § 2, we adapt the momentum–energy framework developed in Craske & van
Reeuwijk (2015a,b) to include buoyancy. An entrainment relation that ensures
compatibility between volume and energy conservation is derived in § 3, after which
a hierarchy of entrainment relations will be provided which naturally accommodate
the entrainment relations of Kaminski et al. (2005) and Fox (1970). The implications
of the entrainment relation and a physical interpretation are provided in § 4. The
entrainment models underlying the MTT and PB theories are discussed in § 5 and
an investigation into an appropriate entrainment model for pure jets and pure plumes
in an unstratified environment is undertaken in § 6. One of the key requirements in
order to systematically study turbulent entrainment is to maintain a constant plume
Richardson number Ri as the plume ascends; § 7 discusses possibilities of how a
constant Ri may be achieved. Concluding remarks are made in § 8.

2. Governing equations
Consider a round high-Reynolds-number turbulent plume orientated in the vertical

(z) direction whose flow is statistically axisymmetric. We consider Reynolds-averaged
conservation equations for volume, streamwise momentum and buoyancy. Adopting
the Boussinesq approximation and assuming high-Reynolds-number flow, the
governing equations are

1
r
∂

∂r
(ru)+ ∂w

∂z
= 0, (2.1)

1
r
∂

∂r
(ru w+ ru′w′)+ ∂

∂z
(w2 +w′2)=−∂p

∂z
+ b, (2.2)

1
r
∂

∂r
(rub+ ru′b′)+ ∂

∂z
(wb+w′b′)=−N2w. (2.3)

Here, the mean velocity components (u, w) correspond to the directions (r, z)
respectively, p denotes the kinematic pressure from which the hydrostatic pressure
field resulting from the environmental density ρe(z) has been subtracted, and
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b= g(ρe − ρ)/ρ0 is the buoyancy for which ρ0 is a reference density. The buoyancy
frequency is defined as N2(z)=−(g/ρ0)(dρe/dz).

By multiplying (2.2) with 2w, we obtain after some manipulation

1
r
∂

∂r
(ru w2 + 2ru′w′w)+ ∂

∂z
(w3 + 2w′2w+ 2p w)

= 2 u′w′
∂w
∂r
+ 2 w′2

∂w
∂z
+ 2p

∂w
∂z
+ 2wb. (2.4)

This equation will be referred to as the equation of mean kinetic energy, since the
typical scale for the mean radial velocity is smaller than the streamwise velocity by
a factor α, implying that the mean kinetic energy is dominated by w2. The first two
terms of (2.4) represent the radial and vertical transport terms, each containing mean
and turbulent flux contributions. The term 2 u′w′(∂w/∂r)+ 2 w′2(∂w/∂z) is associated
with the production of turbulence kinetic energy and forms a sink term in the equation
for mean kinetic energy. The term 2 p(∂w/∂z) is a pressure redistribution term and
2 wb represents the production of mean kinetic energy due to buoyancy. We note
that the absence of viscous terms in the equation for mean kinetic energy does not
imply that viscous dissipation is neglected altogether. While the viscous dissipation
associated with the mean-flow components is indeed negligible at high Reynolds
number (Re) (see, e.g., Tennekes & Lumley 1972), the component associated with
the turbulence cannot be neglected. The latter dissipation rate is crucial in the balance
of turbulence kinetic energy, as it is of the same order of magnitude as the turbulence
production term (Shabbir & George 1994). However, the balance of turbulence kinetic
energy is not considered in this paper, and viscous effects are thus entirely absent
from the mathematical description of the mean flow.

The volume flux Q, momentum flux M, integral buoyancy B and buoyancy flux F
are defined as

Q≡ 2
∫ ∞

0
wr dr, M ≡ 2

∫ ∞

0
w2r dr, B≡ 2

∫ ∞

0
br dr, F≡ 2

∫ ∞

0
wbr dr.

(2.5a−d)
These integral quantities can be used to define a characteristic plume width, velocity
and buoyancy respectively:

rm ≡ Q
M1/2

, wm ≡ M
Q
, bm ≡ BM

Q2
. (2.6a−c)

These scales are consistent with top-hat variables; however, it should be noted that the
analysis below does not make a priori assumptions regarding the profile shape.

Integration of (2.1)–(2.4) over r results in

dQ
dz
= 2αM1/2, (2.7)

d
dz

(
βgM

)= FQ
θmM

, (2.8)

d
dz

(
θg

θm
F
)
=−N2Q, (2.9)

d
dz

(
γg

M2

Q

)
= δg

M5/2

Q2
+ 2F. (2.10)

The right-hand side of the volume conservation equation (2.7) was obtained by
making use of the entrainment hypothesis (1.1) using the characteristic scales defined
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in (2.6a−c). The parameters β, γ , θ and δ in (2.7)–(2.10) are profile coefficients
associated with the dimensionless momentum flux, energy flux, buoyancy flux and
turbulence production respectively. Consistent with Craske & van Reeuwijk (2015a),
the gross value of a profile coefficient, e.g. γg, is composed of contributions from
the mean flow, turbulence and pressure, i.e. γg = γm + γf + γp. Explicitly, the profile
coefficients are defined as

βm ≡ M
w2

mr2
m

≡ 1, βf ≡ 2
w2

mr2
m

∫ ∞

0
w′2r dr, βp ≡ 2

w2
mr2

m

∫ ∞

0
pr dr,

γm ≡ 2
w3

mr2
m

∫ ∞

0
w3r dr, γf ≡ 4

w3
mr2

m

∫ ∞

0
ww′2r dr, γp ≡ 4

w3
mr2

m

∫ ∞

0
w pr dr,

δm ≡ 4
w3

mrm

∫ ∞

0
w′u′

dw
dr

r dr, δf ≡ 4
w3

mrm

∫ ∞

0
w′2

dw
dz

r dr, δp ≡ 4
w3

mrm

∫ ∞

0
p

dw
dz

r dr,

θm ≡ F
wmbmr2

m

, θf ≡ 2
wmbmr2

m

∫ ∞

0
w′b′r dr.





(2.11)
It should be noted that the definition of θm provides a fundamental relation between
the integral buoyancy B and the buoyancy flux F as B= FQ/(θmM).

The profile coefficients influence the definition of the flux-balance parameter Γ ,
which expresses the ratio of buoyancy force to inertia (Morton 1959). As discussed
in the introduction, Γ = 0 for a pure jet and Γ = 1 for a pure plume. In the far field,
the first-order (velocity, buoyancy) and second-order (Reynolds stresses, buoyancy
variance) statistics are fully self-similar (i.e. preserve shape upon rescaling radius
and the quantity in consideration by the local characteristic scales rm, wm and bm),
implying that the profile coefficients are therefore constant. In this case, (2.7)–(2.9)
are consistent with the classical plume equations

dQ
dz
= 2αM1/2,

dM
dz
= FEQ

M
,

dFE

dz
=−N2

EQ, (2.12a−c)

where FE and NE are the effective buoyancy flux and frequency respectively, defined
as

FE ≡ F
βgθm

, NE ≡ N
(
θgβg

)1/2 . (2.13a,b)

The connection with the standard plume equations is valuable because these have
been widely applied to model problems of further complexity (e.g. the ventilation of
buildings; Linden 1999). Equation (2.13a,b) indicates how effects from turbulence (via
βg) and differences in the shape of the buoyancy and the velocity profiles (via θm)
influence solutions to the classical plume equations and the practical applications to
which they have been applied. For a pure plume in an unstratified environment, the
solutions of (2.12a−c) are the power-law solutions (see, e.g., Turner 1979)

Q(z)= 6αp

5
M1/2z, M(z)=

(
9

10

)2/3

α2/3
p F2/3

E z4/3, FE = const., (2.14a,b)

where αp is the entrainment coefficient for a pure plume. The definition of the flux-
balance parameter Γ (Morton 1959) generalises to

Γ = 5FEQ2

8αpM5/2
= 5FQ2

8αpβgθmM5/2
= 5

8αpβg
Ri. (2.15)
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Here, the plume Richardson number Ri, representative of the ratio of gravitational to
inertial forcing, is defined as

Ri≡ bmrm

w2
m

= FQ2

θmM5/2
. (2.16)

By construction, Γ = 1 for a pure plume, as is clear from substituting the power-law
solution (2.14a,b) into (2.15). The associated Richardson number is Rip = 8αpβg/5;
indeed, Γ can be alternatively defined as Γ = Ri/Rip.

3. The entrainment relation
The system (2.7)–(2.10) comprises four equations with three dependent variables (Q,

M and F) and is thus overdetermined. However, the energy conservation equation (2.4)
is derived from, and fully consistent with, the volume and momentum conservation
equations (2.1) and (2.2). Integration over the radial direction cannot alter this
property, and thus (2.10) must also be fully consistent with (2.7) and (2.8). This
places a restriction on α, which was introduced into (2.7) by invoking the entrainment
hypothesis (1.1).

Using (2.7) as a definition of α and applying the product rule of differentiation to
(2.10) and (2.8), it follows that

α ≡ 1
2M1/2

dQ
dz

= Q
βgM3/2

d
dz
(βgM)− Q2

2γgM5/2

d
dz

(
γg

M2

Q

)
+ Q

2M1/2

d
dz

(
log

γg

β2
g

)

= − δg

2γg
+
(

1
βg
− θm

γg

)
Ri+ Q

2M1/2

d
dz

(
log

γg

β2
g

)
. (3.1)

For an interpretation of the terms in (3.1), see § 4. The entrainment relation (3.1)
is a consistency requirement that is valid independently of model choices. This
consistency requirement is valuable because entrainment models – which make
particular assumptions regarding βg, θm and γg – have received criticism for not
being applicable to specific flows, e.g. for clouds (Squires & Turner 1962) or for
reacting plumes (Ricou & Spalding 1961; Hermanson & Dimotakis 1989). Indeed, the
attractiveness of (3.1) is that it is a relation with which all models for entrainment
must be consistent. If a particular entrainment model is not in agreement with
observations, it therefore becomes a relatively simple matter to pinpoint the cause
of the discrepancy. The spreading rate drm/dz is closely associated with, and is
often used to infer, α. It is therefore useful to establish how this quantity can be
decomposed:

drm

dz
= 1

M1/2

dQ
dz
− Q

2M3/2

dM
dz

= − δg

γg
+ 3

2

(
1
βg
− 4

3
θm

γg

)
Ri+ Q

M1/2

d
dz

(
log

γg

β
3/2
g

)
. (3.2)

Table 1 contains a hierarchy of entrainment relations, which will be detailed
below. The entrainment relation (3.1), hereafter called α-F, includes the effects of
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Relation Assumptions α

α-F None − δg

2γg
+
(

1
βg
− θm

γg

)
Ri+ Q

2M1/2

d
dz

(
log

γg

β2
g

)
(3.3)

α-M Mean − δm

2γm
+
(

1− θm

γm

)
Ri+ Q

2M1/2

d
dz
(log γm) (3.4)

α-S Self-similar − δg

2γg
+
(

1
βg
− θm

γg

)
Ri (3.5)

α-MS Mean self-similar − δm

2γm
+
(

1− θm

γm

)
Ri (3.6)

α-MSG Gaussian, θm = 1 −3
8
δm + 1

4
Ri (3.7)

TABLE 1. The hierarchy of entrainment relations. These relations are based on an integral
or ‘top-hat’ description using definitions (2.5a−d) and (2.6a−c); for a conversion to a
Gaussian or other description see appendix B.

mean quantities, turbulence and pressure. This entrainment relation makes minimal
assumptions about the flow and will form the basis of all simplified entrainment
relations described below. It is ideal for use in a diagnostic mode using data obtained
from direct simulation, as was done in Craske & van Reeuwijk (2015a).

Upon making the assumption that βg = βm = 1, γg = γm and δg = δm (i.e. ignoring
turbulence and pressure effects), the entrainment relation α-M, (3.4), is obtained. This
is the entrainment relation that was derived by Kaminski et al. (2005), although it is
not immediately obvious that α-M is indeed consistent with their entrainment model;
a detailed proof of the equivalence of the two models is provided in appendix A. In
contrast to the relation derived by Kaminski et al. (2005), the ‘similarity drift’ term in
α-M (cf. third term), does not depend on the shape of the buoyancy profile via θm (see
also Ezzamel et al. 2015), but only on γm, i.e. the shape of the velocity profile. The
reason for this difference resides in the use of standard top-hat scales in this paper,
see appendix A for details. Instead, variations in θm influence the second term in α-
M only, capturing the possible slow variation in the shape of the buoyancy profile
discussed in Kaminski et al. (2005). This entrainment relation is ideal for examining
the physics of turbulent plumes using experimental data. Indeed, many modern particle
image velocimetry and laser Doppler anemometry systems can record high-frequency
velocity fields, which, if augmented with appropriate buoyancy measurements, provide
access to all of the required coefficients in α-M. In complexity, the extension of the
Kaminski entrainment relation by Ezzamel et al. (2015) sits between α-F and α-M
and will not be laboured further here.

By assuming full self-similarity in the first- and second-order statistics, and
therefore that βm, γm and δm are constants, the entrainment relation α-MS is obtained,
see (3.6). Formally, the only strict requirement of obtaining (3.6) from (3.4) is that
γm is constant. The relation α-MS is the entrainment relation derived by Fox (1970),
and describes the fundamental connection between the two main unknowns, δm and
θm, and the entrainment coefficient α. Upon assuming that the profiles are Gaussian
and that θm= 1, (3.7) is obtained, which will be referred to as α-MSG. The spreading
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Relation Assumptions drm/dz

α-F None − δg

γg
+ 3

2

(
1
βg
− 4

3
θm

γg

)
Ri+ Q

M1/2

d
dz

(
log

γg

β
3/2
g

)
(3.8)

α-M Mean − δm

γm
+ 3

2

(
1− 4

3
θm

γm

)
Ri+ Q

M1/2

d
dz
(log γm) (3.9)

α-S Self-similar − δg

γg
+ 3

2

(
1
βg
− 4

3
θm

γg

)
Ri (3.10)

α-MS Mean self-similar − δm

γm
+ 3

2

(
1− 4

3
θm

γm

)
Ri (3.11)

α-MSG Gaussian, θm = 1 −3
4
δm (3.12)

TABLE 2. The spreading rate drm/dz associated with the entrainment relation. These
relations are based on an integral or ‘top-hat’ description using definitions (2.5a−d) and
(2.6a−c); for a conversion to a Gaussian or other description see appendix B.

rate associated with each entrainment relation is presented in table 2. One striking
feature of the spreading rate equations is that under the realistic assumption that the
far-field behaviour can be described by self-similar Gaussian profiles of equal width
(relation α-MSG), the Ri-term associated with the net effect of buoyancy is identically
zero, implying that the spreading rate is determined purely by the profile coefficient
associated with the production of turbulence kinetic energy.

4. Physics of entrainment
In this section, we interpret the physical meaning of the three terms of the

entrainment relation. The first term on the right-hand side of (3.3), −δg/(2γg), is
the ratio of the dimensionless turbulence production term δg and the dimensionless
energy flux γg. It should be noted that δg < 0 under normal circumstances because
the production of turbulence kinetic energy is a sink term in the equation for mean
kinetic energy (2.10). For jets (Ri = 0), this is the only non-zero term in the far
field (Craske & van Reeuwijk 2015a). For both pure jets and pure plumes, δg is
dominated by δm, the other production term δf and pressure redistribution term δp
being comparatively small (Craske 2015; Craske & van Reeuwijk 2015a).

The second term in (3.3) is the net effect of buoyancy on the entrainment coefficient,
which we will discuss in depth in the next paragraphs. The third term is associated
with streamwise changes in the shape of the velocity statistics through the profile
coefficients βg and γg. These quantities are primarily associated with the mean flow,
but also contain pressure and turbulence contributions, the latter being known to
require a large distance to come to a full equilibrium (Wang & Law 2002; Ezzamel
et al. 2015). The third term is associated with the similarity drift discussed in
Kaminski et al. (2005) and Carazzo et al. (2006), although as previously mentioned
the present formulation does not contain contributions of θm because of the standard
top-hat definitions of rm and wm used in this paper (see appendix A).

The entrainment relation α-MS, which assumes full self-similarity and leading-order
contributions only, will be used to further interpret the physics of turbulent
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MTT

PB

FIGURE 1. (Colour online) The far-field entrainment relation α-MS, plotted together with
the MTT entrainment model (fixed α; red line) and the PB entrainment model (fixed δm;
blue line).

entrainment. As emphasised earlier, entrainment relations ensure consistency between
volume, momentum and energy conservation at the integral level. Figure 1 shows the
functional dependence of the entrainment coefficient α on the turbulence production
contribution −δm/(2γm) and net buoyancy (1 − θm/γm)Ri as a grey isosurface. Only
points on this surface are physically realisable; therefore, models of entrainment
must necessarily be defined on this surface. Two entrainment models associated with
the MTT and PB plume theories, which form the subject of § 5, are shown by red
and blue lines respectively. The entrainment relation makes no assumption about
how profile coefficients (e.g. δm, γm) depend on properties of the flow such as the
Richardson number Ri, source conditions and local environmental conditions, for
example. Indeed, the way in which entrainment depends on these aspects of the flow
remains an open question, which is partially addressed for flows in an unstratified
ambient in § 6. The entrainment relation does, however, impose a fundamental
consistency requirement linking the various model parameters, and therefore provides
a necessary framework for the investigation of entrainment. In the far field, where
profiles are assumed to be fully self-similar, profile coefficients will only depend
on Ri. For unstratified situations and for plumes with a constant buoyancy flux, the
only cases for which Ri (and thus Γ ) remains constant as a function of z are a jet
and a pure plume; it is, however, theoretically possible to achieve other constant-Ri
solutions by considering, e.g., stratification, see § 7.

Within the α-MS assumptions, the entrainment relation (3.6) follows from

α = rm

M
dM
dz
− rm

2E
dE
dz
, (4.1)

where E = γmM2/Q is the mean energy flux. The contribution of the normalised
momentum flux (rm/M)(dM/dz) is the entrainment associated with the buoyancy
force in the momentum equation, which evaluates to Ri. The normalised energy-flux
term (rm/E)(dE/dz) evaluates to −δm/(2γm) − (θm/γm)Ri. By using M1/2 = Q/rm in
the definition of α, (4.1) can be written as

α = 1
2
1Q
Q
= 1M

M
− 1

2
1E
E
, (4.2)
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where 1Q= rm dQ/dz, 1M= rm dM/dz and 1E= rm dE/dz represent changes over the
characteristic length scale rm. Thus, α can be interpreted as (half) the relative increase
in Q over a characteristic length rm. The decomposition shows that an increase in
the momentum flux 1M > 0 will contribute positively to α while an increase in the
energy flux 1E> 0 contributes negatively. The balance of these two normalised fluxes
depends sensitively on the profile coefficients. In a jet 1M = 0 but 1E< 0, because
energy in the mean flow is converted to turbulence kinetic energy (cf. the first term on
the right-hand side of (3.6)), implying that α> 0. The effect of buoyancy is somewhat
more subtle. While buoyancy increases the momentum flux of the plume (1M > 0),
the buoyancy flux also increases the energy flux of the plume (1E> 0), implying that
buoyancy contributes both positively and negatively to α respectively. The net effect
of buoyancy on α depends on the profile coefficients; for a Gaussian plume the net
effect is positive, as is evident in (3.7).

Within the α-MS assumptions, the explicit buoyancy contribution to α is purely
associated with the mean flow, which suggests that a buoyant plume has an
entrainment mechanism that does not directly rely on turbulence. To illustrate this
it is instructive to perform a thought experiment and set δm = 0, θm = 1, i.e. we
consider a plume that does not produce turbulence. The following two cases can be
considered.

(1) A ‘top-hat’ plume with velocity profile w = wmH(1 − r/rm) where H is the
Heaviside function, implying that γm= 1. In this case, both 1M> 0 and 1E> 0
due to the buoyancy. However, as (1− θm/γm)Ri= 0, the plume does not entrain,
i.e. α= 0. The radius rm will decrease in order to satisfy momentum and energy
conservation, cf. (3.11).

(2) A Gaussian plume with velocity profile w = 2wm exp(−2r2/r2
m), implying that

γm = 4/3. Since γm = 4/3 > 1, the value of 1E/E is less negative for a
Gaussian than for a top-hat plume. Consequently (1 − θm/γm)Ri > 0, implying
that α> 0: the Gaussian plume entrains in order to satisfy momentum and energy
conservation. From (3.11) it follows that the solution is a column of fluid of
constant radius.

In both cases considered here, the fluid accelerates as 1M > 0 while the radius
is either narrowing (top-hat plume) or remains constant (Gaussian plume). Without
turbulence production, i.e. δm = 0, a top-hat plume is not able to entrain. However,
a Gaussian plume is able to entrain even in the absence of turbulence. Although
a Gaussian profile clearly requires turbulence to maintain its shape, the argument
above demonstrates that buoyancy provides plumes with an entrainment mechanism
not directly associated with turbulence.

5. Entrainment models

In this section, we look at the MTT and PB theories in the light of the Gaussian far-
field entrainment relation α-MSG. While the MTT theory does not explicitly assume
that profiles are Gaussian, it can nevertheless be cast into the form of α-MSG, as we
will show. The PB theory assumes that δm takes a constant value δPB, while the MTT
model assumes that the entrainment coefficient αMTT is a constant. These assumptions
represent lines on the realisability surface of the entrainment relation, as shown in
figure 1. It should be noted that the axes in this figure are not independent. Indeed,
as argued in the previous section, α and δm are both expected to depend on Ri and,
if non-equilibrium effects are included, also on z. In this light, the MTT and PB

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.534


344 M. van Reeuwijk and J. Craske

models form two limit cases: the MTT model assumes that α is independent of Ri,
while the PB model assumes that δm is independent of Ri. Evidently, observations
are required to determine under which circumstances the various models describe the
physics accurately. We will examine the evidence for pure jets and plumes in an
unstratified ambient in § 6.

5.1. The PB entrainment model
Substitution of a constant value δPB into the entrainment relation (3.7) provides the
following model for the entrainment coefficient:

αPB(Ri)=− 3
8δPB + 1

4 Ri, (5.1)

or equivalently, in terms of the flux parameter Γ (using βg = 1, consistent with the
α-MS relation),

αPB(Γ )=− 3
8δPB + 2

5αpΓ. (5.2)
For a pure jet (Γ = 0) it follows that αj = −(3/8)δPB, implying that αPB = αj +
(2/5)αpΓ . By substituting the pure plume condition Γ = 1 (for which by definition
αPB = αp) it follows directly that

αp = 5
3αj. (5.3)

This remarkable prediction is mentioned in passing in List & Imberger (1973,
equation (25)) where an entrainment model is derived starting from straight-sidedness
that is consistent with the entrainment model implied by the PB plume equations.

Here, we note that according to the PB model, the higher entrainment of the plume
is a result not of buoyancy-enhanced turbulence production but of the entrainment
associated with the mean flow. Substitution of (5.3) back into (5.2) results in the
operational entrainment model (1.2). A striking feature of the PB model is that the
solutions are straight-sided, as can be inferred from (3.12), which is a consequence of
δPB being constant. Straight-sidedness is perhaps the most crucial assumption of the
PB model and is a testable hypothesis. This is physically not realistic in the near field,
where necking is often observed, and near the level of neutral buoyancy, where the
plume spreads out. Indeed, in both cases one does not expect turbulence production
to remain in proportion to w3

mrm.

5.2. The MTT entrainment model
Substitution of a constant value αMTT for α into the entrainment relation (3.7) results
in

δMTT(Ri)=− 8
3αMTT + 2

3 Ri=− 16
15αMTT

(
5
2 − Γ

)
. (5.4)

It thus follows directly that the model predicts that pure plumes (Γ = 1) produce
less turbulence than jets (Γ = 0). Moreover, according to the MTT entrainment model
plumes are expected to be narrower than jets, since

drm

dz
= 2αMTT − 1

2
Ri= 4αMTT

5

(
5
2
− Γ

)
. (5.5)

Equation (5.5), derived here via the entrainment relation, is consistent with van den
Bremer & Hunt (2010, equation (2.14)). This prediction is contrary to observations,
which typically indicate that plumes have a slightly greater spreading rate than jets
(e.g. List 1982). However, it should be noted that it is standard practice to choose
a different value for α depending on whether one wishes to carry out jet or plume
predictions, and the observed deficiency of the MTT entrainment model is therefore
obscured. Nevertheless, for situations in which Ri varies as a function of z, e.g. for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.534


Energy-consistent entrainment relations for jets and plumes 345

lazy/forced plumes in a neutral environment or plumes in stratified environments, one
will have to decide on a single value for α. The Ri dependence of the spreading rate in
(5.5) is the reason why the MTT plume equations are able to predict plume necking in
the near field for lazy plumes. Indeed, for Γ > 5/2, δMTT changes sign and drm/dz< 0.
Similarly, the model predicts the plume spreading out to infinity at the neutral
buoyancy level. The capability to capture necking and spreading is an extremely
useful feature of the MTT model, although further work is needed to understand the
extent to which the model faithfully represents the underlying physical processes.

6. Pure jets and plumes in an unstratified environment

In this section we investigate entrainment for pure jets and plumes in an unstratified
environment using data available in the literature. We focus on α, δm, γm and, in
the case of a plume, θm. Table 3 shows the values of these coefficients for the
following studies: Papanicolaou & List (1988, PL88); Panchapakesan & Lumley
(1993a, PL93); Shabbir & George (1994, SG94); Wang & Law (2002, WL02);
Craske (2015, Re = 1600, CvR15c); Craske & van Reeuwijk (2015a, Re = 4815,
CvR15a) and Ezzamel et al. (2015, ESH15). Often, there is more than one way
in which a coefficient can be inferred from a given data set, resulting in some
systematic uncertainty in the estimates. For example, to estimate α from the direct
numerical simulation data, Craske & van Reeuwijk (2015a) compute (dQ/dz)/(2M1/2)

directly, whereas experimentalists (see, e.g., Wang & Law 2002) typically prefer to
infer α from the spreading rate of the plume by fitting a Gaussian curve to the
profiles of mean velocity. Only in the case of fully self-similar Gaussian plumes
are these two approaches equivalent. The cases selected were chosen because they
provide the value of α, the profiles of mean velocity, Reynolds stress and, in the
case of a plume, mean buoyancy. This provides sufficient information to evaluate
all terms in the entrainment relation α-MS, (3.6). The standard procedure was to
digitise the profiles and then to evaluate the coefficients numerically, converting to
the scales used in this paper where required. Where possible, we made use of function
fits of the data (WL02). The profile coefficients stated for ESH15 were calculated
directly from the far-field source data and the values of α were determined directly
from the spreading rate drm/dz (P. Salizzoni, private communication). It should be
noted that the values of α for the ESH15 dataset presented here are significantly
larger than those presented in Ezzamel et al. (2015), which were estimated from
the continuity equation. The underprediction is due to a systematic error associated
with a small but significant co-flow (P. Salizzoni, private communication). The last
four rows of table 3 (highlighted a) contain the converted Kaminski coefficients A
and C (see appendix A). Here, we note that our estimate for δm in WL02 is lower
than for WL02a. Having determined δm, γm and θm, the indirect estimate α-MS can
be determined and compared with the direct estimate α. We will first show that
α-MS provides a reasonably complete description of the entrainment physics and
then investigate the contributions of the individual terms comprising α-MS.

The last column in table 3 presents the absolute relative difference between the
observed value of α and the estimate α-MS. The two estimates generally agree to
within 5 % for the jet data, and to within 15 % for the plume data. The ESH15
data have larger error bars, which are probably due to the large scatter in the
Reynolds-stress profiles and the large value of θm. Even though the entrainment
relation α-MS does not take into account contributions due to turbulence and
pressure, the generally close agreement of the two estimates of α confirms that
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Ref. Γ Ri α δm γm θm − δm

2γm

γm − θm

γm
Ri α-MS

|α − α-MS|
α

PL93a 0.0 0.13 0.082 −0.20 1.30 — 0.077 — 0.077 0.06
WL02 0.0 0.12 0.075 −0.21 1.33 — 0.079 — 0.079 0.05
ESH15 0.0 0.12 0.072 −0.21 1.33 — 0.079 — 0.079 0.10
CvR15a 0.0 0.11 0.069 −0.19 1.30 — 0.073 — 0.073 0.06

WL02 1.0 0.19 0.120 −0.23 1.33 0.96 0.086 0.053 0.139 0.16
ESH15 1.0 0.22 0.140 −0.23 1.33 0.78 0.086 0.091 0.177 0.26
CvR15c 1.0 0.18 0.112 −0.21 1.28 1.01 0.082 0.038 0.120 0.07

PL88a 1.0 0.19 0.120 −0.20 1.36 0.93 0.074 0.060 0.134 0.12
PL93ba 0.5b 0.15 0.095 −0.17 1.50 0.79 0.057 0.071 0.128 0.35
SG94a 1.0 0.24 0.150 −0.26 1.19 1.08 0.109 0.022 0.131 0.13
WL02a 1.0 0.19 0.120 −0.27 1.39 0.96 0.097 0.059 0.156 0.30

TABLE 3. The observed entrainment coefficient and profile coefficients in jets and plumes.
The data sources are Papanicolaou & List (1988, PL88); Panchapakesan & Lumley
(1993a,b, PL93a, PL93b); Shabbir & George (1994, SG94); Wang & Law (2002, WL02);
Craske (2015, CvR15c); Craske & van Reeuwijk (2015a, CvR15a) and Ezzamel et al.
(2015, ESH15).

aData converted from Kaminski et al. (2005), Carazzo et al. (2006) using appendix A.
bHere, Γ = 0.5 is assumed as a first-order approximation, because, as Carazzo et al.
(2006) point out, the data from Panchapakesan & Lumley (1993b, PL93b) pertain

to an intermediate distance from a forced release, and therefore 0<Γ < 1.

α-MS captures the primary entrainment mechanisms. Pressure redistribution and
longitudinal turbulence production are responsible for the larger absolute relative
difference between the two estimates of α for plumes than for jets, as can be inferred
from direct numerical simulation data: the plume simulations of CvR15c indicate
that δg = −0.20 > −0.23 = δm due to contributions from δf and δp, and with these
contributions included the difference between the two estimates is less than 5 %.

A striking feature of the data in table 3 is that the value of δm is very similar for
the jet and plume data, indicating that turbulence production is quite insensitive to
Ri. This in turn suggests that the PB entrainment model may appropriately capture
the dynamics of jets and plumes in an unstratified environment when 0 6 Γ 6 1.
This hypothesis is further explored in figure 2, where the decomposed contributions
to α-MS of table 3 are presented graphically, together with the direct estimation of
α (squares). The dashed lines represent the averages of −〈δm/(2γm)〉 and 〈α-MS〉,
where the operator 〈·〉 denotes the average over the jet/plume data. It should be noted
that the WL02a data were not included in the average to avoid double counting.
Figure 2 reinforces the fact that −δm/(2γm) is similar for a pure jet and a pure
plume. Furthermore, for a pure plume the ratio of the average value of 〈α-MS〉 to
−〈δm/(2γm)〉 is within 5 % of the value of 5/3 predicted by the PB entrainment model.

An interesting implication of the fact that δm remains approximately constant is
that the often-used argument (List 1982; Carazzo et al. 2006) of buoyancy-enhanced
turbulence being the primary mechanism for the higher entrainment coefficient of
plumes is not supported by the data. Indeed, enhanced turbulence levels would be
expected to result in a larger value for δm. Instead, it is a mean contribution to
entrainment associated with the Ri dependence that is responsible for the higher
entrainment coefficient.
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FIGURE 2. (Colour online) Individual terms of the entrainment relation α-MS compared
with a direct estimate of α (squares). The dashed lines are the averages of the individual
terms of α-MS, (3.6).

List & Imberger (1973) and List (1982) observed that plumes and jets spread at a
very similar rate, which, via (3.12), provides support for δm remaining approximately
constant. Kaminski et al. (2005) calculate δm (which is proportional to their C
parameter, see appendix A) for pure plumes and then use the entrainment relation
α-MS to observe that this value is in close agreement with the jet data, and in
accordance with previous observations that the Reynolds-stress profiles in jets and
plumes are very similar (Panchapakesan & Lumley 1993a; Wang & Law 2002).
Lastly, the forced plume experiments of Wang & Law (2002), Matulka et al. (2014)
and Ezzamel et al. (2015) show that the measured entrainment coefficient is in good
agreement with the PB model.

In spite of the agreement that entrainment in forced plumes has with the PB model,
the question of the most suitable parameterisation of entrainment in lazy plumes
(Γ > 1) remains open. Bhat & Narasimha (1996) report an observed narrowing in
a heated (and consequently lazy) plume, which is broadly consistent with the MTT
model for entrainment. However, in the absence of more comprehensive experimental
and numerical data one is forced to accept the possibility that the true behaviour
of the entrainment coefficient in lazy plumes might not coincide with either of
the idealised models of PB and MTT. For lazy plumes one therefore assumes that
α traces a more complicated curve on the realisability surface of the entrainment
relation illustrated in figure 1.

7. Entrainment at constant Ri

Further understanding of the way in which α depends on Ri requires knowledge
of the dependence of δg, γg and θg on Ri. Unfortunately, controlled observation of
situations in which Ri is constant is difficult because (i), with the exception of pure
jets and plumes, Ri typically varies in z and (ii) changes in Ri are often accompanied
by additional effects, such as the near-field development of a plume. To investigate the
dependence of entrainment on Ri in isolation one would ideally conduct an experiment
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or simulation on a plume in which Ri remains constant. In this section we therefore
present solutions, based on those originally obtained by Batchelor (1954) and Caulfield
& Woods (1998), for cases in which

dRi
dz
= 0, (7.1)

before discussing the ways in which (7.1) might be realised in practice. Substitution
for Ri in (2.8) and (2.10) gives

d
dz
(βgM)= M3/2

Q
Ri, (7.2)

d
dz

(
γg

M2

Q

)
= (δg + 2θmRi)

M5/2

Q2
, (7.3)

and, on expanding Ri in terms of Q,M and F using (2.16), (7.1) implies that

dF
dz
= θmRi

d
dz

(
M5/2

Q2

)
. (7.4)

It should be noted that although we have not yet invoked an equation for buoyancy
transport, (7.4) is a consistency requirement that determines the behaviour of F for a
given Ri. We address the physical means of ensuring that F behaves in this way in
the following paragraph. Seeking solutions

Q=Q0

(
z
z0

)q

, M =M0

(
z
z0

)m

, F= F0

(
z
z0

)f

, (7.5a−c)

one finds
q= 3+ a

2
, m= 4+ a, f = 4+ 3a

2
, (7.6a−c)

where, making use of α-S to eliminate δg and γg,

a≡ 6Ri/βg − 16α
4α − Ri/βg

. (7.7)

When Ri= 8αpβg/5, a=−8/3 and q= 5/3,m= 4/3, f = 0, which is consistent with
the classical self-similar plume solutions. Furthermore,

Q0 =
(

z5
0F0Ri4

β5
gθm(a+ 4)5

)1/3

, M0 =
(

z2
0F0Ri

β2
gθm(a+ 4)2

)2/3

(7.8a,b)

for prescribed values of Ri and F0. The classical jet solutions correspond to the limit
a→−4, F0→ 0, Ri→ 0, in such a way that Q0 and M0 remain O(1). Since Ri is
constant, a notable feature of these solutions is that the spreading rate of the plume is
a constant that depends on Ri and the profile coefficients. Observations of drm/dz for
a given Ri therefore provide a convenient way of establishing the relationship between
the profile coefficients and Ri without direct measurement. Specifically, if a spreading
rate drm/dz is observed, one can use the implicit relation (see table 2)

drm

dz
(Ri)=− δg(Ri)

γg(Ri)
+ 3

2

(
1

βg(Ri)
− 4

3
θm(Ri)
γg(Ri)

)
Ri (7.9)

to deduce the possible dependence of the profile coefficients on Ri. If, in addition, the
volume flux is measured, then one can couple (7.9) with the relation for α to further
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restrict the possible form of dependence on Ri that the profile coefficients might have.
In this way it is possible to deduce higher-order aspects of the flow by measuring
lower-order bulk quantities.

From a practical perspective it is necessary to consider how a constant-Ri flow could
be realised in the laboratory or in a numerical simulation. To this end, we assume that
the buoyancy flux in the plume can be modified either directly via a heat source S(z)
or indirectly via a stratified environment with buoyancy frequency N(z). With a heat
source included, the conservation equation for the buoyancy flux becomes (cf. (2.9))

dF
dz
= fF0

z

(
z
z0

)f

=−θm

θg
N2Q+ S, where N2 ≡N2

0

(
z
z0

)a

. (7.10)

When N = 0 (an unstratified environment), the power-law behaviour can be obtained
by using a buoyancy source S= fF/z, where F (see (7.5)) and f (see (7.6)) are known
functions of Ri, the special case of constant S having been examined by Hunt & Kaye
(2005). In a numerical simulation, a source of buoyancy of this kind can be imposed
locally by forcing the buoyancy b by an amount f wb/z. Experimentally, this could
be realised by making the plume fluid conductive and subjecting it to a potential
difference (see Bhat & Narasimha 1996; Agrawal & Prasad 2004). However, great
care would be required to ensure that the radial dependence of the forcing function
was fully understood, as it would most likely influence parameters such as δg and θg.

Alternatively, a forcing in the buoyancy equation can be achieved by imposing a
stratification in the ambient (N2 6= 0), resulting in

Q0 =−i
(

N2
0

fmθgβg

)1/2 4α2z3
0

q2
, M0 =− 4α2N2

0 z4
0

fmq2θgβg
, F0 =−θm

θg

N2
0 z0

f
Q0. (7.11a−c)

The condition that Q0 and F0 must remain real-valued can be satisfied in two ways:
(1) N2

0 < 0 and f > 0, implying that a > −8/3, i.e. an increasing buoyancy flux in
an unstable stratification (Batchelor 1954); or (2) N2

0 > 0 and f < 0, implying that
−4< a<−8/3, i.e. a decreasing buoyancy flux in a stable stratification (Caulfield &
Woods 1998). While it is typically assumed that α is constant in these solutions, here
α depends on Ri and therefore on a:

α =− δg

2γg

(
4
(

a+ 4
a+ 6

)(
θm

γgβg
− 1
)
+ 1
)−1

. (7.12)

Equation (7.12) therefore relates the scaling associated with an ambient stratification to
the entrainment coefficient, subject to knowledge of the profile coefficients. When a>
−8/3, the exponent f > 0, implying that the buoyancy flux increases with height. The
plumes that these solutions describe develop in the absence of a heat source and were
first identified by Batchelor (1954). They are lazy plumes because a>−8/3 implies
that Γ > 1. However, it is clear that the unstable stratification required for this regime
would be difficult to realise in practice and that the methods of heating the plume
described above provide a more practical means of investigating lazy plumes. Indeed,
the use of a stratification is best suited to the investigation of forced plumes, which
are obtained over the interval −4< a<−8/3, for which f < 0 and 0<Γ < 1. These
solutions correspond to a stratification that decays rapidly enough to maintain positive
buoyancy flux in the plume, in spite of the fact that f < 0 (Caulfield & Woods 1998).
Pure plume and jet solutions correspond to limits f → 0, z0→ 0 with f 3/8/z0 = O(1)
and m→ 0, z0→ 0 with m1/4/z0=O(1) respectively (see Caulfield & Woods 1998, for
further details).
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Constant Ri similarity solutions provide a useful means of investigating entrainment
in plumes because they are not restricted to the near field. Moreover, the freedom
to modify Ri via an ambient stratification or a direct source of heating, or both, is
valuable, because the resulting profile coefficients may well depend on the particular
method employed.

8. Concluding remarks
This paper focused on the restrictions imposed upon the entrainment coefficient α

by the conservation equation of mean kinetic energy. By integrating the Reynolds-
averaged axisymmetric conservation equation for volume, streamwise momentum,
buoyancy and mean kinetic energy over the radius r, four coupled ODEs were
obtained with three independent variables, Q, M and F. From the requirement that
all four equations must be satisfied simultaneously, a restriction on the entrainment
coefficient α was obtained, which was referred to as an entrainment relation. The
entrainment relation decomposes α into contributions due to turbulence production,
buoyancy and changes in the profile coefficients. Entrainment due to buoyancy is
primarily associated with mean-flow entrainment, i.e. turbulence does not play a direct
role. As the normalised momentum- and energy-flux divergences contribute oppositely
to entrainment, the shapes of the velocity and buoyancy profiles are a crucial factor in
determining the net effect of buoyancy. The entrainment relation generalises previous
entrainment relations that only incorporated mean-flow components (Kaminski et al.
2005) and fully self-similar mean profiles (Fox 1970). The resulting hierarchy of
entrainment relations is summarised in table 1.

The entrainment relation, which is a physical constraint upon α, must be considered
separately from an entrainment model. Indeed, an entrainment model parameterises the
a priori unknown dependence of δg, γg and θm on the plume Richardson number Ri in
order to be able to provide predictions. The entrainment models implied by the plume
theories of Priestley & Ball (1955) and Morton et al. (1956) were reviewed in § 5.

An analysis of the literature documenting laboratory experiments and simulations of
pure jets and plumes in unstratified environments revealed that, to leading order, the
PB entrainment model (1.2) provides an appropriate description of the physics, as was
previously observed indirectly by Fox (1970), List & Imberger (1973), Wang & Law
(2002) and Ezzamel et al. (2015). This implies that the assumption made in Priestley
& Ball (1955) that the profile coefficient associated with the production of turbulence
kinetic energy δm does not depend of the flux parameter Γ is approximately valid. The
fact that δm takes approximately the same value for a jet and a plume implies that the
enhanced entrainment is due to buoyancy effects associated with the mean flow, rather
than buoyancy-enhanced turbulence, and results in the value of α for a pure plume in
an unstratified environment being a factor of 5/3 larger than for a jet.

The MTT plume equations are used widely in engineering and the atmospheric
sciences, often being incorporated in larger systems of further complexity (see, e.g.,
Linden 1999). One therefore questions whether the findings of this paper warrant a
change from the constant-α MTT model to the variable-α PB model. In this regard
we wish to point out that the current practice of employing a different value of α
depending on whether one is dealing with a jet or a plume is equivalent to using the
PB model. Thus, the implicit use of the PB model is perhaps more widespread than
one might estimate from the literature. As described in the present paper, in the PB
model the two different values of α, pertaining to jets and plumes, emerge naturally
from explicit assumptions about the physics. Consequently, unlike the MTT model,
the PB model can be used to simulate the behaviour of forced plumes, in which α
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varies continuously. Indeed, one can employ the PB model to understand aspects of
lazy plumes, although the precise influence of turbulent mixing and non-Boussinesq
effects on entrainment in lazy plumes requires further investigation. In this regard our
hope is that the information in this paper provides a useful framework and rigorous
starting point for further study.

While the entrainment relation accounts for variations in α due to buoyancy and
changes in profile shapes, α will retain a large degree of scatter due to additional
uncertainties. Indeed, differences in the experimental apparatus and the inflow
conditions remain an important factor, particularly relatively close to the source
where turbulent quantities are still developing and a fully self-similar state has not
yet been reached. It is likely that the reported variation in α is partially caused
by differences in the large-scale structure of the turbulence, which can persist for
extended periods of time (Redford et al. 2012).

The entrainment relation provides a diagnostic framework to systematically study
entrainment. One interesting avenue of further research is to use the entrainment
relation to study entrainment in the near field, where changes in profile shape and
turbulence levels will be pronounced. Furthermore, an exploration of constant-Ri lazy
and forced plumes, as described in § 7, would allow for a systematic study of the
dependence of the profile coefficients δg, γg and θg upon Ri.
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Appendix A. Relation to Kaminski et al. (2005)
In this appendix we demonstrate the one-to-one correspondence between the

decomposition of the entrainment coefficient in (3.1) and that of Kaminski et al.
(2005). To do this we will relate the characteristic scales for velocity, radius and
buoyancy, wm, rm and bm respectively, used in this paper, to the respective scales ŵ,
r̂ and b̂ used by Kaminski et al. (2005, denoted wm, bm and g′m in their notation
respectively). Products of the characteristic scales are equal to the various integrals
appearing in the problem:

(this paper) (Kaminski et al. 2005)

wmr2
m = 2

∫ ∞

0
wr dr = 2ŵr̂2

∫ ∞

0
fr∗ dr∗ = 2ŵr̂2I0, (A 1)

θmwmbmr2
m = 2

∫ ∞

0
wbr dr = 2ŵb̂r̂2

∫ ∞

0
fhr∗ dr∗ = 2ŵb̂r̂2I1, (A 2)

bmr2
m = 2

∫ ∞

0
br dr = 2b̂r̂2

∫ ∞

0
hr∗ dr∗ = 2b̂r̂2I2, (A 3)

w2
mr2

m = 2
∫ ∞

0
w2r dr = 2ŵ2r̂2

∫ ∞

0
f 2r∗ dr∗ = 2ŵ2r̂2I3, (A 4)

γmw3
mr2

m = 2
∫ ∞

0
rw3dr = 2ŵ3r̂2

∫ ∞

0
f 3r∗ dr∗ = 2ŵ3r̂2I4, (A 5)

δmw3
mrm = 4

∫ ∞

0
rw′u′

∂w
∂r

dr = −2ŵ3r̂
∫ ∞

0
j
∂f
∂r∗

r∗ dr∗ =−2ŵ3r̂I5. (A 6)
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Here, the functions f , h and j are dimensionless radial profiles of velocity, buoyancy
and Reynolds stress, and r∗ is a dimensionless radial coordinate. Equating the left-
most and right-most terms results in

I0 = 1
2

wmr2
m

ŵr̂2
, I1 = θm

2
wmbmr2

m

ŵb̂r̂2
, (A 7a,b)

I2 = 1
2

bmr2
m

b̂r̂2
, I3 = 1

2
w2

mr2
m

ŵ2r̂2
, (A 8a,b)

I4 = γm

2
w3

mr2
m

ŵ3r̂2
, I5 =−δm

2
w3

mrm

ŵ3r̂
. (A 9a,b)

Kaminski et al. (2005) work in terms of ‘top-hat’ variables R,W and G′ for velocity,
radius and buoyancy respectively, defined according to

R2WG′ = ŵb̂r̂2I1, R2G′ = b̂r̂2I2, R2W2 = ŵ2r̂2I3. (A 10a−c)

Therefore, using (A 7) and (A 8) we find that

G′ = bmθ
2
m, R= rm√

2θm

, W = θmwm. (A 11a−c)

From (A 11) it is evident that Kaminski et al. (2005) base their top-hat radius on the
widths of both the velocity profile and the buoyancy profile.

The entrainment coefficient αe used by Kaminski et al. (2005) is defined via

d
dz
(R2W)= 2αeRW, (A 12)

where

αe = 1
2

C+ G′R
W2

(
1− 1

A

)
+ 1

2
R

d
dz

log A (A 13)

and

A≡ I2I4

I1I3
, C≡ I2I1/2

3 I5

I1I4
. (A 14a,b)

Substitution for R and W in (A 12) reveals the relationship between αe and the α used
in this paper:

dQ
dz
= 2

(√
2θmαe + rm

2
d
dz

log θm

)

︸ ︷︷ ︸
α

M1/2. (A 15)

Furthermore, in terms of δm, γm and θm, it follows that A = γm/θm and C =
−δm/(

√
2θmγm). Substitution in (A 13) results in

α =− δm

2γm
+ γm − θm

γm
Ri+ rm

2
d
dz

log γm, (A 16)

which is identical to the entrainment relation α-M, (3.4).
There are two advantages of (A 16) compared with (A 13). First, the effects of

‘similarity drift’ between the profiles of buoyancy and velocity are accounted for in a
clean manner in the second term on the right-hand side of (A 16), outside derivatives.
Second, (A 16) can be applied to jets (Ri= 0) without difficulty.
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Appendix B. Conversion to other flavours of the plume equations

Perhaps one of the greatest complications in accessing the plume literature is the
large number of different forms in which the plume equations can be presented, the
most popular of which are the top-hat and Gaussian descriptions. The descriptions are
all closely related (and do not make a statement about the actual shape of the radial
profiles), with coefficients appearing in the equations in different locations. This is
most evident in the value of the entrainment coefficient, which is a factor of

√
2 larger

for a top-hat description than for a Gaussian description. The aim of this section is to
demonstrate how entrainment models can be incorporated in existing implementations
of the MTT plume equations.

The results presented in this paper are consistently based on integral quantities
in order not to make an explicit assumption about profile shapes. Thus, in order
to translate the entrainment models presented in this paper one should relate the
dependent variables of the model under consideration to the fundamental integral
quantities defined in § 2. As an example, consider a model based explicitly on
profiles of the form

w(r, z)= ŵfw

(r
r̂

)
, b(r, z)= b̂fb

(r
r̂

)
, (B 1a,b)

where r/r̂ ≡ η is a similarity variable and ŵ, b̂ and r̂ are the velocity amplitude,
buoyancy amplitude and typical radius respectively. Associated with a similarity
function fχ , where χ is a dependent variable, is a profile coefficient that will be
denoted

Iχ ≡
∫ ∞

0
fχη dη. (B 2)

Using this notation, the key integrals Q, M, B and F can be written as

Q= 2
∫ ∞

0
wr dr= 2ŵr̂2Iw, M = 2

∫ ∞

0
w2r dr= 2ŵ2r̂2Iww, (B 3a,b)

B= 2
∫ ∞

0
br dr= 2b̂r̂2Ib, F= 2

∫ ∞

0
wbr dr= 2ŵb̂r̂2Iwb, (B 4a,b)

leading to the following relations for derived quantities:

rm ≡ Q
M1/2
=
√

2Iw√
Iww

r̂, wm ≡ M
Q
= Iww

Iw
ŵ, bm ≡ BM

Q2
= IbIww

I2
w

b̂, (B 5a−c)

Ri=
√

2IwIb

I3/2
ww

b̂r̂
ŵ2
, −(ru)r=∞ = 2αM1/2 = 2 α

√
2Iww︸ ︷︷ ︸
α̂

ŵr̂. (B 6a,b)

Upon substituting the Gaussian profiles fw = exp(−r2/r̂2) and fb = exp(−r2/(λr̂)2),
where λr̂ is the characteristic width of the buoyancy profile, it follows that Iw = 1/2,
Iww= 1/4, Ib= λ2/2 and Iwb= λ2/(2(λ2+ 1)). This implies that for Gaussian profiles

rm =
√

2r̂, wm = 1
2

ŵ, bm = λ
2

2
b̂, Ri= 2

√
2λ2 b̂r̂

ŵ2
, α =√2α̂, (B 7a−e)
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and thus the entrainment relation α-MS is given by

α̂ =− δm

23/2γm
+ 2

2− θm

θm

γm − θm

γm

b̂r̂
ŵ2
, (B 8)

where δm, γm and θm are provided by the entrainment model.
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