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Abstract

Optimal control problems with switching costs arise in a number of applications,
and are particularly important when standard control theory gives "chattering con-
trols". A numerical method is given for finding optimal controls for linear problems
(linear dynamics, linear plus switching cost). This is used to develop an algorithm
for finding sub-optimal control functions for nonlinear problems with switching
costs. Numerical results are presented for an implementation of this method.

1. Introduction

It is well known in optimal control theory that an apparently well-posed
problem such as

min g(x{T))

over x: [0, T] -> R" absolutely continuous and u: [0, T] - • Rm measurable
subject to

x\t)=f{x{t),u{t)) inR", x(0) = x0

u{t) e U compact c Rm

may not have solutions in the ordinary sense, even if / and g are smooth.
For example,
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[2] Optimal control with switching costs 213

over x and u subject to

x[ = u(t); Jf,(O) = O

x'2 = x\; x2(0) = 0

does not exist, although the infimum of the attainable values of *2(1) is
well-defined (and is, in fact, zero) under the above conditions.

To eliminate this awkwardness of the theory, a number of techniques for
extending the class of admissible controls have been developed under various
names such as generalised controls (by Gamkrelidze [4]), or as chattering
controls. These techniques usually involve extending the class of controls to
include probability measures which are the weak limits of rapid oscillating
control functions.

While these theoretical constructs are quite adequate for dealing with ques-
tions of the existence of (generalised) optimal controls, the implementation
of generalised optimal controls on a piece of physical hardware often leads
to additional unanticipated costs due to the rapid changes in the control vari-
able. This is particularly important if the control is a switching control (and
U is effectively a finite set). If the switching cost is taken into account, the
"optimal control" as obtained by the standard theory is no longer necessar-
ily optimal. Physically, if the switching device is, say, a mechanical relay,
then this switching cost appears as a reduction of the life of the device from
contacts wearing out, and the cost of replacing the worn relay. In a social or
economic system, rapid oscillations would incur a cost by way of confusion
and social disorganisation. However, the cost of a single switch is often much
smaller than the other costs over the time-scale of interest.

Firstly, we need to incorporate switching costs into a mathematical model
of the problem. To do this the variation of a function is introduced:

0 & 1=0

where ZP ranges over all partitions 0 = t0 < tl < • • • < tn_x < tn = T with
n = 1, 2, 3, ... . Any function u:[0, T\ -> Rm where Vo^" < °o is said to
be of bounded variation; the set of functions on [0, T] of bounded variation
is denoted BV[0, T].

The following model problem is proposed: let D be a nonsingular mxm
matrix, / : R" x R™ - . R" and g: R" -* R be continuous, x0 e R" and
U compact c Rm be given. The problem, then, is to find x and u that
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achieves
T

min g(x(T)) + \/(Du) (1.1a)
o

where JC:[O, T] -> R" and u:[0, T] -• Rm satisfy the following: x is
absolutely continuous, u has bounded variation, and

x =f{x,u), x{0) = x0

u(t)eU = {vl,...,vJ.

To my knowledge, the first successful mathematical treatment of such a prob-
lem to appear in the literature is by Blatt [1] in 1976. This problem has been
investigated by J. Matula [5] in relation to problems with monotone controls,
and by Teo and Jennings [8]. In [5], Matula developed both the existence
theory and a Pontryagin-type minimum principle, while in [8], Teo and Jen-
nings give algorithms for computing optimal controls. However, Matula's
minimum principle assumes the set f(x, U) to be convex for all x, and
Teo and Jennings' algorithm assumes the set f{x, U) to be path connected
for all x. On the other hand, the problems of particular interest here are
problems in which U is a finite set.

The following section deals with the theoretical aspects of the general prob-
lem (1.1). Section 3 looks at the case where U is a finite set and f{x, u) is
linear in (JC , u) and g(x(T)) is linear in x(T). In this case a dynamic pro-
gramming algorithm is developed which can find the optimal (x, u), at least
to within discretisation error. Section 4 looks at two algorithms based on
that in Section 3 for dealing with the problem where g(x(T)), as a function
of M() , is convex. These algorithms give good sub-optimal results. Finally,
Section 5 presents some numerical results to demonstrate the performance
of the above algorithms.

2. General issues

Here we consider the following problem:

T

min g(x(T)) + \/(Du) (2.1a)
o

where x:[0, T] -* R" and M:[0, T] -• Rm satisfy the following: x is
absolutely continuous, w has bounded variation, and

x'=f(x,u), x(0) = xQ

U(t) € U.
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[4] Optimal control with switching costs 215

We assume that / is Lipschitz, g is continuous and U is compact for the
remainder of the paper. Note that the set

2f = { u € BV[0, T] | u(t) e U for all t}

is the set of admissible controls.
The question of existence of solutions to optimal controls with switching

costs can be answered affirmatively under these conditions; see, for example,
Matula [5, Theorem 1.1] and Noussair [6]. In [5], Matula also goes on to
provide a Pontryagin-type principle in the case where f(x, U) is a convex
set for all x. Teo and Jennings [8] complement the theoretical results of [5]
with a numerical method based on variational techniques for the case where
f{x, U) is convex.

For switching control though, f(x, U) is a finite set, and indeed there
is no valid corresponding Pontryagin type principle. Variational approaches
can give limited information about the nature of optimal controls. However,
variational approaches give essentially no information about the sequence of
control values for optimal (or even "good") control functions. What varia-
tional arguments can help with is characterising the optimal switching times.

Consider, for example, a control function « e ^ with switching time T
where M(T~) = u_ and u(x+) = u+ . Consider the perturbation uSx where

((/) for / not between T and x + Sx,
J+ for t between x and x + Sx.

(Note that dx may be negative.) Then for sufficiently small dx, UST has the
same control sequence as u, so that V^ usz

 = V^ M • This means that only
the "smooth" part of the cost g(x(T)) is perturbed. Let xdx be the solution
of (2.1b) with M replaced by us%. By standard variational techniques we
can show that

- g{x{T)) = f X(t)T(f(x(t), uSx(t)) - f(x(t), M(0)) dt + O(Sx)2

Jo

= X{x)\f{x{x), u+) - f(x(x), u_))5x + 0{5xf.

Thus any optimal switching time x must satisfy

While the problem (1.1) can be solved by looking at every plausible se-
quence of control values, the number of possible sequences suffers a combi-
natorial explosion as the switching cost becomes small. For example, there
are |f/|(|t/| — I)* possible sequences with K switches. An alternative idea
is to use an initial guess for the control functions which has a large num-
ber of switches and all possible control values represented many times, and
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then to optimise with respect to the switching times, dropping switches when
switching times coalesce. However, as noted above, these variational tech-
niques when applied to switching control do not use any information about
the switching costs except the fact that they are positive.

On the other hand, there has been some recent success in using continuous-
time dynamic programming combined with the theory of viscosity solutions
[2] for control with switching cost [3]. To numerically solve an optimal con-
trol problem by these techniques requires finding the viscosity solutions to
\U\ coupled lst-order PDEsin n + 1 independent variables. This approach
suffers from Bellman's "curse of dimensionality": any numerical method
would have to store « | U\N" numbers where N is the number of grid
points on each axis.

Here we are looking for practical methods, and so we are willing to sacrifice
global optimality, at least for the general nonlinear problem. However, some
sort of "local" optimality should be guaranteed, along with "good quality"
sub-optimal results.

3. Algorithm for the linear case

We now consider the problem (1.1) in the case where the smooth part of
the cost is linear, that is, g(x(T)) is a linear function of u € BV[0, T\.
This is the case if, for example, the differential equations are linear in (x, u)
( f (x ,u) = Ax + Bu) and g{x(T)) = cJx(T) for some c e R" . In this case
an algorithm can be formulated which gives the optimal discretised control
from a discrete family of control functions.

Firstly, we show that (1.1) is equivalent to

,7" T

min / p{tyu{t)dt + \l{Du) (3.1)
" J° o

where the optimisation is over u e %, for some p(-). This means that the
dynamic programming algorithm referred to in the previous section can be
used with n = 0 ; that is, there is no need to have a state vector for dealing
with linear problems.

Also, the function /?(•) can be obtained from the "co-state" function A()
defined by

(AT)' = -XJVxf(x, u), X(T) = Vg(x(T)) (3.2)

for a given pair (JC(-) , «(•)) satisfying the differential equation

x' = f(x,u), x(0) = x0. (3.3)
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These two equations are of course the differential equations that arise in Pon-
tryagin's maximum principle. In the argument that follows it we understand
x(-) to be implicitly defined by «(•) through (3.3).

Note that we can assume without loss of generality that f(x, u) is linear in
u if U is a finite set {v{, ... , vm} . To do this, put fJ{x) = f{x, Vj) and

F(x) = [f\x), . . . , fm(x)]. Clearly f(x, Vj) = F{x)ej where <?,. is the
j th standard unit vector in Rm , so we can replace f(x, u(t)) with u(t) e U
by F(x)u(t) where u(t) e U - {e{, ... , em} . The D matrix would then be
replaced by D = D[vl,..., vm]. This assumption will also be used in the
following section.

We define the smooth part of the cost functional to be

S(u) = g(x(T))

where x(T) is defined through (3.3).
Note that S is, in fact, defined over all of BV[0, T] (indeed, over all of

Ll(0, T)), even though our interest is in a disconnected set of admissable
controls. Thus we can take derivatives of S. The gradient of S(u), denoted
V5(«), is the functional defined by

VS(u)(du)= f X(t)TVuf(x(t),u(t))Su(t)dt. (3.4)
Jo

Assuming f(x, u) linear in u, then the linearisation is valid if Su is small
in L1:

S(u + Su) - S(u) = V5(M)(<JM) + odl^ull,).

In the case considered in this section, the S(-) functional is linear in u,
so V5(M) and X(t)JVuf(x(t), u(t)) are independent of u. For any such u
we set

P i t ) 1 = Ht)TVuf(x(t), u(t)) f o r al l te[0,T]. (3.5)

In the case where f(x, u) = Ax + Bu and g{x(T)) = cJx(T) explicit
formulae can be developed for p(t) though it is not necessary here. Note
also that the above formula for VS(u) holds even if the linearity of S(-)
fails.

The dynamic programming approach can be motivated by noting that for
any r e ( 0 , 7 ) , and u e BV[0, T] normalised as noted in Section 2, the
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cost functional can be split into

/ p(t)Tu(t)dt + \/(Du) = / p(t)Tu(t)dt + \
Jo 0 Jo

0

where Vo (Pu) = SUP«T VoCM) • The dynamic programming approach
works by splitting the interval [0, T) into pieces [0, T) and [T , T) with
| T - T | < T and finding optimal costs C((T) on [0, T) where u{x~) = vt for
i — \, ... , m . Assuming that the optimal control is constant on [T, T), we
compute for each j ,

CAT) = min / p(t)Ju(t) dt + \/(Du
J u Jo n

)

= min C.(T) + \\D(vt - tiy.)|| + j p(t)JVj dt.

Note that C((T) can be computed in an analogous fashion to Cj(T).
Instead of assuming that there are no switches of u on [T , T), we can

consider the problem of finding the minimum of (3.1) over all piecewise
constant controls u. Let 0 = t0 < tx < ••• < tN_x < tN = T be a partition
of [0, T] and set u(t) = uk on [tk, tk+l), and u(T) = uN.Let

a n d

Then we have the following algorithm:

ALGORITHM 1. Given p = [pk\k = 0,... , N-l] and di},, i, j — 1 , . . . , m,
find u = [uk\ k = 0,... , N] that minimises

N-l

k=0

(pluk + \\D(uk+l - uk)\\) .
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[8] Optimal control with switching costs 219

Variables: Cik, minimum cost with uk = vt and N replaced by k.
histik, used to construct optimal control.

Step 1: Set C/o <- 0 for i = 1, .. . , m.
Step 2: For k = 0, . . . , N - 1 do

For j — I, ... , m do

Step

Step

3:

4:

i <- argmin,. CiN

The
For k

uk^

<- vr

optimal cost
= N-l,...
histrk

- vr .

is
, 0 do

A formal proof that this algorithm finds the minimising control amongst
the class of discretised controls will not be given. However, below a conver-
gence result is given as N —» oo.

THEOREM 3.1. Let u^ be the computed optimal control given the value of N,
and let S* be the optimal value of the cost functional. Then limAr_oo5(M(Ar')+
S/^Du^) = S*, and every convergent subsequence of («(Ar)) (of which there
must be at least one) converges to a minimising u* e. BV[0, T].

PROOF. By Matula [5] there must be a minimising u*:[0, T] -* U. As U
is finite, and u* € BV[0, T], u* has at most finitely many switching points.
We can assume without loss of generality that u* is normalised to be right-
continuous. Let the switching times be 0 < tx < ••• < tk <T.

Define u{N):[0, T]->U byu{N\t) = uj whenever / e [iT/N, (i+l)T/N),
and u. is the value of u*(iT/N). Then u{N\t) = u*(t) except for t lying
in no more than k intervals of the form [iT/N, (i+ \)T/N). Furthermore,

T

u{N))<S(u*) + \/{Du*).
/v-oo Q «^oo 0 „

As S(u*) is the minimum value of S, it follows that

T T

lira sup S(u w ) + \/(Du{N)) = S(u*) + \/(Du*).
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Finally, as U is compact, and the variation of the computed u^ is
bounded, there must be subsequence of the M(JV) which converges pointwise
to some u G BV[0, T], by Matula [4, Lemma 1.3]. From the above results,
S(u) + \ll{Du) = S(u*) + \/l(Du*) = S*, for any limit u of a convergent
subsequence.

4. Minimising nonlinear functional

Regarding practical applications, the main use of the algorithm for the
linear problem is as a stepping-stone to develop an algorithm for a more
general nonlinear problem. It seems that finding the global minimiser is a
combinatorially explosive problem, so here a heuristic strategy is proposed
to find good sub-optimal solutions for the nonlinear problem.

Another use of the linear dynamic programming algorithm is that when the
functional is convex, a lower bound on the achievable values of the functional
can be obtained.

In order to develop an algorithm for (1.1), we need to incorporate some
restriction parameter into the problem. This also has to be incorporated into
the dynamic programming algorithm.

Given a control sequence u0 = [M0 O , u0 , , . . . , uQ N], and a nonnegative
integer r, we restrict attention to control sequences u = [u0, ux, ... , uN]
where M0 , ^ M, for no more than r values of / . This r can be used to re-
strict the changes that are allowed on each iteration of, say, a trust region like
method. Alternatively, r can be used as a parameter for performing a one-
dimensional search; this is analogous to line-search methods in conventional
nonlinear programming.

A dynamic programming algorithm which incorporates this restriction will
now be given, and then an algorithm for finding a sub-optimal solution of
(1.1) will be given.

ALGORITHM 2. Setup hist and C data structures to compute the optimum
value and control for

N-l

k=0

subject to uk e U and \{k \ uk ^ M0 k}\ = r for 0 < r < rn
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[10] Optimal control with switching costs 221

Given : p = [p0, ... , pN_x], dtj and rmax .
Output: Cjrk , minimum cost with uk = vt and N replaced by k,

a n d \{l\u,?u0 ,,0<l<k}\ = r.
histirk, history array.

Step 1: *** Initialisation ***
Set Cl00 <- 0 for i=l,... ,m
Set Cir0 ̂  +oo for i = 1, . . . , m, r = 1, . . . , rmax

Step 2: For k = 0 , . . . , N - 1 do steps 3-4
Step 3: minim «- CgOlc, qmin «- q where u0 k = vq .
Step 4: For r = 1, . . . , rmax do

For i = I, ... , m do
minim «- mmg v^Ugk Cq >r_, >fc_, + diq+p[vq

and set <7mj>1 to achieve this minimum.
r « / » < - r - 1 -
Set q so that M0 fc

 = u« •
If Cq r k_i +diq + pJ

kvq < minim then

minim ^Cqrk_l+ diq+pT
kvq , qmin +- q and

rmin
Clrk +- minim, and histirk «- (qmin , rmin).

The optimal control can then be found by "unravelling" the hist array,
much as in the first algorithm. This can be done in the following algorithm:

ALGORITHM 3 . Given the hist data structure as computed by Algorithm 2
and 0 < r* < rmax, construct the control sequence u that minimises

£ {p[uk + \\D(uk+l - uk)\\)
fe=O

subject to uk<=U for k = 0,... , N and \{l \ u, ^ uQ ,, 0 < I < k}\ = r*.
Given : C and hist arrays, and r*
Output: u = [M0 , . . . , M^]
Step 1: C <- argmin,. CirN, uN <- vr

Step 2: For k = N - 1 , . . . , 0 do
(/•, O 4- histirk

uk - vr

Keeping the C and hist data structures provides considerable flexibility in
developing algorithms for the full nonlinear problem, as we will often wish
to obtain optimal controls for the linearised problem for several different
values of r*. This flexibility is used by the following algorithm for the full
nonlinear problem:
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ALGORITHM 4 . Given an initial control sequence u0, find a sub-optimal so-
lution u for the problem (1.1)

Given

Step 1
Step 2

Step 3
Step 4

functions f,g, V / , Vg, initial value xQ , initial control se-
quence u0 , and rmax

Do steps 2-6 while rmin > 0
Solve differential equation for x (1.1b) given u(t) = uo(t),
where w0 is the control function defined by u0 .
Compute p = [p0,... , pN_{] by (3.2), (3.5) and (3.6)
Compute C and hist data structures by Algorithm 2 .
minim <-0, rmin<-0Step 5:

F ° r r = rmax ' •• • ' ! d °
Compute u by Algorithm 3 .
Solve differential equation for JC (1.1b) where u is the

control function defined by u.
If g(x(T)) < minim then

minim «- g(x(T)), rmin «- r
Step 6: Compute u by Algorithm 3 for r = rmln .

For discussing termination criteria, we call the value of g(x{T)) at the
start of any given loop in the above algorithm, " g(new x(T)) ", and the value
at the start of the previous loop " g(old x(T))n. Instead of using rmin — 0 as
a termination criterion, we could also use " g(new x(T)) > g(old x(T)) - e "
where e > 0 is a suitable tolerance; then if rmin = 0 we get no change in
the control function, and so g(new x(T)) = g{old x(T)) and we would also
get termination for this criterion. This algorithm, with the " g(new x(T)) >
g(old x(T)) - e " termination criterion has been implemented, and some
numerical results obtained. These numerical results are given in the next
section.

While convergence to the global minimum cannot be proved for this al-
gorithm as for the linear case (even for convex functional of «), a local
convergence result can be proven.

THEOREM 4.1. Let u(N) e BV[0, T] be the result of Algorithm 4 and u is a
limit point of the «(/V) with respect to the topology ofpointwise convergence as
N —» oo. Then u is an extremum with respect to variations in the switching
times.

PROOF. Note that « is the limit of w(Ar) as Af —• oo for n eJ^, where ./T
is an infinite subset of the positive integers. Restricting our attention to this
subsequence, the corresponding solutions of the differential equations x
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[12] Optimal control with switching costs 223

and the adjoint differential equations A(Ar) converge uniformly to solutions
Jc and A of the respective differential equations for u.

Let ^"(Ar^ be the set of switching times of um, and IT is the set of
switching times of u. Note that if T e IT, then for every e > 0 and N e JV
sufficiently large, there is a r(Ar) e j7"(Ar* such that |T - T(;V)| < e. TO prove
this, note that for e < min{ \s-t\ | s, t e F } , the limits of u{N)(r-e/2) and
M ^ ( T + e/2) as N—>oo, Ne^ are M(T~) and M(T+) respectively. Thus
there must be a switching time of «(Ar) in [T - e/2, T + e/2] for sufficiently
large N € sf as desired. Note, however, that there may be more than one
switching time of M(Ar) in this interval.

Suppose that u is not an extremum with respect to variations in the
switching times. Then there is a T € ST such that A(T) T / (X(T) , M(T~)) -
hi)Jf(x{*), « ( O ) # 0. Put u~ = u{x~) and u+ = M(T+) . Then by the uni-
form convergence of x(N) and the k(N) for N&yT, X{N)(t)Tf(xm(t),u~)-
^N\t)T f(xw(t), u+) is bounded away from zero for sufficiently large N e
JV, and t sufficiently close to x. However, this implies that there a discrete
control u(Af) that gives a smaller cost than u ^ , which differs from u(Ar) in
just one component, for sufficiently large N eyf. This is impossible if M(7V)

is the control generated by Algorithm 4. Thus, we conclude that u must be
extremal with respect to variations of the switching times.

5. Numerical results

Algorithm 4 has been implemented with a " g(new x(T)) > g(old x{T))-
e " termination criterion, and some numerical results obtained. Firstly, nu-
merical results were obtained for the very simple problem

mm
, r T

lin / x(t) dt + e\lu
Jo 0

x' = u, x ( 0 ) = l , « € { - ! , + ! } .

The parameters used were T = 16, e = 0.025 (i.e. dn = d2l = 0.05),
rmax = 20 and Â  ranging from 50 to 3200. The stopping tolerance used
was 10~5. The initial "guess" for the control function was u(t) = + 1 . The
minimum value can be computed analytically in this case to be ~ 1.9889.
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N
50

100
200
300
400
600
800

1200
1600
2400
3200

David E. Stewart

Total cost
8.75188
4.04887
4.37684
2.84085
2.42132
2.08735
2.39125
2.10124
2.02610
2.05308
2.18738

TABLE 1

# switches
15
19
15
17
19
25
37
25
23
21
19

# iterations
11
18
15
13
19
28
29
48
61
80
103

[13]

The trajectory x(t) is shown below for N = 2400.

FIGURE 1. Trajectory x{t)
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[14] Optimal control with switching costs 225

Another test problem that was used arises in relation to switched amplifier
design. The output stage of such an amplifier is modelled as an RLC circuit
as shown below, where the vi voltage is the control, and the v0 voltage is the
output, which we want to track a sine wave. Using the mean square error in
v0 as a measure of distortion, we wish to minimise the total distortion plus
a measure of cost due to switching. During a switch, heat must be dissipated
in the transistor that does the switching, and we seek to add a penalty term
in the total cost proportional to the total heat dissipated in the transistor(s).

v.
i

R

FIGURE 2. Switched amplifier output circuit

The differential equation for this circuit is

LC
d\

dt2

The following examples were considered with L = C = 1.0 and R = 2.0;
the unforced (vf = 0) system has a centre, rather than a node. The eigen-
values are (-1 ± %/T5/)/4. The first problem looked at in relation to this
system was the problem of maintaining vo w 0 where the control vi could
only be ± 1. The cost criterion was

min / v
JO

(t)
T

e\Jvt.
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Below is a phase portrait of the sub-optimal trajectory obtained by the algo-
rithm for T = 16, e = 0.025 (switching cost = 0.05) and initial conditions
vo(0) = 1, v'o(0) = 1. The initial "guess" for the control function was
vt(t) = + 1 . The total cost was 2.2896, of which 0.65 was the total switching
cost. This was obtained in 186 outer iterations.

If the switching cost were zero, then there would be one switch near where
the first switch above is, the trajectory would then go to the origin, where the
trajectory would "chatter" about the origin.

FIGURE 3

The second problem related to the switching amplifier example is in track-
ing a sine wave sin(co*) where there are three admissable values of vt: 0
and ± 1 . This is an important example in that it shows that the algorithm
can give good sub-optimal controls where the number of possible switching
sequences grows exponentially quickly in the number of switches.

In this problem the switching costs between 0 and ±1 are both 0.03, and
the switching cost between +1 and - 1 is 0.05. Also, T - 40, co = 0.7,
vo(0) = 0 , v'o(0) = 1, and N = 1600, rmax = 20. The initial "guess" for
the control function was v((t) = 0. The control function obtained by the
algorithm gave a total cost of 0.810619, of which the switching cost was 0.54.
This was obtained in 59 outer iterations. The control sequence obtained was
0, + 1 , 0, - 1 , 0, + 1 , . . . , 0, + 1 , 0 with a total of 18 switches. (Note
that there are 3 x 218 « 7.8 x 105 control sequences with this many switches.)
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Below is a graph of vo{t) against / ; also plotted is the sine wave that is
being tracked. (The solid line is the trajectory of vo(t).)

FIGURE 4. Plot of vo(t)

Finally, below is a phase-plane portrait of the trajectory of the switched
controller obtained.

FIGURE 5. Phase plane portrait
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6. Conclusions

An algorithm for finding optimal controls for linear optimal control prob-
lems with switching cost is given, and this is extended to find sub-optimal
controls for nonlinear optimal control problems with switching cost. The
results seem to be fairly good, although there are often "edge effects" near
t = 0 and t = T. Also the amount of computer time is larger than desired;
the example problems took up to an hour of CPU time on the Mathematics
Department's Pyramid 9810.

Further work is being done to investigate how treating the switching times
as variables (once the control sequence is fixed) can be incorporated into the
algorithm for nonlinear problems. Such an approach would probably draw
on the work of Wong, Clements and Teo [9].
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