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Abstract

We consider the spectrum of additive, polynomially vanishing random perturbations of deterministic
matrices, as follows. Let My be a deterministic N x N matrix, and let Gy be a complex Ginibre
matrix. We consider the matrix My = My + NGy, where y > 1/2. With Ly the empirical
measure of eigenvalues of My, we provide a general deterministic equivalence theorem that ties
Ly to the singular values of z — My, with z € C. We then compute the limit of Ly when My is an
upper-triangular Toeplitz matrix of finite symbol: if My = Z,.D:O a;J' where 0 is fixed, a; € C are
deterministic scalars and J is the nilpotent matrix J (i, j) = 1,4, then Ly converges, as N — 00,
to the law of Y 7 a; U’ where U is a uniform random variable on the unit circle in the complex
plane. We also consider the case of slowly varying diagonals (twisted Toeplitz matrices), and, when
0 =1, also of independent and identically distributed entries on the diagonals in M.

2010 Mathematics Subject Classification: 60B20 (primary); 15B05, 15B52 (secondary)

1. Introduction

Write Gy for an N x N random matrix whose entries are independent and
identically distributed standard complex Gaussian variables (a Ginibre matrix),
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and let {My}3_, be a sequence of deterministic N x N matrices. Consider a
noisy counterpart given by

My =My + NGy, (1.1)
where y € (1/2, 0co) is fixed, noting that by standard estimates, see [8, Corollary
2 IN77Gyll >N O as., (1.2)
where || - || denotes the operator norm. Let A;,i = 1, ..., N denote the eigenvalues
of My, and let N

Ly:=N">"s, (1.3)
i=1

denote the associated empirical measure. In this paper, we study the convergence
of Ly for a class of matrices My. Discussions of background and related
approaches are deferred to Sections 1.3 and 1.4.

1.1. Main results. For a probability measure © on C which integrates the log
function at infinity, and z € C, denote the Logarithmic potential associated with

u by
L,(z) = /IOg lz — ylu(dy). (1.4)

The importance of the logarithmic potentials lies in the fact that the pointwise
convergence of £, (z) to a limit £,(z) implies the weak convergence p, — .

Our first main result is a deterministic equivalence theorem for L, (z).
We formulate here a simplified version under more stringent conditions than
necessary, and refer to Theorem 2.1 for the general statement, which also has an
explicit description of the functions gy appearing in the statement of Theorem 1.1.
Let Id = Idy stand for the identity matrix of dimension N. Let J = Jy denote the
nilpotent matrix with J;; =14, for1 <i < j < N.

THEOREM 1.1. Fix y > 1/2. Fix z € C and let sy(z) denote the number of
singular values of My — z1d smaller than N77 124 where 0 < Sy — N oo
0. Suppose sy(z)log N/N —n_o 0. Then, there exist explicit, deterministic
functions gy (z) so that

IL1y(2) — gn(@)| = N0 O in probability.

The importance of Theorem 1.1 (and its more elaborate version, Theorem 2.1)
lies in the fact that it reduces the question of weak convergence of the random
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empirical measure Ly to computations involving the deterministic matrices My .
Still, these computations are, in general, nontrivial. The other results in this paper
are instances in which these computations can be carried through and the limit of
Ly can be described explicitly.

Our second main result deals with upper-triangular Toeplitz matrices of finite
symbol, that is banded upper-triangular Toeplitz matrices.

THEOREM 1.2. Let a;,i = 0,1, ...,0 be complex (deterministic) numbers. Let
My = Z?zoaili, and let My and Ly be as in (1.1) and (1.3). Then Ly
converges weakly in probability to the law of Z?:o a;U', where U is uniformly
distributed on the unit circle.

A generalization of Theorem 1.2 to the twisted Toeplitz setup appears in
Section 4, see Theorem 4.1 there. As the next theorem shows, in the case of
two diagonals in My more can be said. For x|, x, € R we denote x; V x; :=
max{x;, x»}.

THEOREM 1.3. Let Dy be a diagonal matrix with entries d;, set My = Dy + J
and let My be as in (1.1).

(a) Let d; be independent and identically distributed random variables of law
v supported on a subset of a simply connected compact set with Lebesgue area
0. Then Ly converges weakly in probability to a measure | characterized by
L,(z) = (E,log|z —di|) v 0.

(b) Let f : [0, 1] — C be Héolder continuous and set d; = f(i/n). Then Ly
converges weakly in probability to a probability measure ( satisfying

1
MZ/ uniff(z)’ldz,
0

where unif, , denotes the uniform law on a circle in the complex plane of radius
b and center a.

See Section 3 for details and further examples, and note that Theorem 1.3(a) is
Corollary 3.6, while Theorem 1.3(b) is Corollary 3.9.
An illustration of Theorems 1.2 and 1.3 is provided in Figure 1.

REMARK 1.4. We chose to consider throughout the paper only the case of
perturbation matrices Gy which are complex Ginibre matrices. We believe that
the results should carry over in a rather straightforward way to the case of real
Ginibre matrices, and with a significant effort to the independent and identically
distributed setup, in the same spirit as [27]. To avoid additional technicalities, we
did not pursue these extensions here. Some recent results concerning perturbation
of Toeplitz matrices by general noise appear in [2].
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Figure 1. The eigenvalues of My, with N = 4000 and various y. On the top left,
My = J + J?. On the top right, My = Dy + J with Dy(i,i) = —1 + 2i/N.
On the bottom, My = Dy + J with Dy independent and identically distributed
uniform on [—2, 2].

1.2. A Thouless-type formula. Both Theorems 1.2 and 1.3(a) can also be
formulated in terms of Lyapunov exponents. Consider the vector space
Vi={xeR": (My —zId)x); =0,1 < j < N—Dd}

This space is 0-dimensional. Further, to find x € V, having chosen x, x5, ..., Xy,
one can solve for the remaining entries of x using the equations ((My —zId)x); =
0for 1 < j < N — 0 to propagate the solution. Concisely, we can find ? x ?
transfer matrices (T;(z))) ° so thatforall 1 < j < N —

G =Ti) - (i

For details, see Definition 5.1; for the exposition here, the explicit form of this
matrix will not be necessary.
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In the setup of Theorem 1.2, these matrices will all be identical. In the setup of
Theorem 1.3 part (a), the matrices will be independent and identically distributed
scalars. In either case, the sequence (7; (Z))llv_D is stationary, and we can consider
the Lyapunov spectra as the set of values

1
{1(2), 12(@), ..., o (2)} = {nlirgOZIOg 1T () Th-1(2) - - - Th(2)v] s v € Ca}-

In the setup of Theorem 1.3 part (a), there is a single Lyapunov eigenvalue,
given by 1, (z) = Elog |d, — z|. This allows us to write that

L1y (@) = mi(z) vO.

0

In the setup of Theorem 1.2, if we set P(x) = Y _;_,a;x' we have that

2 ) d9
L, () — / log |P (") — z]—.
0 27T

On the other hand, factorizing P(x) — z = a, ]_[?:1 (x — A;(2)), we can write

2 0
. do
f log|P(e"”) = zlo— = ) ((og [Li(2)]) v 0) + loglas|.

0 i=1
Furthermore, in the Toeplitz case, the eigenvalues of T;(z) = 7T\(z) are just the
roots of the symbol P(x), and the Lyapunov spectra are nothing but log |A; ()|
for 1 < i < 0. Hence, we have that in both Theorem 1.3 part (a) and Theorem 1.2,

0
L1,@) = Y (1i(z) v 0) + log|ay.

i=1

A similar result had appeared previously in the study of the Thouless formula
for the strip [4, Theorem 2.4]. For the twisted Toeplitz cases (such as in
Theorem 1.3 part (b)), the formula must be replaced by an average over local
Lyapunov exponents.

1.3. Connection to pseudospectra. The fact that the spectrum of non-normal
matrices and operators is not stable with respect to perturbations is well known,
see for example [26] for a comprehensive account and [5] for a recent study. To
illustrate the issue, we attach in Figure 2 an actual simulation of Uy My U}, where
My is as in Figure 1 and Uy is a random Haar-distributed unitary matrix. While
the spectrum of My is real, the numerical simulations produce errors that make
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Figure 2. Numerical evaluation of eigenvalues of UyMyU} with Uy Haar-
distributed unitary and N = 1000. On the top left, My = J + J2. On the top right,
My = Dy + J with Dy(i,i) = —142i/N. On the bottom, My = Dy + J with
Dy independent and identically distributed uniform on [—2, 2]. The computation
was performed in Scipy with a 64-bit floating point precision. Note the similarity
with Figure 1.

the spectrum look similar to the one for the noisy perturbed model M y, compare
with Figure 1. See [22] for early examples of the same phenomenon.
The e—pseudospectrum, defined by

A(My) :={z€C:oy(My —zId) < €},

with oy (-) the smallest singular value, is a type of worst-case quantification of the
instability of the spectrum. See [22] for the original formulation and [26] for an
extensive background and applications in numerical analysis and beyond.

In the literature on pseudospectra, an outsize importance is placed on
exponentially good pseudospectra, that is, A, where € < eV for some §.
Of particular relevance here, simulations of randomly perturbed non-normal

https://doi.org/10.1017/fms.2018.29 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.29

Regularization of non-normal matrices 7

matrices suggest that their spectra concentrate on sets that strongly resemble
exponentially good pseudospectral level lines, see for example [15]. In particular,
in the upper-triangular Toeplitz case, these curves are precisely the image of the
unit circle in the complex plane by the Toeplitz symbol.

Furthermore, all of the models of non-normal matrices that we consider
have been, not coincidentally, the subjects of study from the point of view of
exponentially good pseudospectra. The work [22] describes many examples of
non-normal matrices and gives plots of pseudospectral level lines adjacent to their
perturbed eigenvalues. The top two plates in Figures 1 and 2 are Examples 2
and 4 from [22]. Subsequent work [15] proved, using transfer matrices, some
estimates for the locations of the e-pseudospectrum and exponentially good
pseudospectrum of large Toeplitz matrices, and showed in the upper-triangular
case that the latter converges to the spectrum of the limit Toeplitz operator,
namely to the image of the unit circle by the symbol; our Theorem 1.2 shows that
indeed, for upper-triangular symbols of finite support and under small Gaussian
perturbations, the empirical measure converges to a limit with precisely this
support. The work [25], motivated in part by the Hatano—Nelson model, considers
the pseudospectra of random bidiagonal matrices, identifying four regions of
distinct pseudospectral growth. Finally [24] computes the exponentially good
pseudospectrum of some classes of twisted Toeplitz matrices, including the top-
right example of Figures 1 and 2 (the “Wilkinson’ matrix). See also [23] for related
results in the continuous setup.

As we shall see in Section 2, adding small Gaussian noise to My — z Id roughly
has the effect of boosting any exponentially small singular values to the order of
unity. Hence in situations in which there are only a few singular values of My —
z 1d that are exponentially small, the log potential at My — z1Id + N7 Gy can be
approximated by computing the log potential of My — z Id and subtracting from it
the contribution of exponentially small singular values. Indeed, if the exponential
growth rates of these extremal singular values are harmonic as functions of z away
from the spectra, then a discontinuity in the Laplacian of the log potential occurs
exactly where the exponential growth of extremal singular values changes signs.
In particular, an exponentially good pseudospectral level line would be contained
in the limiting spectral support of My — zId + N7V Gy. See Figure 3 for an
illustration.

However, as a consequence of the theorems we show in this paper, we see
that pseudospectrum alone is in general not sufficient for understanding the
limiting spectral distribution of randomly perturbed non-normal matrices, except
for special cases, for example, when only one singular value of My — zId is
exponentially small, or in the Toeplitz upper-triangular case.
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Figure 3. The matrix My = Dy — DyJ + J?, with Dy (i,i) = —1 +2i/N. The
leftmost image shows eigenvalues of My + N7 Gy for N = 4000. Theorem 4.1
gives the distributional convergence of the spectra of this matrix on adding
Gaussian noise. The rightmost image shows pseudospectral level lines for N =
100. The levels displayed are 100~*, for k ranging from 1 to 12. Pseudospectral
lines generated by André Gaul’s pseudopy package, based off Eigtool by Thomas
G. Wright.

1.4. Previous results on typical perturbations and strategy. Our work is an
attempt to address the same issue from a ‘typical’ perturbation point of view, and
in this sense continues the line of research initiated in [10, 27] and [6], which we
now describe.

In [10], the authors consider the case where My converges in x-moments,
that is, there exists an operator a in a noncommutative probability space (A, tr)
so that for any noncommutative polynomial P, N “Ttr P(My, My) — tr P(a,
a*). Under a regularity assumption on a and the existence of polynomially
vanishing perturbations of My with empirical measure converging to the
spectral measure u, associated with a, they show that Ly converges to u,
in probability. They further show that their assumptions are satisfied when
My = J. The paper [27] shows that this result is stable in the sense that
replacing Gy by a matrix with independent and identically distributed entries
satisfying mild assumptions does not change the result. The proofs in [10] and
[27] control the log potential of M by methods inspired by free probability,
and in particular break down if the x-moment limit does not coincide with
the limit of Ly. Further, in [10] one can find an example of a matrix My
(with only one nonzero diagonal) where the latter is indeed the case—namely,
My (i, ]) =J(, ]) : 1,/'7&0 mod log N+

In [6], the authors consider the latter situation and prove a limit theorem, where
the limit does depend on y. The method of proof is very different from [10, 27]—
it involves a combinatorial analysis of det M y(z) where My (z) :== My — zId.
Noting that £, (z) = 1/N log |det My (z)|, concentration of measure arguments
then identifies the terms contributing to the determinant.
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Our approach in this paper is related to [6] in that we also compute
|det(My(2))|. However, our starting point is to relate the latter to a truncation
of My(z) = My — zId, where the lowest lying singular values of My(z)
are eliminated (we refer to this as a ‘deterministic equivalent model’, using
terminology borrowed from [11]). The level of truncation depends on y, which
parametrizes the strength of the perturbation. Once this step has been established,
we can study the small singular values of My (z) using transfer-matrix techniques,
in case My is Toeplitz with a finite symbol or a slowly varying version of such
a matrix. This analysis was not present in [6, 10, 27] and seems to be new in the
context of the stability that we study.

We note that other approaches to the study of perturbations of non-normal
operators exist. In particular, Sjostrand and Vogel [17], [18] identify the limit of
the empirical value of a random perturbation of a banded Toeplitz matrix with two
nonzero diagonals, one above and one below the main diagonal. Their methods,
which are quite different from ours, are limited to ¥y > 5/2, and yield more
quantitative estimates on the empirical measure and its outliers.

The structure of the paper is as follows. In the next section, we introduce
and prove the deterministic equivalence. Various standard algebraic facts needed
for the proofs are collected in Appendix A. Section 3 presents the analysis of
the deterministic equivalent model in the case where only two diagonals are
present; the latter restriction simplifies the analysis because transfer matrices
reduce to a scalar in that case. Section 4 treats the case of 0 > 1, and reduces the
twisted Toeplitz case to piecewise constant twisted Toeplitz matrices, described
in Theorem 4.4. The proof of the latter appears in Section 5.

1.5. Notation. We use throughout the following standard notation. For two
real-valued sequences {a,} and {b,} we write a, = o(b,) if limsup,_, . b,/a, =0,
a, = O(b,) if limsup,_,  |b,|/|a,| < oo, and a, > b, if limsup,_,  |a,|/|b.| =
oo. For any x € R, we denote x_ := —min{x, 0} and x, := max{x, 0}. For any
x > 0, we denote log, (x) := (log(x)),. For x;, x, € R we denote x; V x; :=
max{x;, xo} and x; A x, = min{x, x,}. We use e; to denote the standard unit
vector, all of whose entries are 0 except for 1 at the jth entry. For two random

variables X;,i = 1, 2, we write X, £ X, to denote that X; and X, have the same
law. For any matrix M, denote by || M|, := [Tr(M M*)]"/? its Hilbert—Schmidt
norm, and for any vector v denote by ||v||, its Euclidean norm.

2. The deterministic equivalent

Let Xy(My(z)) be the diagonal matrix of singular values of My(z) :=
My — z1d. Suppose the entries of X'y (My(z)) are arranged to be nondecreasing
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going down the diagonal. That is, X;;(z) = oy_i11(My(2)) fori € [N] := {1, 2,
..., N}, where X;;(z) is the ith diagonal entry of X'y (My(2)), and o;(My(2)) is
the ith largest singular value of My (z). By invariance of the Gaussian matrix,

det(z1d =M y) £ det(Zy (My(2)) + N7 Gy).

Suppose that Xy (My(z)) is decomposed into two blocks of sizes Ny + N, = N,
so that

o Sn(My(2)) - L X X5
EN(MN(Z)) = ( BN(MN(Z))> and N VGN = <X3 X4> .

(2.1)
For ease of writing, when the matrix My is clear from the context, we simply write
2n(2), Sn(z2), and By(z) instead of Xy (My(2)), Sy(My(z)), and By(My(z)).
Now by the Schur complement formula,

det(Xy(z) + N7Gy) £ det(By (z) + Xy) - det(Sy (2)), 2.2)

where _
Sy (2) = Sy () + X1 —X>(By(2) + X4) ' X5. (2.3)

(Since the entries of X, are independent and identically distributed Gaussian, the
matrix (By(z) + X4) is a.s. invertible and hence Sy(z) is well defined.) The
decomposition in (2.2) proves useful when we choose the decomposition so that
the entries of By(z) are somewhat large with respect to the noise. For such a
decomposition as we will see later (see Theorem 2.1) the log determinant of
By (z) correctly characterizes the log potential of the limiting spectral distribution
of M. So we need to define By (z) appropriately.

Fix a sequence of {ey} going down to zero. We define N* := N*(z, y, ex) as
the largest integer i so that

Yi(z) < ey NV(N —i+1)'2, (2.4)

If nosuch 1 < i < N exists then we let N* = 1. Now set N; = N*. This defines
By (z). With this choice of By (z) we have the following result.

THEOREM 2.1. Fix z € C. Suppose that N*log N/N — o < oo. Then for any
{en} that tends to 0 slowly enough that log(a‘;,l)/ log N — 0,

%log |det(Xn(2) + N77"Gw)| — %bg |det(By (2))| — —a (V - %) 2.5

in probability, as N — oo. If & = 0, we may take ey = N~ for any n > 0.
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The proof of Theorem 2.1 requires a two-fold argument. First we show that the
truncation level chosen above assures that X, is negligible with respect to By (z).

In particular, we obtain the following result.

LEMMA 2.2. For any given sequence of {ey}, such that ey € (0, 1) for all N, we

have
Edet(By(z) + X4) = det(By(2)) (2.6)
and )
Var det(By (2) + X4) < - 8N82 (det(By(2)))’. @7
T °N

Proof. Since the entries of X4 are independent with zero mean, (2.6) follows from
Lemma A.1. To compute the second moment, we again use Lemma A.1 and the
fact that entries of X4 are independent with zero mean and variance N =" to obtain

N—-N*
Eldet(By(z) + X)IP = Y Y E|detx4[51|2-(]‘[|2,-,~(z>|2)
k=0 SC[N\[N*] ieS
|S|=N—N*—k
N—N*
= > N Tzl
k=0 SCINI\[N*] ieS

|S|=N—N*—k

where S = (INT\ [N*]) \ S. As the diagonal entries of X'y(z) are arranged in
nondecreasing order, recalling the definition of By (z) and N* we find that

[TIZ:i@Pr <
ieS

for any S C [N]\ [N*] with |S| = N — N* — k. Therefore,

|det By (2)|?
(ey' N7V)(N = N

|det(By (2))|?
g—lN—y)Zk (N _ N*)k

& (N - N
Eldet(By(z) + XH)[* < kX:O: ( L )(k!)NM(

|det(By (2))I*.

= 2
I —ey

The last display together with (2.6) yields (2.7). O

REMARK 2.3. Bounding higher (centered) moments of det(By(z) + X4)
and applying the Borel-Cantelli lemma one can strengthen the conclusion of
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Theorem 2.1 and show that (2.5) holds almost surely. This in turn shows that the
conclusions of the main theorems of the paper, such as Theorems 1.2, 1.3, and 4.4
hold almost surely. We do not pursue this direction here.

Lemma 2.2 shows that if ey | O then the log determinant of By (z) + X4 is
asymptotically the same as that of By (z). To establish Theorem 2.1 we also need
to show that the log determinant of the Schur complement, logdet(Sy(z)), is
asymptotically negligible, see (2.2). To this end, we obtain the following lower
bound.

PROPOSITION 2.4. Set N := N*V f«/ﬁl. If N* < N/2, then there exist absolute
constants c,, ¢; > 0 so that

Plldet(Sy ()| < N7V /(N*De V] < eV, (2.8)

Before bringing the proof of Proposition 2.4, we recall the following lemma,
which is proved in [6, Lemma 4.4] (in the real case, but the proof carries over to
the complex case). An alternative proof can be given based on [19, Theorem 4].

LEMMA 2.5. Suppose that E is a Q x Q standard Gaussian matrix. Then for any
0 x Q matrix M independent of E and allt > 0,

P[|det(E + M)| < 1] < P[|det E| < 1].

We will also need the following lemma, whose proof is an adaptation of the
proof of [6, Lemma 2.5].

LEMMA 2.6. Let E be an Ny x Ny matrix of independent complex standard
Gaussians. There are absolute constants ¢, > 0 and ¢, > 0 so that for all
N(/) 2 NO)
i |
Plldet E| < v/ Nple 1M0] < —e 2™,
)

Proof. We begin by recalling from [7] that if £ is a complex Ginibre matrix of
dimension N x N matrix, then

N
det E* 227V [ 2.
r=1

where x? are independent chi-square random variables with r degrees of freedom,
that is, they have the distribution of the square of the length of an r-dimensional
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standard real Gaussian vector. Now fix a large integer K and denote

K
Fg = l_[ Xor-
r=1

Then, Fx < 2~ with exponentially (in Ny) small probability. Then, proceeding
as in the proof of [6, Lemma 2.5], we find that

, _ K!
ELK < N_O'

for a sufficiently large K, where

No
Lg = 1_[ Xor-

r=K+1

The rest follows from Markov’s inequality. O
Proof of Proposition 2.4. By Lemma 2.5, forallt > 0
Plldet(Sv ()| < 11 < Plldet(X,)| < 11,

where X is an N* x N* matrix of independent and identically distributed
complex Gaussians of variance N ~2v, Hence, the desired conclusion follows from
Lemma 2.6. L]

We turn to finding an upper bound on the determinant of Sy (z). To this end, we
first derive an upper bound on the norm of the inverse of By(z) + X4.

LEMMA 2.7. Fix {ey} such that ey < 1/8 for all N, and assume that N* < N /2.
Then,

P(I(Bx(2) + Xa) 7'l < 2exN”(N = N*)™"%) > 1 — exp(—cN),

for some absolute constant c.

Proof. Gordon’s theorem for Gaussian matrices (see [8, Corollary 1.2]) and the
triangle inequality give

E|X.]| < 2v2N77+/N = N~

Since A + ||A]| is a 1-Lipschitz function, the standard concentration inequality
for Gaussian random variables applies and yields

P(| X4]| =2 4N7"+/N — N*) < exp(—2c¢(N — N*)) < exp(—cN),
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for some absolute constant c¢. On the other hand, by our definition, see (2.4),
Umin(BN(Z)) > 8;]1N7y\/ N — N*,

where o, (B) denotes the minimum singular value of B. Since ey < 1/8, Weyl’s
inequality (see [12, Theorem 3.3.16(c)]) gives that

Omin(By (2) + X*) = (2ey)'N7"/N — N*,
with probability at least 1 — exp(—cN). This completes the proof. O

Building on Lemma 2.7 and using a standard concentration inequality we have
the following result.

LEMMA 2.8. Fix {ey} such that ey < 1/8 for all N, and assume that N* < N /2.
Then there exist absolute constants ¢’ and C' such that the £,-norm of each of the
rows of X>(By(z) + X4)~' X3 is at most

CleyN77*12,
with probability at least 1 — exp(—c'N).
Proof. By the rotation invariance of X, and X3,
X>(By(2) + X)™' X3 £ X2 DX,

where D is a diagonal matrix with entries equal to the singular values of (By(z) +
X4)~'. Hence, a row of X,(By(z) + X4)~'X; is equal in distribution to

N7 (Dx)' X,

where x is an (N — N*)-dimensional standard complex Gaussian vector
independent of X3 and for any vector y the notation y’ denotes its transpose.
From the rotation invariance of X3, it follows that

L
(Dx)'X; = || Dx |l2¢} X.

The law of || Dx||, is stochastically dominated by the law of ||D||||x]|,, and so
we conclude that the law of the £,-norm of a row of X,(By(2) + X4)~' X5 is
stochastically dominated by i N2 o pe - Xov—nNyx - |1 (By(2) + X4)7'|l, where
again {y,} are random variables distributed as the length of an r-dimensional
standard real Gaussian vector. Applying Lemma 2.7 and standard tail bounds for
x—Vvariables, the result follows. O
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Using Lemma 2.8 we now find an upper bound on the determinant of the Schur
complement.

LEMMA 2.9. Fix {ey} such that ey — 0 and ey < 1/8 for all N, and assume
that N* < N /2. Then there are absolute constants ¢ and C such that

|det(Sy ()| < CV NN eV (N)V'/2
with probability at least 1 — exp(—cN).

Proof. Note that the rows of X have £, norm at most 2N />~ with probability at
least 1 — exp(—c;N) where ¢, is some absolute constant. By construction of the
diagonal matrix Sy (z), its entries (and hence the £, norm of its rows) are bounded
by e5' N~ *1/2 1t follows from these facts and Lemma 2.8 that the £, norms of the
rows of Sy(z) are bounded by a constant multiple of &' N'/2~7, with probability
at least 1 — exp(—cN). Hadamard’s bound on the determinant ylelds the desired
conclusion. O

Equipped with all the ingredients we are now ready to prove Theorem 2.1.

5.

Proof of Theorem 2.1. From Lemma 2.2, upon using Markov’s inequality we find
2
det(By(2) + X4) s 1 < dey,

1—ey

p( > 1
det(By(z2))

2
Therefore we see that there is a set £2 ; such that on £2y ; we have

. 1 2 |det(By (2) + X4) 1
~ loe det(B X4) — — logdet B SYlTamm o S v

+ log et(By(z) + X4) N oede v (@) N| det(By(2) N
(2.9)

and 2
4
P25, ) < 5/\/2 (2.10)
' 1 —ey

Since y > 1/2, from Proposition 2.4 and Lemma 2.9 we also obtain that

L tog [det Gy (| — N 1oe N -
N osletioniz N Y3

N* _ 1 N N
< ~ logC +log | — +—10g— +(Cl+1)—
N

2
N*log N [log C + log(1/ey) + 1/21og(N/N* N
< g g g(/en) +1/21og(N/ ) ety
N log N N
(2.11)
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on an event £2 , such that
P(£25,,) < exp(—EN) + exp(—c:N). 2.12)

Hence when N*log N/N — o < oo, then taking |log(ey)| = o(log N), the
desired conclusion holds. With ey = N7 and N* = o(N/log N) we deduce
from (2.11) that

‘%bg det(EN(z))‘ = o(1), (2.13)

on the event 2y ,. Now combining (2.9)—(2.10) and (2.12)—(2.13) we see that the
convergence in (2.5) holds in probability. O

3. Bidiagonal matrices: rigidity theorems for small singular vectors of
Dy+J

In this section, we develop estimates for the small singular values of the
bidiagonal matrix My = Dy+J where Dy = —diag(d;, d,, . .., dy) is a diagonal
matrix. These are then used to prove Theorem 1.3. For alli < j, let D"/ be defined

by
D = ]_[ d,.

i<l<j

Note that D' = 1 by this definition. For all i < j define a vector by, for each k,

0 k <1,
v/ =D i <k<, (3.1)
0 Jj <k.

The point of these vectors is that they solve (Myv/); = 0 for k between the
boundaries. Precisely:

1 k=i—-1,
(Myv i) = § =D+l k= j, (3.2)

0 otherwise.

Hence if D"/*! is much smaller than some D** > 1 fori < k < j, then this
will be nearly a small singular vector, that is, a singular vector corresponding to a
small singular value.

Note that for i < k < j — 1, we have the identity

vl =dwy. (3.3)
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Using the vectors v/ we now construct approximate small singular vectors.
Fix an integer L := Ly, the choice of which will be determined later. Consider
integers

O=i1<ih<iz<---<ip<ipy =N.

The vectors {w/ = vl ||plithism || 21 = 1,2, ..., L} have disjoint supports
and are therefore orthogonal. We use these vectors as approximations for the small
singular vectors and quantify the approximation. To this end, define

r

DI = max > AP+ D)), and

ij<s<r<ijg
p=s

3.4)

r

P 1 1
DY = max i
ij<s<r<ijg Z |Dpr| + |’Ds,p|

Provided the entries {|di| : i; < k < iy} are consistently larger than 1 or
consistently smaller than 1, at least one of these quantities will be close to 1.
Even in the case of independent d;s, in which there may exist a relatively long
string of diagonal entries with possibly atypical magnitude, it is unlikely that both
of these will be large. We then let

D := max [mln{D Pl Pty > (3.5)

1<<L

When D is small, the approximation will be good. Let 77; denote the coordinate
projection from C" to the coordinates that support w’/. Our main result in this
section on singular values of My is the following.

THEOREM 3.1. The (L + 1)-st smallest singular value satisfies
on-(My) =D

There is an absolute constant C > 1 so that the product of the L smallest singular
values of My satisfies

L—1 L
(ClIMyIDVL)™ ]"[nnkMNw lo < [ JovaeMy) < [ ImMyw*(lo. (3.6)
k=1 k=0 k=1

The proof of Theorem 3.1 is deferred to Section 3.2.
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3.1. Applications. Theorem 1.3 regarding the behavior of the eigenvalues of
My in the bidiagonal case follows from direct applications of Theorems 3.1
and 2.1. We show now how these applications follow.

We begin with a particularly simple case to consider that is not directly related
to Theorem 1.3.

COROLLARY 3.2. Consider a Jordan block
z 1
z 1

Iy () =
z 1
Z

Setting §~' = min{|1 — |z]|, N, |1 — |z|7"|}/2, there is a constant C(z) > 1,
depending only on z, so that for all N, we have

on-1(Un(@) =T on(Un(@) =F 'zl ADY/C(2),

and
on(In(2) < C@)(Jz| A DY,

Proof. We apply Theorem 3.1 with a single block, that is, L = 1,i; = 0, and
i = N. We bound ® < § upon observing that |D?"| = |z|"~? for r > p. By the
Gershgorin circle theorem we also have that || Jy (2)[| = [|IxJ5|I'/? = O(lz] v 1).
Therefore, the proof now finishes upon using (3.1)—(3.2). I

REMARK 3.3. Observe that the same conclusions as in Corollary 3.2 hold if the

diagonal of Jy were replaced by arbitrary complex numbers having the same
modulus.

REMARK 3.4. By combining Corollary 3.2 with Theorem 2.1, we get a new proof
of [6, Theorem 1.4].

When Dy is a diagonal matrix of independent and identically distributed
random variables the outcome is similar.

COROLLARY 3.5. Suppose the entries of Dy are independent and identically
distributed complex random variables with

Eld,|** < oo for some By > 0 and Elog |d;| # 0. 3.7)
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Then, for every € > 0, there is a8 > 0 and an L < 5N'~% so that with probability
approaching 1 as N — 00, oy_(My) > N~° and

L—-1

1_[ on_i(My) = e NEleldiD-FoN)
k=0

Proof. The key to the proof is to construct a partition of [N] so that © is small
and the upper and the lower bounds of (3.6) are evaluated easily. To this end, we
first note that

}31_13.(1)(E|d1|i/3)1/ﬂ — ei]Elog\dl\’ (38)

which follows from Taylor’s theorem and dominated convergence using (3.7).
Now we focus on the case Elog|d;| > 0. By (3.8) there exists a § > 0 so
that ps := E|d;|# < 1. We fix this B for the remainder of the proof. Next we
recall that if {Z;} is a non-negative martingale with Z, = 1 then Doob’s maximal
inequality implies that

1
P[sup Zy = l‘i| < ; (39)

1<k
Let G be the set of j € [N] so that there exists a k € [N] for which

JjVk

l_[(|d| B —l st.

i=jnk

Then

Jj+k
P(j € Gy) < P(sup H(|d 7 pph) = N”)

k=0

+P( sup H(|d| ’ '>>N28>

2<k<,l k1

= P1 + Pz.

Setting Z; := H”k 1(|al |~ ﬁpﬁ ), one sees that {Z,} is a non-negative martingale
with Z, := 1. Applying (3.9) one gets that Py < N~*. Similarly, setting Z;, =

{:J.fkﬂ(ld,»l‘ﬁpgl), one gets P, < N~%. Thus, E|G;s| < 2N'~%, and hence by
Markov’s inequality, with probability at least 1 — N 7%, |Gs| < 2N'°. Let S C Z
be defined by

Si={LN‘SkJ;k€[LN]_5J]}U{ U(x+{0,1})}, (3.10)

xeGy
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where for two sets S; and S, we denote S; + S, ;= {s;1 + 5, : 51 € S1, 5 € 5}
Enumerate the elements of S as {i, < i3 <is < --- < is+1}. Extend the collection
i’sby lettingi; =0, L = |S|+1, andi;;; = N. Then L < 5N'~° with probability
atleast 1 — N, and the separation i, — iy < N° for all k.

From the definition of the set S, it follows that when i; ¢ G5, we have for any
i; <r<ijyandanyk > r,

k
l_lldi|_l < st/ﬁpg/ﬂ < st/ﬁ,

where the last inequality follows from the fact that p; < 1. Hence, DU

2N°(1H2/P) Recalling the definition of S once more we see that when i; € G4, we

have i;;; = i; + 1. Thus, in that case D!’jj ! < 2. Therefore, we conclude that if
Elog|d;| > 0then ® < 2N°1+2/P) with probability at least 1 — N~°. Using (3.8),
a similar argument yields that

DU ANV forall j=1,2,...,L, (3.11)

with probability at least 1 — N %, when Elog |d,| < 0. Therefore, the same bound
as above holds for ® in this case.

Now taking § = §(e) small enough and invoking the first part of Theorem 3.1,
one concludes that with the same probability, oy, (My) > N~¢, as claimed.

To show the second part of the corollary, we claim that for any n > O there is a
8" :=48'(n) > 0, with lim,_,¢8'(n) = 0, such that forall# > 0

k
max {P[Zlog jdi| < —1 + k(Elog|di] — n)],
i=1

k
P[Zlog \d;] >t + k(B log |di| +n)]} <e . (3.12)
i=1

To see the above, applying Markov’s inequality, we note that for any 8" € (0, Bol,

E| T 141" ]
exp(B'kElog|d|)

e BBk

k
P[Zlog|di| =t +k(Elogld| + 77):| <
im1

Now using (3.8) and choosing 8’ sufficiently small (depending on 1) we deduce

k
P[Zlog ;| > 1 + k(Elog |dy| + n)} <et,
i=1
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Using a similar argument for the second probability in the left hand side of (3.12),
we conclude that (3.12) holds.

We continue with the proof of the second part of the corollary. From (3.12) we
conclude that for any n > 0, there is a constant (_T(n) > 0, with lim, C_‘(n)’1 =0,
so that, with probability 1 — N~'%° forall 1 < j < L,

i1
2 i1=ipElogldil—m—Cm)log N l_[ |d:|> = ||anNvtj+1»'.f+l “§
i=ij+1
< €2(l.f+171/-)(]E10g \d1\+r])+C(n)lugN' (313)

In the case that Elog |d;| > 0, using the fact thati;,; — i; < N° we see that

Ljg1 r

| | |d;|* < [lo" 3 < N® - max | | |d; .
T [j<r<ijyr. -
i=ij+1 i>ij+1

Proceeding similarly to the proof of (3.13) and applying a union bound we
conclude that with probability at least 1 — N=%°, forall 1 < j < L

e2j+1—i)Elogld|=m—C(mlog N < ||v1,-+l,t/+| ”3 < 2j+1—i)Elogldi|+m)+(C+8)log N

(3.14)
Recall that ||mMyw*|, = |mM,vctbi|, /|| v+, Hence combining
(3.13)~(3.14), using the factij, —i; < N % again, and taking n — O sufficiently
slowly with N, so that C(n)log N = o(N?%), we conclude that if Elog|d,| > 0

then
L

™ < T [ lImMyw! [, < ™, (3.15)
k=1

with probability approaching one as N — oo.
Turning to the case Elog|d;| < 0 we begin with the estimate

1< ot 2 < NS L ONPIHUPD forall j =1,2,..., L,

with probability at least 1 — N, where the last step follows from (3.11).
Therefore

SN log|di|—o(N) = k l_[,Nﬂ |d;| SN log|d;|
iz O8I <| |||7TkMNw . = — < eXi= 81 (3.16)
[T ot
k=1 j=1 2

with probability approaching one, as N — oo.
To complete the proof using Markov’s inequality and the union bound we note
that P(max; |d;| > N?#) = O(1/N). Therefore, using the Gershgorin circle
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theorem we derive that || My ||* = | M} My || = O(N*#°) with probability tending
to one. Now applying Theorem 3.1, the derived bound on 2, using (3.15) when
Elog|d,| > 0, and (3.16) and Chebycheft’s inequality when Elog |d;| < 0, the
corollary follows. (|

The next corollary and Remark 3.7 following it, combine Corollary 3.5 with
Theorem 2.1 to obtain Theorem 1.3(b).

COROLLARY 3.6. Suppose that Dy is a diagonal matrix of independent and
identically distributed complex random variables of law v, and let My = Dy + J.
Suppose that E|d,|*% < oo for some By > 0 and that Elog|d, — z| # 0, for
Lebesgue a.e. 7 € C. Then Ly converges weakly in probability to the probability
measure with log potential (Elog|d, — z|)+.

REMARK 3.7. Let.? :=Supp (d;). The condition that L,(z) = Elog |d;—z| # 0,
for Lebesgue a.e. z is satisfied, for example, when . is contained in a compact
simply connected set of two-dimensional Lebesgue measure 0. Indeed, note that
L, is harmonic on .#¢. £, cannot vanish identically in .#“ because .7° is
connected and limsup,_,  £,(z) = oo. By [16, Theorem 3.1.18], it follows that
the zero set of £, in . has zero Lebesgue measure.

Proof of Corollary 3.6. We note first that by Weyl’s inequalities for singular
values, if d,-i, i = 1,..., N denote the monotone decreasing reordering of the
variables |d,|, ..., |dy| then |o;(My) — dfl < 2 for all i, with probability
approaching 1 as N — oo. (In the last statement, we used that ||J|| < 1 and
that by (1.2), [N77Gy| = nyooo 0.) By Weyl’s majorant theorem [3, Theorem
I1.3.6] it follows that, with probability tending to 1 as N — oo,

N N N
D log, (M) < )Y log, 0:(My) < Y log, (Idi| +2).
i=1 i=1 i=1

Since E|d, " < oo it follows that Elog, (|d;| + 2) < oc. Therefore, denoting by
B¢ (0, R) the ball of radius R in the complex plane centered at zero and using the
law of large numbers, we find that

= I
Ly(Bc(0, R)) = I Zl{\/\,-(MN)|>R) < (log, B N Zlog+ [ (M)
i1 o1

2. E10g+(|d1| + 2)
log, R

s
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with probability approaching one. Since R < oo is arbitrary, this in turn implies
that the sequence of random probability measures {Ly}yen is tight. Therefore,
by [20, Theorem 2.8.3], the corollary follows once one proves that £, (z) —
Elog|d, — z|, in probability for Lebesgue almost every z € C.

To prove the convergence of L, we check that Dy — z1d +J satisfies the
hypotheses of Corollary 3.5 for Lebesgue a.e. every z. By assumption E|d;|% <
oo and hence E|d, — z|# < oo for all z € C. Observe that for any M > 0

1
// ldz|*v(dy) =27 M
C J|z—y|l<M |Z - )’|

with |dz|* the 2-dimensional Lebesgue volume element. In particularly, as this is
locally integrable, by Jensen’s inequality, we have that

Elz —d| < (Elz —di|™H" < 0

is finite for Lebesgue a.e. z, where without loss of generality we have assumed
Bo < 1. Hence My — z1d satisfies the hypotheses of Corollary 3.5 for Lebesgue
ae.zeC.

Let z € C be a point at which these hypotheses are satisfied. Choosing ¢, > 0
sufficiently small so thate < y — % —n, we get from Corollary 3.5 that there is a
§>0andan L < 5N'?sothatoy_, (My —zId) > N~¢ and

L-1
[ [ov—e(My — z1d) = ¢~V Elegldi=zD-to), (3.17)
k=0

with probability approaching to one, as N — oo. Applying Theorem 2.1, with
ey = N7, we get that

|det(My — zI1d)|

;1:]:*(;1 on—x(My — z1d)

1 1
v log |[det(My — z1d)| — v log -0 (3.18)

in probability, where we recall that N* was defined in (2.4) as the largest i so that
oy_i < N"V(N —i)'? < N~*.
So N* < L, and therefore

1 on i« (My — z1d)
H;i\:(;l on—k(My — z1d)

(N"V(N — N*)'/2)L < < |IMy —zId 5. (3.19)

As we have already seen during the proof of Corollary 3.5 that || My | = O (N*)
with probability approaching one, by the triangle inequality the same bound
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continues to hold for | My — zId ||. Therefore, using the fact that L = O(N'7%)
we deduce that both the upper and lower bounds in (3.19) are subexponential
in N. On the other hand, since My is an upper-triangular matrix, by Chebycheff’s
inequality it also follows that |det(My —z Id)| = eVEloeldi=z1+o) "with probability
tending to one. Hence, combining (3.17)—(3.18) we deduce

eNElog |di—z|+o(N)

! log |det(M Id ! 1 0
 logldetMy —zId)] — = log ~—rmm——77 =~

in probability. As this holds for Lebesgue almost every z € C, the claimed
statement follows. (|

The next corollary deals with My = Dy + J where the entries in Dy vary
slowly.

COROLLARY 3.8. Suppose that f : [0,1] — C is a-Hdlder continuous, and
that d; = f(i/N) for 1 < i < N. For every ¢ > 0, there is a 6 > 0 and an
L = O(N'"%) sothat oy_(My) > N~° and

L—-1

N ..
[Ton-i(My) = Xm0l ram—om,
k=0

Proof. The key to the proof is again to construct a suitable partition of [N]. Fix
any é € (0, 1). Inductively define a; € N by setting a, := 1 and letting

inf{a; N :log|f(k/N)| > N*}  if log|f(a;/N)| <0,

<k <
DT Vinfla, < k < N :log | f(/N)| < —N~*} if log| f(a;/N)| > 0.

From the definition of {a;} and the Holder continuity of f we see that there is a
constant C so that

1 )
EN_B < [f(aj/N) — flaj+1/N)| < Co(aﬁlN—aj)

and note that |{a;}| = O(N*®). Let

LN'-3)

S:= | J IN%k] Ufa; : j eN).

k=1

Enumerate the elements of S as {i, < i3 < iy < --- < i|g41}. Extend this by
letting iy = 0, L = |S| + 1, and i;,; = N. Then, upon reducing § if necessary,
we obtain L = O(N'7%), and the separation i;,; — iy < N° for all k.
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Next, recalling the definition of ®*", by the construction of {a;}, and the
triangle inequality we also have that either

— -5 . . o s
D | < 2e" 9N foralliy <s <r <iggyor D] > %e (r=s)N~

for all iy < s < r < iy Hence ® < 4eN?, which upon an application of
Theorem 3.1 yields that given any ¢ > 0, there exists § > 0, sufficiently small
such that oy_ (My) > N~ As [|[My|| = | My M| = O (sup, . | f ()1, by
the Gershgorin circle theorem, applying Theorem 3.1 once again, it remains to

show that
L

N .
1_[ |7 Myw* ||, = eri=t —(og | f/N))-+o(N) (3.20)
k=1
where we recall that w* = pi+hice ||yt || 2 for 1 < k < L. To this end, we
note that for each 1 < k < L we have that either

log|f(s/N)| < N7° foralliy <s<iw, or log|f(s/N)| > —N"°
forall iy < s <ipy.
Using the Holder continuity of f we further have that | f (iry/N)| < 2e" “in
the first case and | f (i1 /N)| = %e‘N " in the second case. Therefore, in the first

case, we have that
e Liger |2 278
1< o5 < 2¢°N°,

and
(Dt =TT 1£G/N)
J=ik+1
=exp< > doglfG/NDy — Y (loglf(j/N)I)_>
J=ir+1 j=ik+1
= exp(om ~ ) (log If(j/N)I)_).
J=ir+1
Hence,
e My w* |, = exp(oaog N)— ) (log If(j/N)I)_>. (3.21)

J=ir+1
Arguing similarly, in the second case, we have that

|Dik+]vik+l |2 < ||vik+]-ik+l ”5 < 262N5|Dik+1vik+l 2’
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and therefore

ik+1
I Myw* I, = exp(O(log N)) = eXp(O(IOg N) — Z (log If(j/N)|)>'
j=ig+1
(3.22)
Combining (3.21)—(3.22) we arrive at (3.20). This completes the proof. [

Building on Corollary 3.8, the next corollary is Theorem 1.3(b).

COROLLARY 3.9. Suppose f : [0,1] — C is Holder continuous, and that
di = f(i/N) for1 <i < N. Set My = Dy + J. Then Ly converges weakly
in probability to a probability measure with log potential

1
/0 (log | f (1) — zl), dt.

The proof follows a very similar track as the derivation of Corollary 3.6
from Corollary 3.5. Moreover, as we will see later in Section 5, the proof of
Theorem 4.4 also follows a very similar line of arguments. Hence, the proof of
Corollary 3.9 is omitted.

3.2. Proof of Theorem 3.1: estimates for the small singular values of Dy + J.
The proof is divided into three separate claims: Corollary 3.13, which is a bound
on the (L + 1)-st smallest singular value, Proposition 3.11, which is an upper
bound on the product of small singular values, and Proposition 3.14, which is a
lower bound on the product of small singular values.

Recall the notation in (3.3) and (3.5), and that 7; is the coordinate projection
from CV to the coordinates that support w’. Let p; be the same coordinate
projection that in addition kills the i;,; coordinate, that is, the last entry of the
support of w/.

LEMMA 3.10. Forall 1 < j < L, and any vector x € CV,

inf,ec [I77;(x —aw?) ||
loj(Myx)ll2

where Diﬁ’ij“ and D" were defined in (3.4).

i) i
< min{D{* DIV

Proof of Lemma 3.10. By definition of My, we have forany 1 < p < N and any
vector x € CV,
Xpp1 = dpxp—(Myx),.
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By iterating this identity and using (3.2), we have fori;,; > p > k > i; +1
p—1
X, — aw‘{, = (5 —aw))D"? + Z(MNx),DH'l”’.
r=k
Reversing the roles of k and p and rearranging the formula, this also shows that
forijqz2k>p>i;+1

j k—1

i g —aw)) (Myx),

P Drk Dp.r+l "
r=p

X, —aw

)=0or(x;;,, — aw’ ) = 0 we have that

Picking a so that (x; 41 — aw; "

lj+l
-1 .
f:iﬁ-l (Myx),| - |Dr+l,p|7 p>1j + 1,
iir1—1 _ .
ZI/;I, |(Myx),| - I DP 7Y p<ijy — 1.

Hence, using the first inequality of (3.23), upon applying Jensen’s inequality,

p—1 p—1
|xp —aw{)|2 < { Z |(MN-x)r|2 . |Dr+l,p|} . { Z |Dr+l,p|}.

r=ij+1 r=ij+1

lx, — aw{,l < (3.23)

Summing this bound from p = i; + 1 to p = i;;,, rearranging the terms, and

using the definition of D""/*,

il ijp1—1
NI i |2 2 ijij+112
I (x —aw))|3= Y |x, —aw) < { D [(Myx),| }~{D+/ )

p=ij+1 r=ij+1
2 ij,ij 2
= llpj(Myx)|; - {DI'}.

Next using the second inequality of (3.23) and proceeding similarly as above we
complete the proof. O

We now proceed to using these estimates in order to control the product of
the small singular values of My. We begin with obtaining an upper bound on
the product of small singular values. To this end, we use Lemma A.2, which
is a multivariate generalization of Courant-Fischer—Weyl min—max principle for
singular values.

PROPOSITION 3.11.

L-1 L
[ JovMy) < T lImeMywt (.. (3.24)
k=0 k=1
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Proof. Denote W := [w1 w? - wL]. Since the columns of W are orthonormal,
from Lemma A.2 it follows that
L-1
]—[aN ((My) < det(WM5MyW). (3.25)
k=0

To evaluate the RHS of (3.25) we define the L x L matrix M by
Mj,k = (ei,-H)IMka,

where {e,})_, are canonical basis vectors in CV. Recalling (3.2) we note that
W M MyW = M*M. On the other hand, the matrix M being upper triangular
we also have
L L
1—[ ll7m; Myw’||5 = 1_[ IM; I = |det M|* = det(W* M My W). (3.26)

j=1 j=1
The proof concludes by invoking (3.25). O

We next show that vectors v which have a sizeable component orthogonal to
S := span{w’} will necessarily have || Myv||, large. To this end, let ¥ be the
orthogonal projection map from C" to S. Let p be the projection

p=>_p; (3.27)

The projections p and ¥ interact in that
pMyy =0, (3.28)

which follows immediately from the definition of w’/. We can then combine this
observation with the earlier Lemma 3.10 to obtain the next lemma.

LEMMA 3.12. For any vector v € CV,

ol = Ioll; = 10—yl < lloMyv]39%.

Proof. On the one hand, using the orthogonality of 7,

2 2 . i\ 12 p i~ 112
vll5 — lYv|l; = inf (v — a;w’)|5; = inf wi(v—a;w’
lls = Iyols = inf 10 =3 aw)l3 = inf >l —a;w)l;

J J

. N2
= E inf ||7; (v —a;w’)]l5.
N ajeC
J
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Hence using Lemma 3.10 and (3.5), we get
i3 = vl < Y llp Myvl3D%.
J

The stated conclusion of the lemma follows by the orthogonality of p;. O

The last lemma immediately implies a lower bound for the (L + 1)-st smallest
singular value.

COROLLARY 3.13.
ony_L(My) =D

Proof. We recall the standard variational characterization of this singular value in
the maximin form:
on-(My) = sup inf ||Myx|l2,
VL x L1V

where V is an L-dimensional space and x is of unit £,-norm. Setting V;, = S, the
stated corollary immediately follows from Lemma 3.12. O

Now it remains to find a lower bound on the product of the small singular
values; this is slightly more involved.

PROPOSITION 3.14. With notation as above,

L—1 L
[Tov-«My) = BUMyI v DDVL) ™ [ ]Il Myw* .
k=0 k=1

Proof. Using Lemma A.2 we see that it is enough to find a uniform lower bound
on ]_[,f:] | My vi|l» over all collections of orthonormal vectors {v;}r_,. We bound
each || My below in one of two ways. If 1 — ||y v |13 > 1/2L then v, has a large
enough component in the S* direction that we apply Lemma 3.12 to conclude

1 1 lmeMywh|,

V2LD 8DVL Myl

where p is as in (3.27). Without loss of generality, we may permute the ordering of
the vectors so that the first vy, va, . .., v, are those that satisfy 1— ||y v |13 < 1/2L.
For these vectors, we have that

IMyvilla 2= loMyvillz = , (3.29)

IMyvells = oMy (1= )uells + (1 = p)Mywell, (3.30)
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where we have used that p My = 0. We now consider two cases. First suppose

11— p)Myyuolla < 41— p)My (1 — )il
Since
11— )My —)vella < Myl - 11— ) vgllas

we obtain
(L= p)MyPoella < 4 Myl - [[(1— ¥)vella.
Hence by (3.30) and Lemma 3.12 we deduce

IMyvella = oMy (1 — Y)vella = lpMyvilla = D7 — y)vell
1
> 1—p)M . 3.31
4||MN||©”( PYMyyruells (3.3D)

On the other hand, if

(1= p)MyYrvoellz > 4l1(1 — p)My (1 — )z,
then by (3.30) and the triangle inequality we see that
Myl 2 [1(1 — p) My vell2

Z [(A = p)MyYoellz = (L= p) My (1 — ) vl
> 310 = p) My vl (3.32)

Hence, combining (3.31)—(3.32) and noting that ® > 1 we conclude that in either
case,

1
M > —||M ,
My vell2 4(||MN||\/1)®” NVl
where we have again applied the fact that pMyyr = 0. Thus
1
Mywl, 2 | —————— M 3.33
ﬂu vl > (4(”MN” vl)@) ]'[n A (3.33)

The rest of the proof boils down to finding a lower bound on the RHS of (3.33). To

this end, let ¥; be the matrix whose columns are {{v;}” _,. Since the columns of
W = [w1 w? - wL] span the subspace S, there must exist an L x p matrix A,
such that Y; = W A,. We extend the matrix A; to an L x L matrix A so that the last
L — p columns of A are orthonormal and are also orthogonal to the first p columns
of A;. Such an extension is always possible by first extending arbitrarily to a basis
and then running Gram—Schmidt on the final L — p columns. Set ¥ := WA and
denote the columns of Y by y,,, form € [L].
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Turning to bound the RHS of (3.33), by Hadamard’s inequality we now find that

P

det(Y*M;MyY)
[TIMapudls > 2=
k=1 Hk:p+1 My yli>

We separately bound the numerator and the denominator of (3.34).
Note that y, = ZL am  w™ where a,,, is the (m, k)th entry of A. Since

m=1

{w’"},fl:1 are orthonormal, fork =p+ 1, p+2,..., L, we have

(3.34)

L
1Myl < IMyll -yl = 1Myl | D lamaP w13 = Myl (3.35)

m=1

where in the last step we also use the fact that the last L — p columns of A have
unit £,-norm. The inequality (3.35) takes care of the denominator of (3.34). Thus
it remains to find a lower bound of the numerator of (3.34). To obtain such a
bound, we observe that

L
det(Y* M5 MyY) = det(W* M, My W) det(AA*) = []‘[ ||anNw-’||§:|
j=1

- det(AAY). (3.36)

where the last step follows from (3.26). It now remains to bound det(AA*).
Let a,, v be the (m, m')th entry of A*A. Using the orthonormality of {w*}_,
we have that for any 1 < m,m’ < p,

L L * L
Qpom = Z&r,mar,m’ = [Zar,mwr] |:Zar,m’wri| = (va)*(wvm')
r=1 r=1 r=1

Since v,, L v, for m # m’, we see that

W) (Y ow) = —(Ad =¥)v,)*(Ad =Y )vy).

By our construction we have that || v,|5 > 1 — (1/2L), form = 1,2, ..., p.
Thus

1
|| = [ v)* o) | < NA = Y)vull2 |1 = ) v ll2 < 5L
forall 1 < m # m’ < p. By a similar reasoning we also obtain that

1

Qm,m 21__
e 2L

’
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form = 1,2,..., p. Since the last L — p columns of A are orthonormal and
orthogonal to the first p columns we further obtain

Gum =1, m=p+1,p+2,...,L; tw=0 p+1<m#m <L,

and
G =0, melpl, m=p+1,p+2,..., L.

So in the first p rows of the matrix A*A we find that the diagonal entries are at
least 1 —1/2L and the sum of off-diagonal entries in a row is at most (p—1)/(2L).
The last L— p rows of A*A are simply {e, }%,_ »+1- Hence by the Gershgorin circle
theorem all eigenvalues of A*A are at least % which implies

det(AA*) = det(A*A) > 27", (3.37)

Therefore, from (3.33)—(3.36), we derive

p L L
1
Myv > ——— LD T Myw"| 3.
| ||| NUkll2 = <8(||MN||\/1)) 1!:'1 ll7me Myw” |5

k=1

Combining this bound with (3.29) finishes the proof of the proposition. O

4. Limiting spectrum of noisy version of banded twisted Toeplitz matrices

We consider in this section upper-triangular twisted Toeplitz matrices of finite
symbols, namely upper-triangular matrices with a finite number of slowly varying
diagonals; a particular case is the case of upper-triangular Toeplitz matrices of
finite symbol.

Our main result is the following theorem.

THEOREM 4.1. Fix0o € N, og > 1/2 and o, € (0, 1] for £ € [0]. For each £ €
[0] U {0}, let f; : [0, 1] — C be an a,-Holder-continuous function, and let D,(f)
be the diagonal matrix with entries {f(i/N)}icin)- Set My = ZE:O D,(f)JK and
set My as in (1.1). Then Ly converges weakly in probability to [, s, the law
of ZZ:O fo(X)U*, where X ~ Unif(0, 1), U is uniformly distributed on the unit
circle in C, and X and U are independent of each other.

REMARK 4.2. Theorem 1.2 follows from Theorem 4.1 by taking f,(-) = a,.

Recall the notation £, for the log potential of a measure u, see (1.4). Similar
to Theorem 1.3, we prove Theorem 4.1 by showing that for Lebesgue a.e.
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z€C,LL,(z) > Ly, ,(z) in probability. Toward this end we begin by identifying
,CMD__f(-). For z € C and x € [0, 1], introduce the symbol

P (W) =P o () 1= oA+ for1 O 4+ fLOA+ fo(x) —z. (4.1)
Let 9 := 9(x) denote the degree of P, .(-). If 9 > 0 then P, .(-) has 9 roots

Az, %), Xao(z, x), ..., A3(z, x) (multiplicities allowed). Partition [0, 1] as
follows: for £ € {1, ..., 0} set

0
Ay i=1{x €0,1]: fix) £0}, B, = Az\( U Aj>7 4.2)
j=t+1
and in particular B, := A,. Set B, := [0, 11\ (U}_, Be).
LEMMA 4.3. For Lebesgue a.e. z € C we have

0

1 4
Lo, @)=Y [ /0 {Zlog+ |4z, x)| + log Ifz(X)I} : 1Bz<x>dx}
Jj=1

=1

1
+/ log | fo(x) — z|15,(x) dx. 4.3)
0

Setting Y := ZZ:O fi(X)U*, we see that the law of Y is compactly supported
in C. Therefore, for any z € C and ¢ > 0,

E//.D,f |10g |Y - le{IY—z|25}| < Q.
On the other hand from Lemma 4.5 we will see that for Lebesgue a.e. z € C,

lgii{)lE/l’b’f“Og |Y - le{IY—zlgs}l =0.

Therefore, by Fubini’s theorem one can use iterated integrals to evaluate El,“a‘f (2),
for Lebesgue almost every z € C. Note that this does not imply the integrability
of individual terms under the integral sign in the RHS of (4.3).

Proof of Lemma 4.3. Following the discussion above we proceed to evaluate
L,, ,(z) using iterated integrals. To this end, we have
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2
=Y LOU*

1
):L/_/loglpz,x(k)ldxd)»
=0 27 Jsi Jo
0 I'r ¢
= — log |A — A;i(z, di+1 15,(x)d
S [ 5 [ {Seer - confan s gtnconteco s

1
+/ log | fo(x) — z|1p,(x) dx.
0

L, ()= E( log

Since
log|z'| if |Z'| > 1

1 /
27 /Sl log[z = Aldh = { 0 otherwise,

the claim follows. O

4.1. Reduction to piecewise constant {f,}]_,. To prove Theorem 4.1 we
adopt a strategy similar to the proof of Theorem 1.3. Namely, we find approximate
singular vectors corresponding to small singular values of My — z1d for almost
all z € C. To this end, note that

0
(My = zIdyw); = (foli/N) = Dw; + Y fili/N)wey, (4.4)
=1

for i € [N — 0]. Therefore, given any arbitrary values of {w(}gf_l one can
construct a N-dimensional vector w such that (My — zId)w); = 0 for i €
[N — 2]\ [j + 0 — 1]. Such choices of w will be candidates for approximate
singular vectors. To study these vectors we note from (4.4) that (wj4s, ...,
W) = Tj(Wjio-1, ..., w;)" for some transfer matrix 7;. Iterating, we have

that
(Wy, - .oy wN7a+1)T = (1_[ Tk) : (wj+0—17 ceey wj)T-

k

Unlike Theorem 1.3, where the transfer matrices are actually scalars, here the
transfer matrices {7;} are in general noncommuting if {f;}?_, are varying. This
complicates the study of the approximate singular value vector w.

To overcome this difficulty we employ the following two-fold argument. We
introduce a regularized model where the { f;}?_, are piecewise constant and hence
{D%)}Ezo have constant diagonal blocks. Then, the transfer matrices {7;} are
constant, and hence commute, within each block. This will be sufficient to derive
the necessary properties of the small approximate singular vectors, which in turn
allows us to deduce that if the sizes of the blocks are chosen carefully then the
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empirical spectral distribution (ESD) of the regularized model admits the limit as
described in Theorem 4.1. To complete the proof of Theorem 4.1 we then show
that the limits of the ESDs of the regularized model and the original model must
be the same.

We now introduce the regularized model. Let { f;}]_, be as in Theorem 4.1. Fix

some &1, 8> € (0, 1). For £ € [0] U {0}, let bf\f) be a diagonal matrix with

- A781—1 I
D = f‘(%) ‘1< ff(wjv—zsj)‘ > N‘”), i €[N],

and define the regularized version of My as

0
My =Y DY Ny =Ny + NGy, (45)
=0

Note that in My we have an additional truncation 1(] f,(-)| > N~%). This means
that if in a certain block {f;}}_, ,, are smaller than N~* then in that block

M n can be treated as a matrix with 0, nonzero off-diagonal entries. This, in
particular, implies that if 0, = O then in that block My becomes a diagonal matrix.
Furthermore the truncation at N =% allows to derive bounds on the operator norm
of the transfer matrices, which will be later used during the proofs.

Now we can state our main result for M ~- Its proof, which is the main technical
part of the proof of Theorem 4.1, is deferred to Section 5.

THEOREM 4.4. Fix0 € N, g > 1/2, oy € (0, 1] for £ € [0] and 6, 8, € (0,
1/2) such that max{8;, 8,} < (y — 1/2)/(200%). For each £ € [0] U {0}, let f, :
[0, 1] = C be an o,-Holder-continuous function. Let M ~ be as in (4.5). Then
Ly, converges weakly in probability to s .

4.2. Proof of Theorem 4.1 assuming Theorem 4.4. The proof is motivated
by the proof of [10, Theorems 4, 5] and the replacement principle, which was
introduced in [21, Theorem 2.1]. (We will use a version of the replacement
principle from [1, Lemma 10.1].)

We begin with some preparatory material. To apply the replacement principle
we will need the following ‘regularity’ property of the limit, closely related to
[10, Definition 1].

LEMMA 4.5. For Lebesgue almost every z € C,

mE,, , [log(1X — z2)1yr—zi<q] = 0.
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Proof. Applying Tonelli’s theorem for any probability measure i on R and 0 <
a < a, <1,

a ap a 1
10g(az)u((a1,az))—/ 10g(X)dM(X)=/ [/ ;dt]d,u(X)

ap ap

:/“2 p(ar, 1) .

t

As 0 < a; < ay < 1, rearranging the above we obtain
[ oswlan < nogtanco.a + [
a a
Therefore, recalling the definitions of 1, ; from the statement of Theorem 4.1 and
P, () from (4.1), we have
IE., og(|X — zD1x—<oll

1 1 2
< —E log & /(; v/O 1{\sz,r(ei())|§€] do dx

1 € 1 2w 1 i
+_/ / / (P g 1

1 1 2
= “om log e / / 1p,  (0)<e) dO dx + Term, (g). 4.6)
0o Jo

‘We will show that
lirré Term, () = 0. 4.7)

This will take care of the second term in the RHS of (4.6), and a similar argument
(which we omit) applies to the first term, completing the proof of the lemma.

Turning to prove (4.7), fix 1 > o > 45—y > --- > oy > 0. Recalling that
{Ai(z, x)}?:1 are the roots of the equation P, , (1) = 0 on the set 3,, see (4.2), we
write there | P, (e')]| = | fo(x)] - ]_[3:I |A;(z, x) — €|. Splitting the integral into
the two parts | f5(x)| = t*° and | f (x)| < t%°, we obtain

1 e pl o pln a._ Lo (2 o)t < -/
Term, (g) < —/ / / Zl*l s G =l IS =) dO dx dr+Termy_,(¢),
27 Jo Jo Jo f

where

1 € 1 2 1 ¥ -1 . «
Term,_;(e) 1= =— (Pt Mooy (00
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Since for any A € C, and s > 0 sufficiently small, fozn 15 o)<y dO < 4s, we
conclude that

lim sup Term, (¢) < lim sup Term,_; (¢). 4.8)

e—0 =0

Denote PO (A) := P, (%) — fo(x)A° and, when f,_;(x) # 0, let {A{” (z, x)}]
denote its roots. Using the triangle inequality, for any ¢ € (0, 1), we further have
that

(P ()] < YN {I fo(0)] <120} S {IPS(e”)] < 26%°)
= ({IP ()] <2} N {l forr (W) = 1%271))
x U{IPR(e)] <2t} N {l forr ()] < 2%°71)).

Therefore arguing as in the lines leading to (4.8) we obtain

lim sup Term,_; (¢)

e—0
27[ j 1 {M(D)(Z x)— 619‘<2(1/a (g —oxg_1)/(0— 1)
< lim sup — d@ dx dt

=0 t

+ lim sup Terma,z (8) < limsup Term, 5, (),
=0 e—0

where

L[ 7 Ypencarsey - Lisomimi<i®oy
Term,_,(g) := —/ / / (P €IS 70) - dOdxdt.

Iterating the above argument and using induction we deduce that

& 1 1 - o
lim sup Term, (s) < hmsup/ / /o) “'f(“])' Y dx ar. 4.9)
0

=0 e—0

Since f; is an «y-Holder-continuous function with oy > 1/2, we have that
So([0,1]) = {fo(x) : x € [0, 1]} has zero Lebesgue measure (in C), by a
volumetric argument. Moreover the set f;([0, 1]) being a closed set, for every
z ¢ fo([0, 1) we have dist(z, fo([0, 11)) := infyci0.17 12 — fo(x)| > O. Therefore,
given a z ¢ fo([0, 1]) there exists ¢ > 0 sufficiently small such that {x € [0,
1: 1 fox) —zl < 0+ 1)e*} = @. Thus, from (4.9) we deduce (4.7). This
completes the proof of the lemma. O

To prove Theorem 4.1 we need another ingredient.
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LEMMA 4.6. Fix z € C. Let v}, be the symmetrized version of empirical
measure of the singular values of My — z1d. Define f)j\;l similarly. Then both
N

Vi, and ﬁj\%,v converge weakly in probability, as N — 00, to the symmetrized

version V¢ of the law of |ZZ:0 fi(X)U® — z|, where X and U are as in
Theorem 4.1.

Proof of Lemma 4.6. For any probability measure p supported on [0, co), we let
[ denote its symmetrized version, given by i ((—y, —x)) = pa((x, y)) = %u((x,
y)) forany 0 < x <y < oo. We let vy, and f);‘;IN be the symmetrized versions
of the empirical measures of the singular values of My — z1d and of My — z1d,
respectively. Note first that | N7V Gy|| — y—oo 0 in probability (and in fact, a.s.)
and that there exists a constant C = C({ f,}, z) so that |[My — z1d || < C, ||[My —
zId || < C. Therefore, it follows from Weyl’s inequalities that for any metric on
the space of probability measures on R compatible with the weak topology,

Ay, 7)) =N 0, d(

5
My’ UMN) —>N—>oo 07

in probability. On the other hand, by definition, || My — My || < N ™%} where
o := min]_,{o,} and therefore, by Weyl’s inequalities,

d(g/ZVINa 17;1‘41\/) > N—>oo 0.
Combining the last two displays, we deduce that it is enough to show that v},
converges weakly to v, the symmetrized version of the law of |Z?:0 fi(X)HUE —
z|. To this end, we will employ the method of moments. We will show that for
every k € N,

2k
lim 1 tr[(My — zId)(My — z1d)*]* = ]E[ } (4.10)
N—o00 N

0
> AOU —2
=0

This will complete the proof. Since we can absorb z in f;(+) it is enough to prove
(4.10) only for z = 0.
We begin by evaluating the RHS of (4.10) for z = 0. As U~! = U*, we have

2k ko
= Z FPx)Ut, 4.11)

£=—k0

0
> Ut

=0

for some functions {F,”(-)}. Since EU* = EU~* = 0 for any 0 # £ € N, we get

0 2k 1
]E[ > RxOU! } =E[F(X)] = / FP(x)dx. (4.12)
£=0 0
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Expanding the sum in the LHS of (4.11) and collecting the coefficient of U? it
follows that

k k
FyP(x) = > [Tfo @ J]fa®. (4.13)
i=1

(2 3k (o —t)=0 =1

Turning to identifying the LHS of (4.10) we see that

k 0
(MNM;:/)k — Z Z D%l)]i] (J*)ez D%Z)D%ﬂ .. D[(\ka*l)JZZk,l (J*)lsz;\ka)'
i=1 =0
(4.14)
As {D,(f)} are diagonal matrices, using the facts that
(Jl)i,j = 1{1<j:i+eg1v}, [(J*)l]i,j = 1{l<j:i—Z<N}a i,j €[N],

we have that

(1) (£2) (£3) (Cok—1)
A(‘e)i,i = (DNI )i,i N (DN2 )i+51,i+51 : (DN’; )i+.§1,i+.S1 e (DNZA : )i+5k71,i+sk71

k
14
(DY) l_[ L, yvejevy * Liivsjervnys (4.15)

j=1
where

A(‘e)i,i - (D%])J[l (J*)ZZD%Z)DI(\?) . DI(\ka—l)JEQk,] (J*)[gk D%Zk)).

ii’

and for j € [k] s; := Z{:l(ﬁﬁ_l — {5;) and 59 := 0. Using the fact that {D,(\‘,Z)} are
diagonal matrices again we deduce from (4.15) that if s, # 0 then A(£),;; = 0 for
any i € [N].

Thus to establish (4.10) we only need to consider the sum over {Zi}fi , such that
s; = 0. Fixing such a sequence of {¢;}?*, we observe that for any i € [N — 2kd] \
[2k0]

AW@;; = (DEMii - (DN it
: (Dj(\fs))i+~Y1,i+S1 e (Dl(\fnil))i-ﬁ-skfl,i-ﬁ-skfl : (D](\f%))i,iﬁ (416)

and A(¥); ; is bounded for the remaining indices in [V]. Since (D,(\f)),-,i = fi(i/N),
for any {¢;}?*, we find that

1 N 1 k k
fim 3" a0 = [ ] a0 [] Tt
TN AT 0 = i=1

Substituting in (4.14) and using (4.12)—(4.13), we arrive at (4.10) (with z = 0).
This completes the proof. O
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We next introduce further notation. The Stieltjes transform of a probability
measure i on R is defined as

1
G.(&) :=/—u(dy), § e C\R.
§—y

We use the following standard bounds on the Stieltjes transform, see [10, (6)—(8)],
in order to integrate the logarithmic function: for any 7, 0 > 0, and a, b € R such
that b — a > ¢ we have

b+o

T
u(la, b)) < / NG, (x +17)|dx + 2’ (4.17)
a—o
and
b—o T
u(la, b]) > / ISG, (x +it)|dx — —. (4.18)
a+o Q

We need also the symmetrized form of the Stieltjes transform, as follows. For an

N x N matrix Cy, define
~ . 0 CN
é=le 5]
and the Stieltjes transform

1 ~
Gey(§) 1= 5 (6 — Cy)™', £eC\R

G, () is the Stieltjes transform of the symmetrized version of the empirical
measure of the singular values of Cy. Using the resolvent identity, we have that
for two N x N matrices Cy and Dy,

Cy—D
|Gy (8) — Gpy(8)] < W (4.19)

We are finally ready to prove Theorem 4.1.

Proof of Theorem 4.1. To show that L v, and L y  admit the same limit we need
to show that for every continuous bounded function f : C — R

/f(z)dLMN(Z)—/‘f(z)dLMN(z)—>0, (4.20)
as N — 00, in probability. By continuity we have that max, sup, o ; [ fe(x)| <

oo, and then ||My||, ||MN|| < 00. Therefore, using (1.2), we have that | M y],
IMy]l < oo with probability approaching one. Thus, it suffices to show that
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(4.20) holds for compactly supported functions f. Furthermore, an application of
the Stone—Weierstrass theorem yields that one can restrict attentions to smooth
functions, namely it is enough to consider f € C?(C).

Turning to the proof of (4.19) for such f, we use [1, Lemma 8.1] to note that
we need to show that:

(i) The expression
1 1~
FIMKIE + 1Ml
is bounded in probability.
(i1) For Lebesgue almost all z € B¢ (0, R),
1 1 N
v log |det(My — zId)| — v log |det(My — z1d)| — O,
as N — o0, in probability.
As already noted above, || My, ||M ~|| < oo with probability approaching one,
condition (i) is immediate.
It remains to establish condition (ii). By the definitions of v}, and ﬁj\%N, we
have
1 1 N
— log |det(My — z1d)| — — log |[det(M y — z1d)|
N N
= /log lx| dViy, (%) —/log |x|d17j\;lN(x). 4.21)
We point out to the reader that both My — z1Id and M ~ — z1Id being Gaussian
perturbations of some deterministic matrices are nonsingular almost surely, and

therefore both sides of (4.21) are well defined on a set with probability one. Now
from Lemma 4.6 we have that for any ¢ > O and Ry > 1,

/ log |x| dVvj, (x) — / log | x| dDj\h (x) = 0,
(6, Ro)U(—Rg, —¢) (£, Ro)U(—Rg, —¢) N

in probability. (4.22)

We observe that
1
E/x2 df)jVIN (x) = E[ﬁ tr{(My — zId)(My — zId)*}]

1
< 3|:|z|2 + tr(MyMy) + N~ tr(GNG’,kv)} <C,
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for some C < oo. Thus using the fact that |log |x||/x? is decreasing for |x| > \/e,
we have that, for any Ry > /e,

- log R ~; log R
IE[/ log |x|deN(x)j| < OE[/ ‘xzdeN(x):| < °.c.
(=Ro,Ro)* 0 (=Ro,Ro)* 0

By the same argument

E[/ log x| di.. ( )} < logk (4.23)
og|x|dv:., (x)| < -C. .
(—Ro, Ro)*® Mu R;

So, applying Markov’s inequality we see that for any n > 0, there exists Ry(n)
such that

hmhmsupPQ/ log |x] dVj, (x)
=0 Nooo (=Ro(n), Ro(m))*

- log |x|dV*., (x) >n>
/<—Ro<n>,Ro<n>>c Mu

= 0. (4.24)

Combining (4.21)—(4.24) we see that to establish condition (ii) it remains to show
that for any 1 > 0, there exists &(n) such that
> 277) =0.

e(m) e(m)
hmhmsupIP’(‘/ log |x|df)f\4N(x)—/ log |x|df)j\;l (x)

N—oo e(n) e(n)
(4.25)
To prove the above it is enough to show that
e(n)
lim lim sup ]P’(‘/ log |x|dv5, (x)| > n) =0 (4.26)
10 N-soo e "
and
e(m)
lim lim sup P(‘/ log |x|dV:. (x)| > n) =0, 4.27)
=0 Nooo —&() M

where €(n) is as in (4.25). It follows from Theorem 4.4 that for Lebesgue almost
every z € C, [,LMN (z) = N—oo L4, ;(z) in probability, which is equivalent to the
statement that

/log |x|df)j\;I (x) —> /log |x|df);(x) in probability. (4.28)
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Applying Lemma 4.6 we have that

/ . log |x| dﬁj&m (x) = ' log |x|dV;(x) in probability,
(—£,)°N(=Ro, Ro) (—£.8)°N(—Ro, Ro)

(4.29)
forany ¢ > 0 and Ry < 0o. As V} is compactly supported using (4.23) we obtain
that

lim lim sup IP’(‘ / log |x|dVe. (x)
n—0 (=Ro(m). Ro(m)* M

N—oo
> 7])

—/ log |x|f)zf'(x)
(—Ro (1), Ro(n)*

= limlim supP(‘ / log | x| dﬁjﬂ (x)
0 (=Ro(n), Ro()° N

N—oo

>n)=0,

where Ry(n) is as in (4.24). Therefore, from (4.28)—(4.29) we now deduce that,
for every ¢ > 0,

/ log |x|df)j\;1 (x)—)/ log |x|dV(x) in probability.

&

This together with Lemma 4.5 yields (4.27). It remains to establish (4.26).
To this end, from [9, Proposition 16] we have that, for any ¢ > 0,

Poy(My —z1d) < 1) < CoN"™*72,

for some constant Cy. Therefore, for any n > 0,

N—U+y)
limsup]P’('/ log x| dvj,, (x)| = 77/2)
N—oo —N-(+r)
< limsup P(oy(My — zId) < N9y = 0. (4.30)

N—oo

Since My — MNII < N7, where 8’ := min{a§;, 8,}, from (4.19) and setting
T = N~/* we obtain

|G Mmy—z1a(x +1iT) — GMN—zId(x +i7)| < N2

https://doi.org/10.1017/fms.2018.29 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.29

A. Basak, E. Paquette and O. Zeitouni 44

Setting 0 = N~°/%, k = §'/16, and using (4.17)—(4.18) in the second inequality,
we have that

Nk
—/ log(x) dvjy, (x)
N

—(1+y)
< (14 y)logN - vy, (IN""7 N7
< +py)logNN 45 (IN" =20, N7 +20]))

< (1 +y)log NN 425, ([0,2N7*]))
e 4 2N
<2(1+y)logN - N7 — M/ log(x)dv*. (x), (4.31)
K 0 My

for all large N, where in the third inequality we used the symmetry of ﬁj\?{ and
N
0 =o(N7").
It remains to bound the integral of log(-) over (N, ). Toward this, using
integration by parts we note that, for 0 < a; < a, < 1 and any probability measure
uonkR,

~ / " log(x) diu(x) = —log(@)u(lar, ar]) + / Culen )y 4

ap ap
Arguing as in (4.31) we obtain

e i (I[N, ¢ e 1 e Vi (INT/2, 1+ N7])
/ Ma]rgzN“‘/S[ ;dt—l—/ At z dt
—x N—« —K

) 22 v ([N79/2,1])
<2KN—5/3-1ogN+2/ My d
N—</2 t

L,
(4.33)

where in the last step we have used the fact that t + N7 < 2f forany ¢t > N7,
and a change of variable. A similar reasoning yields that

—log(e)vy,, (IN7“, e]) < — log(e) @N~Y/% + Vi, (IN7%/2,2¢])).  (4.34)

Thus combining (4.31), and (4.33)—(4.34), and using (4.32) we deduce that for
¢ > 0 sufficiently small and all large N,

& 2¢e
— / log(x) dvi,, (x) < C(’)|:logN N7V /0 log(x) d i, (dx)},

N-U+9)

where C| is some large constant. Now, combining this with (4.27)—(4.30), the
claim in (4.26) follows. This completes the proof of the theorem. O
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5. The piecewise constant case—proof of Theorem 4.4

Similar to the proof of Theorem 1.3, the main step in the proof of Theorem 4.4
is the proof of convergence of the log potentials ELMN (z), which will use
Theorem 2.1. To verify the assumptions of Theorem 2.1 we need to find
an analogue of Theorem 3.1. To this end, we need to identify approximate
singular vectors of My(2) := My — z1d corresponding to small singular values,
establish that ||M ~(2)w]|, cannot be small for any vector w orthogonal to these
approximate singular vectors, and obtain matching upper and lower bounds, up to
subexponential factors, on the product of the small singular values. Overall, we
follow a scheme similar to the one in Section 3. However, as we will see below,
some significant changes are necessary when treating the case > 1, even in the
constant diagonal setup.

We begin by fixing additional notation. Set

by :={i €[N]: [iN"'| =k}, k=0,1,...,Lo:=|N"]. 5.D

Note that if i € by, for some k, then for any ¢ € [0] U {0}, (ﬁf\f))i,i =
f[(kNﬂSl)l{lﬂ(kN—él)|>N—62} =: t,(k), that is, the diagonals of My are constant
within each b;. Therefore, for any w € C" and i € by,

0
My @w); = (k) — 2w, + Y 1Ry wey.. (5.2)

=1

Using (5.2) we will construct vectors w for which M N (2w = 0. It will be easier
to reformulate (5.2) as a system of linear equations, for which we need to define
the following notion of transfer matrix.

DEFINITION 5.1. Fix k € N U {0} such that b, # @. Denote
Oy 1= Oy (k) := max{€ : |t,(k)| # 0}.
For 9 ~ (k) > 0 denote

Pk = (tﬁNl(k) t5,—2(k) ll(k))
5,00 T 15, () T g, (k)

and define the following ) N X Q) N matrix:

o z — to(k)
_iy LY
ro =" Tam |

I3

N—1 OﬁN—l

where 0, is the n-dimensional vector of all zeros.
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Recall the symbol P, ., see (4.1). The next result shows that the eigenvalues
of the transfer matrix 7;(z) are the roots of the equations P, (1) = O for some

appropriate choices of x.

LEMMA 5.1. Fix k € N U {0} such that by # 0. Let 0y and Ti(z) be as in
Definition 5.1. Assume 0y > 0. Fix any £ € [0y]. Denote

v ()" = (?\EN*‘(z, k) A2z k) - 1) :
where {)Aw_; (z, k)},?g1 are the roots of the equation

Poy(0) =ty ()XY + 1 ()X + -+ + (k)& + 19(k) — z = 0.

Then for any £ € [On], ve(k) is an eigenvector of T;(z) corresponding to )A»g (z, k).

Proof. Since {):,_;(z, k)}?i1 are the roots of the equation 131',(()») = 0, from the
definition of T (z) we note that

s 1~ .
Az, k) — —— P, (Ao(z, k
" (2, k) - £(Ae(z, k)
Ti(2)ve(k) = Tz k) =Je(z. k) - ve(h).
NS
This completes the proof. O

Lemma 5.1 shows that the eigenvalues of 7;(z) are the roots of the polynomial
equation ﬁzyk (A) = 0. If min,{| f;(x)|} = N~%, then it is easy to see that P, , (1) =
ISZ,k()L) where x = kN~ Therefore, in such cases, the roots of P, , (1) and 132,,(()»)
coincide. This property will be later used in the proof of Theorem 4.4.

Note that Lemma 5.1 also provides the eigenvectors of 7;(z). Using
these eigenvectors we now construct approximate singular vectors of M v (),
corresponding to small singular values.

Construction of approximate singular vectors. Recall, see (5.1), that {bk},fio
is a partition of [N] with L, = [ N? |, so that within each block by, the entries
of the diagonals of M ny remain constant. However, for certain values of N, the
last block b;, may have a small length. To overcome this, we slightly modify My.
Namely, we replace the (off)-diagonal entries of My in the last two blocks by
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their average. By a slight abuse of notation, we continue to write {b;} to indicate
the blocks in which the (off)-diagonal entries of the modified M N are constant.
Note that we now have that N'7%1 /2 < |b;| < 2N!7%, for all k. Since this extra
modification results in a change of operator norm of O(N~** + N~%), where
we recall o := min)_{e,}, it is enough to prove Theorem 4.4 for the modified
My (2).

Fix §;3 € (0,1/3). Next we choose a refinement of the above partition
{6} 7 1y € (B2, such that N /2 < (6] < 2N* for all k € [Lo] U {0}
and j' € [L}]. Since §; < 1/2 and 83 < 1/3, such a property can be ensured. Fix

Lo

L:=Y L,=0(N'"™). (5.3)
k=0
Further let
O=ij<iy<iz<---<ipy =N,

be the end points of the partition {{b,(cj )}jL-”‘: 1},20. That is, for any k € [Lo] U {0}
and j' € [L,] we have h,ﬁj/) = [i;41] \ [i;] for some j € [L] U {0}, which in turn
implies that N% /2 <i;;; —i; <2N% forall j € [L]U {0}.

Next fix k € [Lo] U {0} and j" € [L}] and assume that b,({j/) = [ij41]\ [i;] for
some j € [L] U {0}. For £ € [0 ~ (k)] define the N-dimensional vectors wé(k) as
follows

Az, )i form =i 41,0542, ..., 0
0 otherwise

(W) (k) = {

where A, (z, k), A2 (z, k), . . ., iﬁN (z, k) are the roots of the equation Isz,k()») =0.

REMARK 5.2. Note that when dy(k) = O then a block in MN(z) becomes
diagonal. Since the singular values of a diagonal matrix are the absolute values
of its diagonal entries, we do not need to bother with constructing approximate
singular vectors. Therefore, when computing bounds on the small singular values
we will assume that 6N(k) > 0, and define the candidates for small singular
vectors {w; (k)} only in that case.

The next lemma gives a simple but useful property of the vectors {wé (k)}.
Before stating the result let us introduce one more notation. Fix any
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N-dimensional vector u. For k € [Ly] U {0}, denote

Mm+6N(k)—1
U3y (k)—2

ulk, m] = : , m=1,2,...,N =dy(k)+ 1.
U
LEMMA 5.3. Fixk € [Lo] U {0} and j' € [L}] such that by = [i;41]\ [i;] for
some j € [L]1U {0}. Assume that 0y (k) > 0.
(i) Let u be an N -dimensional vector such that
ulk,m 4+ 1] = TQulk, m], m € lijy1 — on®)]\ [i;]. 5.4)

Then A
(My@Qu)m =0, m € iy —on®)]\ [i;]-

(ii) Forany € € [On (k)] we have
(My(w] (k) =0, m € [ij — oI\ [i;].

Proof. The condition (5.4) implies that

(k-1
tﬁN(k)(k)um-FﬁN(k) = (Z - tO(k))um - Z tm’(k)um+m’a

m'=1

form e [ij41 — 6N(k)] \ [i;]. The conclusion of part (i) is now immediate from
(5.2) and the definition of (k). To prove (ii) we note that w) (k) [k, m] = Aoz,
x)" iy, (k), for m € [ij1 — v ()] \ [i;], where v, is as in Lemma 5.1. Thus
from Lemma 5.1 it follows that

Ti(2)w) (k) [k, m]| = Ae(z, )"~ T () v (k) = Ae(z, k)" 70, (k)
= w] (k) [k, m +1].

Now the proof completes by applying part (i). O

Identification of the set of bad z’s. Recall that to prove Theorem 4.4 we only
need to find the limit of the log potential for Lebesgue almost every z € C. As we
will see below, our methods to control the small singular values of My (z) break
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down when P, ,(A) = 0 has roots near the unit circle or when the Vandermonde
matrix

Vk) = [vl(k) vy(k) -+ - w3, (k)] (5.5)

loses invertibility. In the next lemma we show that the collection of all such bad
Z’s has small Lebesgue measure.

LEMMA 5.4. Let By denote the collection of z € C such that either of the
following properties hold:

(i) For some k € [Ly] U {0}, such that 6N(k) > 0,

|tﬁN(k)(k)|6N(k)7l |det(V(k))|2 < N*ZBID.

(i) For some k € [Lo] U {0}, such that Oy (k) > 0, there exists a root A of the
equation P.;(\) = 0 suchthat 1 — N7 < A < 1+ N3,

(iii)

Lo
,i{m(; |Z _ l‘o(k)| < N*(vtoél)/(2(2a0*l))‘

Then Leb(By) < N7% for all large N.

Proof. We first estimate the area of z satisfying (ii). Fix k € [L,] U {0} such that
61\, = 6N(k) > 0. For any ¢ > 0, denote A, := Bc(0,1+¢) \ Bc(0,1 — ¢),
where we recall that B¢ (0, r) denote the open disc of radius » in the complex
plane centered at zero. Let Q,(A) := ﬁz,k(k) +z = Zo to(k)A'. Then, the
set of z for which there exists a A € Ay-3, so that f’zyk()») = 0 are contained
in the image Q;(Ay-3). Therefore the set of all z’s satisfying property (ii)
is contained in J, Qx(Ay-3). The area of such an image Qy(Ay-3») can be
estimated by sup,|_, |0} (z)|Leb(Ay-3,). Since Ly = O(N?), it follows that for
all N sufficiently large

Leb( U Qk(AN351)) < %N—al.
k

Turning to the set of z satisfying (i), we recall that the discriminant of a
polynomial P(1) := Y ), t,A" is

D(P) := det[Disc(P)] = > ]_[ (he — Ae)?, (5.6)

m
1<b<t/<m
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where

Disc(P) := | Mtm -+ 20 1

mt, -2t t

Since z appears in 131,,( (1) only as coefficient of A°, expanding the determinant we
see

det[Disc(P. )] = @nts, (k) - 2297 4+ Py, ()22 2 4+ + Py(x),

for some continuous functions {Pg(~)}?§0_ %, Let {z¢ (k)}?ﬁl_1 be the roots of the
equation det[Disc(P, ;)] = 0. Hence,

6N71
ID(P.i)| = Qnts, () ] Iz =zl
(=1

Therefore, recalling (5.6) we obtain that

15, )P ldet(V (k)P = 125, P [ The(a 0) = Aoz, 0P

1<b<t/ < (k)

ﬁN—l
= [D(P.0)| = Pty O TT 1z = 2.
=1

Thus the set of all z’s satisfying property (i) is contained in

Lo ﬁNfl

U U BeGelo), 0! N>,

k=0 (=1

whose Lebesgue measure is bounded above by N 3!, Taking a union on O (N?)
possible k-s we find that the Lebesgue measure of the set of z satisfying property
(i) is bounded by %N ~%1. To complete the proof it remains to prove the same for
the set of z satisfying property (iii). This follows from a volumetric argument.
Indeed, recalling the definition of #y(-) we find that

inf |2 — 1o(0)] > min{dist(z. /510, 11), 2]}
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Using the fact that f; is an «y-Holder-continuous function from the triangle
inequality we obtain that

[Ne/e0]

distz, fo([0, 1)) < N =z € | ] Bc(folk/N/*),2N™)

k=0
fore > 0. As g > % setting € = (tod1/2(20p — 1)) it yields that
Leb({z : dist(z, fo([0,1])) < N~} U Bc(0, N™)) < N,
This completes the proof. 0

Next, building on Lemma 5.3(ii) we show that for z ¢ By and vectors w not
belonging to the span of {wé (k)}, the £>-norm of M ~(Z)w cannot be too small.
This yields a bound on the number of small singular values of M ~(2).

Fix k € [Lo] U {0} and j' € [L}]. This fixes some j € [L] U {0} such that
by? = [i;41]\ [i;]. Denote S ; := span(w/ (k) : £ € [dy(k)]) and let ¥ ; be
the orthogonal projection onto Sy ;. Further let 77, ; and p ; be the projections

ijt1 ij41—0n (k) . .
onto the span of {e,},; ; and {e,},_; ., ', respectively, where e, is the
mth canonical basic vector. When needed, we will view my ;, o ;, and Y ; as

projection matrices of appropriate dimensions.

LEMMA5.5. Fix R < ooandz € Bc(0, R)\ By. Letk € [Lol and j' € [L,] such
that b,((j/) = [ij+1]1\ [i;] for some j € [L]1U {0}. Then there exists a positive finite
constant C\(R, 0, f), depending only on R,0, and max,sup, | fe(x)|, such
that for any w € CV, we have

l77e, j (w — Y jw)ll, < Ci(R, 0, f)szSl+a252+253+(a06])/(2(20(071))“,Ok,jMN @wll>.
5.7

Note that Lemma 5.5 is similar to Lemma 3.10. Analogous to the proof of
Lemma 3.10, here also the proof proceeds by identifying a vector y € S; ; and
showing that || ; (x — y) ||, satisfies the bound (5.7). For @ > 1, the choice of an
appropriate vector y is significantly more difficult and requires new ideas.

Proof of Lemma 5.5. We write A, := A,(z,k) and dy := Oy(k). First let us
consider the case 0y = 0. This implies that S; ; = . Therefore, ¥, ; = 0 and
Pk,j = Tk, j. S0, it is enough to show that

|7 wlly < N©@/CC0=Dy 7 My (2wl (5.8)
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Since dy = 0, from (5.2) we further have that
7 My (2w = (to(k) — 2)y jw.

Using the fact that z ¢ By we have that infy |ty(k) —z| > N ~(@81/2Qa0=1) Thig
yields (5.8) and hence (5.7) is established for 0 = 0. It remains to prove the same
when 0y > 0. A

Without loss of generality, we assume that {ig}fil are arranged in decreasing
order of moduli, and define 9y 50 that [A,] = [Aa] = -+ = |Ao| = 1 > |hoy1| =
o = |As, |, with 9 = dy if all &, > 1 and 9y = O if all 4, < 1. Define a
(20x) % (20y) matrix L := [L; : L,] where

{ v, (k) vk) o v, (k) }
L :l: Abj*ﬁ[\/ "b/'fﬁN(k) d 5

Tk AT Py R, ()
Lo v, (k) -+ vy, (k) 0 e 0
PTL 0 0 (k) v, (0]

{vg(k)}f:'i1 are asin Lemma 5.1, and b; :=i;;; —i;. Since z € B¢ (0, R) \ By, the

eigenvalues {ig}fgl are all distinct, and hence the vectors {vg(k)}fg1 are linearly
independent. Therefore, rank(L) = 20y, and the system of linear equations

a
wlk,i; +1] a;
; 2 =L 5.9
(w[[k» ij+1 — Oy + 1]]) a S
a’ﬁN

admits a unique solution. Set

oN
y = Zagw{z(k) and ¢ :=¢(w):=w—y.

=1

With this choice of ¢ we will show that
17, 2 < CH(R, D, fINPIT0252 o Wy (2w, (5.10)

for some constant C(R, 0, f). This will complete the proof. Indeed, from the
definition of the projection operator v ; it follows that

lw = Y jwlz < 1812 (GRYY
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On the other hand, we note that S ; C span({em}iéi}j +1)- Therefore my ;. ; =

Yy ;. Recalling that y € S; ;, we have
lw — e jwll = 1A — 7 Hwll3 + [l (w — Y w) 13
and
115 = 110d = e HNE 13 + e ;¢ 15 = 10d = e w5 + 113
Thus from (5.11) we obtain
77k, (w — Y jw)ll2 < N7 ;€ s

and so it is enough to show that (5.10) holds.

We turn now to the proof of (5.10). Recalling that y € & ;, the span of
{wé (k)}crz)» an application of Lemma 5.3(ii) implies that pk,jl\;IN(z)y = 0. So,
using (5.2) and recalling the definition of 7;(z) we see that

(My(Q)w),
t5, ()
¢k, m +1] = Tu(@)¢ [k, m] + 0 . om € [ij —on]\ [ij].
0
) ) (5.12)
From the linear independence of {v, (k)}?” , there are {&5}21 , so that
oN
(10--0) =) aw, k)" (5.13)
=1

Hence denoting g, := (t;, (k) ™' (My (z)w),, we observe that (5.12) simplifies to

oN
¢k, m+1] = T ()¢ [k, m]+ B Z&eve(k)’ m € [i_/+1—61v]\[i_/+1]‘ (5.14)

=1
Iterating (5.14) we obtain

m

oy
cleom +1] = T ek + 1]+ Y. ﬁm/mz)'"‘m’[Zﬁf”f(")]
=1

m'=i;+1

> ﬁm'i?’"}ve(k), (5.15)

m'=i;+1

on
=T ¢k, i; + 1] + Zae[
(=1
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form e [ij4 — vl \ [i; + 1], where the last step follows from the fact that v, (k)

is an eigenvector of T;(z) corresponding to A (see Lemma 5.1). Recalling that
b; :=1i;41 —i; we note that (5.15) in particular implies

lj+l DN

¢k, iy =0y +1] = Tu(@)" V¢ [k, i +1]]+Zaz[ > Bk o i|vz(k)
=1 m —1j+1
. (5.16)
Now recalling the definitions of {w) (k) }oers ) We see that
w Ok, i; + 1] = ve(k) and  wi(R)[k. i1 — Oy + 1] = A7V v, (k).
Since £ = w — Y2, a,w! (k), from (5.9) we obtain
00 6N
clkij+1] =) apuk) and ¢k i —dy+1]= Y (k). (5.17)
=1 £=00+1
Plugging these in (5.16) we deduce
jy1— dn
(a5 i Yo
=1 m'=ij+1
dn ij41—0N ' . ,
(o] e
{=00p+1 m'=ij+1

Since {v, (k)}fi1 are linearly independent vectors it further implies that

Ljr1— dy
a4 [ Y BuklT °”""}=o, € € [l;

m —1,+1

ij+1— 0N ) R ) .
=&e|: > ﬂm/i’ﬁ_a”_m], Ce ]\ [0o].  (5.18)

m’:ij+l
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Thus from (5.15) and (5.17), using (5.18), we further obtain that for any m €
ijr1 — oI\ 5],

61\1 m
clkom +1] = T ¢k, i; +1] + Zag[ > 5,,,,ig“"’}v€(k)

=1 m'=ij+1

+ Z ae[ Z Burky™ ]w(k)

£=0¢+1 m'=ij+1

2% ij+1—0N oy m
=—ZZ14|: > ﬂm/iz"-'"}ve(kw > 6~1z|: > ﬁm/i;"—'"’]vz(k»

m'=m+1 £=009+1 m'=ij+1

(5.19)

Since the first coordinate of ¢ [k, m + 1] is ¢,,.5, lA¢] = 1 for £ € [], and
|5»e| < 1for € e [Oy] \ [00], using the triangle inequality from (5.19) we see that

2 ij1—0n dy m
ol < Y 1G0T 1Bl D @™ Y 18wl
=1 m'=m+1 £=09+1 m'=i;+1
ijur]*ﬁ[v onN
<||Tk<z)||°N1( > |ﬁm'|>'<2|51e|> for m € [ij1 — On\ [i;]
m'=i;+1 =1
(5.20)
From (5.17) and (5.18) it also follows that
00 0 ij+1_6N ) )
tli +1) = Y au o = —wa[ > ﬂm/x;"’"]”“")'
(=1 =1 m'=ij+1
Thus
ith 0 ij1—0N
max |£(m)| < ¢k, i; + 11 < ) lacl ( > Iﬂm/l) Mo
m=E =1 m'=ij+1
ij+1—0N N
<fo-<||Tk(z)||°—‘v1>-< > |,3m’|)'(2|51e|), (5.21)
m'=ij+1 (=1
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where we have used the fact that

loe ()1l < VO - (IAe P! v 1),

Hence, combining (5.20)—(5.21) we obtain

7k, (D)2 < by maX RIS 2N VO - (IT@IP v 1)

( Z Iﬂml) : (Zm). (5.22)
=1

m=i;+1

Now to complete the proof we need to find a bound on Zzl |a,|. To this end,
recall that (a,, ..., a;,) satisfies the system of linear equations (5.13). Using

Cramer’s rule it is easy to check that ¢, = [], oy ()Aug) / (ig — ):e). Therefore,
recalling that V (k) := [vl(k) vy(k) -+ - 03, (k)],

ja.l =11

UL

~

_ g T, -1 v 1
T op| S An@Itv -1

£
< (QIT @) P2y 1) : Idet(V(k))I*1
<

(CITe@ID°C™Y Vv 1) - [det(V (k)| .

Recalling that g8, = (téN(k))" (M ~(z)w),,, an application of Cauchy—Schwarz
yields

170, (Oll2 < 2X072N2 . (IT@)1” v 1) - [l My (2wl
Jt5,, (k)| 7" det(V (k)| 2. (5.23)
Since z € By, (cf. Lemma 5.4),
It5,, ()P O~ |det(V (k) |

Its, ()| - [det(V (k))|> > .
o SUP, cpo.17 [ S5, (X) [PV 2

> C(;INfZ(S]D’

for some C, < oco. By the Gershgorin circle theorem we also have that
1T = 1T () T ()l = O((t5, (k) %) = O(N**®), (5.24)

where the last step follows from the fact that the nonzero entries of My are
bounded below by N~%. Therefore, plugging the last two bounds in (5.23) we
arrive at (5.10). O
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Denote

Lo
L= L -dy(k) = OQN'™). (5.25)
k=0
Building on Lemma 5.5 we now prove a lower bound on the (£ 4 1)-st smallest
singular value of My (2). First we prove an estimate that will also be useful in
obtaining a lower bound on the product of the small singular values of My (z). To
state it, we let ¢ := ) v ;, that is, ¥ is the orthogonal projection operator onto
the space spanned by US; ;, and p := " py ;.

LEMMA 5.6. Fix R < oo and z € Bc(0, R) \ By. Then for any vector w € CV
we have

lw = Ywlly < Co(R, D, f)NZO 02t/ CO0=0 ) o ATy (z)w]l,

where C1(R, 0, f) is as in Lemma 5.5.

Proof. The proof is a simple application of Lemma 5.5. Since ) m; = 1,
Mk jVk,j = Y, j» and {m; ;} are orthogonal it follows that

2
lw — ywl3 = HZ(nk,jw — Y w)| =Y llmew — Y w3
2

Now the result follows from Lemma 5.5 upon noting the fact that {o; ;} are
orthogonal. O

From Lemma 5.6 we immediately obtain the following corollary.

COROLLARY 5.7. Fix R < oo and z € Bc(0, R) \ By. Then
UN—E(MN(Z)) > C](R 0 f)flN7(2351+0252+283+(a081)/(2(20(071)))

where C1(R, 0, f) is as in Lemma 5.5.

The proof of Corollary 5.7 is similar to that of Corollary 3.13, and hence
omitted.

REMARK 5.8. Let {§;}7_, be such that

5.5, 8, 0% <t ! d 8 <2 (526
max {8, 85, 83, < . ——) an < =, .
100 e —1) | S 4002 \V T2 =

It follows from Corollary 5.7 that there are only at most £ = O(N'™")
singular values of My(z) that are O(N-1/9¥~1/2)  which upon choosing
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ey = N-W30=1/24n (2.4), implies that N* < £ = o(N/log N). This verifies
that the number of small singular values of My (z), for z € Bc(0, R) \ By is as
desired. In the remainder of this paper we will work with {§;}?_; satisfying (5.26).

Equipped with Remark 5.8 we note that it remains to find matching upper and
lower bounds, up to subexponential factors, on the product of small singular
values. In the context of Theorem 3.1 the upper bound on the product of the
small singular values was achieved by finding a collection of orthonormal vectors
which were approximate singular vectors, and then appealing to Lemma A.2. In
the current setup, one notes that the approximate singular vectors, in particular
{w'é (k)}?g1 for any j and k, are not orthogonal. Therefore we need to work with
an orthonormal basis of S; ;. To this end, a key step will be to obtain bounds
on the determinant of il;jilk,j where &l ; = nk,j]l;IN (2) Uy, j, and the columns of
Uy,; are an orthonormal basis of S, ;. We start with bounds on det(20; ;) where

Wy, = Wk’fj Wi, and Wy ; is the matrix whose columns are {wf (k)}gifk).

LEMMA 5.9. Fix R < ocoandz € Bc(0, R)\ By. Letk € [Lol and j' € [L;] such
that 8" = [i ;1]\ [i;] for some j € [L]U {0}. Assume dy (k) > 0. Then
Ay (k)
Co (R0, )TN0 T (Re(z. b v 1) < det(@; )
=1
oy (k) ) .
< G(R, 0, HIN'? ] (Ihe(z o)1V 1),
=1
foralllarge N, uniformly over k € [Lo] and j' € [L;], where C2(R, 0, f) is some
positive finite constant depending only on 0, R, and { fo(*)}?_,.

Proof. Throughout the proof, for ease of writing, we write 3y and {5\.(}?2 , instead

of Dy (k) and {3, (z. K)}2".
We first derive the upper bound. Using Hadamard’s inequality we observe that

61\/ oN
det(@y ;) < [ [ )ee = [ ] lIlwi G113 (5.27)
=1 =1

We note that || w] (k) |2 = Zlbn’;ol ¢ |, where we recall that b; = i;,, —i; < 2N,

Therefore, using the fact that z ¢ By, which in turn implies that |A,| # 1, we
obtain

lw] (N2 < 11— PePI7 R21AP 1A > 1) + 2110 < DI (5.28)
Since z ¢ By, the desired upper bound follows from (5.27)—(5.28).
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For the lower bound, we apply the Cauchy—Binet formula, which gives

det(Wy ;) = Y |det(Wy;[SDI, (5.29)
SC[N]
[S|=0on

where W, ;[S] is the Oy x Oy square submatrix of W, ; with rows indexed
by S. Hence for a lower bound, we may pick any S and bound det(20; ;) >
|det(Wy ;[S])]*. Take

S = ([Ox — 0ol + i) U (ijs1 — 0o + [00]).
Then we can write
Vi Va
Vs V,
Vie = 5»2_1, i € [0y — 0ol, £ € [D0],
(Va)ie = Aih,. i€ By — 0l € € [By — ol

2i+bi—1-0¢

W)ie =2, , 1€ [0, £ € [0o],

Nitbj—1— . 2
(Vidie = hprgn i € [D0), € € [Dy — o).

Wi i[S]:= |: :| where

In the cases that either 9y = 0 or 9y = 0y, we need only compute the determinant
of V, or V3, respectively. Otherwise, by the Schur complement formula,

|det(W, ;[SD| = ‘det ([“2 “ZD‘ = |det(V5) det(Vy) det(Id —V, 'V, V' V) .
3 (5.30)
Observe V, is a Vandermonde matrix. Writing V3 = V; - D, where D :=
diag(k?/ L, Aﬁfjao), we see that V; is also a Vandermonde matrix.

As z € By, we can bound the discriminant of {ig} from below, and as we can
bound |A,| < ||Tx(2)]], we have that there is some C(R, 0, f) so that

[det(V2)* det(V3)’| = QIIT@ll v D [T 1he(@ = Ao @P

1<t/ <dy

> C(R,0, f) NP0 (5.31)

Hence,

oy
|det(V2)? det(Va)*| > C(R.0, )7' N7 TRz bl v D™, (5.32)

=1
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Note that the desired lower bound follows from (5.29), (5.30) and (5.32) once we
show that

1V, ' vivi v < 1/2. (5.33)

To this end, first let us recall the following standard inequality:

IMII< Ml = Y M2, < max{n;, ny} -max |M
ij ’

for any matrix M of dimension n; X n,. As [A¢] < 1 for £ > 09 + 1 and |1,| <
I Ty (z)] for £ < 9y, we note that

VAL VAL < OITe@I° < ON® and VAL, Vil < 0.
We can then trivially bound
IV = min(V2) = [det(Va)/[| Vol

and
IV 7" = omin(V3) = Idet(V3) /|| V5[°Y 2.

Hence, using (5.32)

2
040 NZD 8§

1D~ < C(R. D, fHOONT 200 D71,
(5.34)

IV ViV Vil < -
|det(V2)| - |det(V3)]

Since z ¢ By, and 48, < 83, the entries of D are bounded below by
a1+ N735')"f*6’V > exp (%N*%‘ (b; — 6,\,)) > exp (%N*”'“-’) > exp(N°®/8),

for all large N. Therefore, |D7!|| < exp(—N°'/8) and hence, in particular, it
is smaller than any power of N. Thus, from (5.34) we establish (5.33). This
completes the proof of the lemma. O

Building on Lemma 5.9 we now derive bounds on det({; ;&l ;) where we recall

that $; ; := my, jM ~(2)Uy,j, and the columns of Uy ; are an orthonormal basis of

Sk

LEMMA 5.10. Fix R < oo and z € Bc(0, R) \ By. Let k € [Lo]l and j' € [L}]
such that b,(("‘/) = [i;+1]\[i;] for some j € [L1U{0}. Assume 6N(k) > 0. Then there
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exists a constant C3(R, 0, f) > 1, depending only on R, 9, and { f;(-)}]_,, such
that

oy (k)
C3(R. 0, f)7' N2 T (Ae(z k)| A D™ < det (W44 )
=1
dn (k)
< G(R, 2, HNZ 220 TT (15, b)) A D, (5.35)
=1

Proof. Since {wé (k)}?ﬁl span the subspace Sy ;, there exists a Oy X 0y matrix
I" such that Uy ; = W, ;I". The orthonormality of the columns of U, ; implies
', ;I = 1d. This in particular implies that I'I™* = (20, ;)~'. Thus
det($l; ;) = det(I™ W My () ) e j My (D)W ; T
det(Wy My () m) i ;My () Wi )
o det(QIik,j) ’

(5.36)

The bound on the denominator of the RHS of (5.36) follows from Lemma 5.9.
To evaluate the numerator we recall from Lemma 5.3(ii) that o ; My (2) Wy ; =
O(ij+l_5N)XﬁN, where 0,,,, is the matrix of zeros of dimension n; x n,. So, we
only need to evaluate the next 0y rows of My (z) Wy ;.

To this end, we note that for any m =i;,, — ov+1,..., ij+1,and £ € [On], we
have

Lj+1
(My (2w} (k) = (to(k) = W] )+ Yt (K) (W] (k)
m'=m+1
. ij+1 ;.
= (t®) —a, "+ Yt (0dy
m'=m+1
) m+dy
=X?"f‘(ﬁz,k®)— > zm/_m<k>i;"”")
m'=ijy+1
m+61v
= Y bR
m'=iji1+1
m+6N—ij+1
= _5‘? Z tm’+ij+1—m(k)5‘2n,71’
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where the second last step follows from the fact that ﬁzqk (h¢) = 0. This implies

that
0,01 -3n)x1
e My@Qwl (k) = | =32 Av, (k) | ©
O —ijxi
where
0 0 - 0 1,k
0 0 ety 1K)
A= : e e :
0 g,(k) ---13k) 1a(k)
tsy (k) 15,1 (k) - 1(k)  11(k)
It further yields that
O(ij+l—6N)><ﬁN
T My Wiy = | —AV (k) A |,
O(N—i,+.)xéN

where A is a diagonal matrix with entries {):@}?i 1» and recall V (k) is the Oy x Oy
matrix whose columns are {vg(k)}fg ;- Thus

det(W; JMN ()7 ., My (D)W ) = det (AP V (k)" A* AV (k) A™)

= ﬁ e[ - det(V (k) V (k)*) - det(A*A).
- (5.37)
Using (5.24) and that z ¢ By (cf. Lemma 5.4), respectively,
det(V(K)V (k)*) = |det(V (k) > < [ Te()[P¥C¥" = O(N*™),

—1
x |det(V (k))|* = N~21° . ( sup |faN<x)|5”_l) '

x€[0,1]
As for A, det(A) = 13, (k)*¥, and so

N72% < det(A*A) < sup | f3, (1)
x€[0,1]

Now the desired bound on det(Ll; jilk, ;) follows from (5.36)—(5.37), upon an
application of Lemma 5.9. O
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Building on Lemma 5.10 we now derive the upper bound on the product of
small singular values of My (z). Before proceeding to the statement of the relevant
result let us remind the reader that we chose a partition of {bk},fio of [N] such
that for k € [Lo] U {0}, by := {i € [N] : [iN®'| = k}. We also noted that
N'7%1 /2 < |by] < 2N'7% forall k € [Lo] U {0}. We then considered a refinement
(B Y7 1, of (be)iy where N%/2 < [b¢] < 2N for all k € [Lo] U {0}
and j° € [L;]. Finally recall that 0 = i} < i, < i3 < -++ < i;4; = N, with
L:= "¢, L}, are the endpoints of the partition {{b,ﬁj/)}f}':l Fopand b =iy —i;.
Therefore fixing k € [Lo] U {0}, and j' € [L;] fixes j € [L] U {0} such that

by = [i; 1\ [i;].

COROLLARY 5.11. Fix R < 0o and z € Bc(0, R) \ By. Recall £ :=Y"°, L} -
dy(k) and L = Y1, L. Then
£-1 Lo dn(k)
[Tovcin@) < C5(R, 2, HENE 2T TT (R, bl A D™,
m=0 k=0 (=1

for all large N, where C3(R, 0, f) is as in Lemma 5.10. If, for some k, 6N(k) =0,
then the innermost product becomes empty which, by convention, is set to equal 1.

Proof. Fix k € [Lo]U{0}, and j' € [L,] such that bY" := [i ;1]\ [i;]. Let Uy ; be
the N x Oy (k) matrix whose columns form an orthonormal basis of Sk, ;- Denote

U :=[Uoo - Uory—t Urry -+ Urrjsrj—1 -+ Upyr]. (5.38)

Note that if 9 ~ (k) = 0 for some k, then Uy ; is an empty matrix. Therefore, it is
equivalent to ignore such k’s while constructing the matrix U. We will show that

(det(U*My (2)* My (2)U))'?
Lo dn(h)

<{C3(R, 2, N2 TT T (Ao LA D™ (5.39)

k=0 (=1

Since, the columns of U are orthonormal, this, together with Lemma A.2, yields
the desired upper bound on the product of small singular values.

Turning to prove (5.39) we note the following: For any k € [L,] U {0} and
j' € [L}]such that Y := [i; 1]\ [i;] and dy (k) > 0, the columns of My (z)Uy ;
belong to the subspace

T:.; := span({e,}’" {en)) ),

m=ij1—0N(k)+1° m=i; =0y (k)+1

where (a) k= :=kif j’ > 1,and (b) k~ :=k—1if j' =1, and we setﬁN(—l) =0.
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This, in particular, implies that
det(U* My (2)* My (2)U) = det($8;-817), (5.40)

where il is the matrix obtained from JTTM NQU = M ~(2)U by deleting its
zero rows, and 7 is the orthogonal projection onto span({Js, )~ 7x.;)- For any
v € C", let us denote 7, ;v to be the b;-dimensional vector obtained from 7 ;v
by deleting its zero rows. Equipped with this notation, we also note that (1 is a
£ x £ block upper-triangular matrix with {77 jM ~n(2)Uy ;} as its diagonal blocks.
This yields that

det(tly) = [ [ det(@; My () Us. ). (5.41)

Since
det(U; ; My (2)* 7 ;7 ; My (2 Uy ;) = det(U; ; My (2)* ) s ; My (2 Uy ).

combining (5.40)—(5.41), and applying Lemma 5.10 we arrive at (5.39). This
completes the proof of the lemma. O

It remains to find a matching lower bound on the product of the small singular
values. Recall the notation L, L, £, see (5.1), (5.3), (5.25).

LEMMA 5.12. Fix R < oo and z € Bc(0, R) \ By. Then there exists a constant
C4(R, 0, f), depending only on R, 0, and { f;}}_,, such that

£-1

[ Tov-nMy(2))

m=0
2 3 _ —L
2 (C4(R, a’ f)N7D 81430782 +4083+(p081) /(22 1)))

Lo oy (k)

LT [T (e ol A D,

k=0 (=1

forall large N.

The proof of Lemma 5.12 is similar to that of Proposition 3.14. Hence, we
provide only a brief outline below.

Proof of Lemma 5.12. Using Lemma A.2 again we see that it is enough to find a
uniform lower bound on

£ A
[T 1My @wal

m=1
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£

over all collections of orthonormal vectors {w,,},_,.

Analogous to the proof
of Proposition 3.14 we bound each ||MN(z)wn,||2 in one of two ways. If 1 —
¥ w, I3 > 1/2£ then applying Lemma 5.6 we deduce

My (w2 2 loMy () w2

1 2
Cl(R, 0, f)*lN*(2051+D 5z+283+(0¢051)/(2(2d0*1)))’ (5'42)
V28

where we recall that ¢ is the orthogonal projection onto the subspace S :=
span(USy ;).

Without loss of generality, assume w,,, m € [p] satisfies 1 — ||{rw,, ||§ < 1/2%L.
Proceeding similarly as in the steps leading to (3.33) we find

>

14
[ [ 1My @wall

m=1

Ci(R, 0, f)~' N—(Q01+0%2+283+(@0d1)/ (2a0-1))

p P
> . My ()Y w s
( My @IV D) ) [Tyl

m=1

(5.43)

Let Y, be the matrix whose columns are {{yw,,}” _,. Since the columns of U span
the subspace S, there must exist an £ X p matrix A; such that Y, = UA;. We
extend the matrix A; to an £ x £ matrix A so that the last £ — p columns of A are
orthonormal and are also orthogonal to the first p columns of A;. Set Y :=UA
and let us denote the columns of Y to be y,,, for m € [£].

Turning to bound the RHS of (5.43), by Hadamard’s inequality we now find that

14 * A * A
[ 19 @, 2 > ST MV @) (5.44)

D ~ .
m=1 Hm=p+1 ”MN(Z)ym”%

We separately bound the numerator and the denominator of (5.44). An argument
similar to the proof of (3.36) yields

My (2)Ylla < 1My @) (5.45)

It remains to find a lower bound of the numerator of (5.44). To obtain such a
bound, we observe that

det(Y*My(2)*My(2)Y) = det(U* My (2)* My (2)U) det(AA™). (5.46)
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Proceeding similarly as in the proof of (5.39), and applying the lower bound
derived in Lemma 5.10 we deduce

Lo dn(k)

det(U* My (2)" My (@2)U) > {C3(R, 0, FYN 2% E [T [T ez, IADH,
k=0 (=1

(5.47)
Arguments analogous to (3.37) further show that det(AA*) > 2% > 27°L,
Plugging this bound in (5.46), and using (5.47) we obtain

det(Y*MN(Z)*MN (Z)Y) 2 {C’;(R, a, f)23N5351+2052}*L

Lo dy(k)

1—[ l_[ (Jhe(z, k)| A 1204,

k=0 (=1

Therefore, from (5.43)—(5.45), and using the fact that p < £ < 0L, we derive

p
[ 11y @wall,

m=1

(Cl(R 2, f)C3(R, D, f)N5051+23282+283+(a051)/(2(2ao 1)))
8(IMy ()|l v 1)

Lo dn(k)

l_[ 1—[ (|i€(Z, k| A 1)\ka'

k=0 £=1

Since by the Gershgorin circle theorem, ||M NI < Izl + 22:0 sup, 0.1y | fe ()1,
using (5.42) we complete the proof of the lower bound. (|

We are now ready to finish the proof of Theorem 4.4.

Proof of Theorem 4.4. The tightness of the sequence of random probability
measures {L  }yen in P(R), the set of all probability measures on R is
immediate from the domination by singular values, see the proof of Corollary 3.6.
Therefore, by Prokhorov’s theorem {L  }yen admits subsequential limits.
We need to show that all subsequential limits coincide and are given by the
deterministic probability measure [y, f.

Suppose on the contrary that there exists a subsequence {N,,} such that the
above does not hold, that is, the limit along the subsequence is not w, r. We fix
a further arbitrary subsequence {N,,,} C {N,,} with N,,, > 2" for all n € N and
prove for that subsequence that

Ly, = oy asn— oo inprobability. (5.48)
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This will prove the theorem. Turning to the proof of (5.48), we first apply
[20, Theorem 2.8.3] and deduce that it is enough to show that for Lebesgue
ae. ze€C,

L

Ny

() = L,,,(z) asn— oo in probability, (5.49)

where Ly (-) is the log potential of the ESD of My. Since Mo, 5 is compactly
supported, one can check the proof of [20, Theorem 2.8.3] to deduce that in fact
it suffices to establish (5.49) for Lebesgue a.e. z € B¢(0, R) for some large R.

We will show that given any ¢ > 0, there exists a set B.cc, depending on the
subsequence {N,,, }, with Leb(l%s) < &, such that for all z € Bc(0, R) \ Bg, the
convergence in (5.49) holds. Since ¢ > 0 is arbitrary, this will complete the proof
of (5.49). .

Toward this end, define BB, := UH%O(S) By, U fo([0, 1]) for some ny(e) > 1,
where By is as in Lemma 5.4. Since fy(-) is an «y-Holder-continuous function
with oy > 1/2, a simple volumetric estimate shows that Leb( f,([0, 1])) = O.
Hence, using Lemma 5.4 and the union bound we see that, given any ¢ > 0,
there exists ng := ny(e) such that Leb(l’;’g) < ¢e. With this choice of the set l’;’g, we
now prove (5.49).

To this end, our goal is to apply Theorem 2.1. We need to show that all the
assumptions of Theorem 2.1 are satisfied. From Remark 5.8 we have that for any
z € Be(0, R) \ l’;’g, N* = o(N/log N) along the subsequence {N,, }. Therefore
applying Theorem 2.1 we conclude that for z € Bc(0, R) \ B.,

log |det(MN

mp

1 N
)| — N—log |det B(My,, (2))|| — 0 asn — oo,

" (5.50)
in probability. Thus it remains to find
nli)rgJ ! log det |B(1\;1Nm” @)
To this end, we note that ”
det B (@))] = det My(2)| T2 lto(k) — 2™ 5:51)

[T onap My @) TThgon—p(My(2)

Since | My (2)|| = O(1) forany z € Be(0, R), and N* < £ = O(N'~%) by (5.25),
using the definition of N* we have that

el
1 .
lim — log ( 1—[ ON,,—p(M,, (Z))> =0.

n—>00
n p=N*+1
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Hence, it is enough to find lim,_, o, 7;,(z) and show that it equals £, ;(2), where

| Lo £—1 A
T,(2) == o log (Z [bel log [tg(k) — 2| = ) " log aw,,, (M, (z»).

M k=0 p=0

Since £ = O(N'%), we have, using Lemma 5.12, that for any z € B¢ (0, R) \ .,

limsup 7,,(2)
1 Lo 3Nm,,(k)
< limsup —— log (Z |bk|{log to(k) =zl — > log(lie(z. k)| A 1)})
o0 Mn k=0 =1
1 Lo O, ()
= lim sup —— log (Z |bk|{ 3 log(ie(e, DIV 1) +loglts, <k><k)|}),
=0 M k=0 =1

(5.52)

where the last step follows from the fact that {A,(z, k)}?ifk)

the matrix 7;(z), and hence

are the eigenvalues of

Oy (k)

/ — 1ok
1_[ [Ae(z, k)| = |det(T(2)| = |z — 10 (k)|

_ (5.53)
=1 |t6Nm” k) (k)|

We claim that for any z € B¢ (0, R) \ [;’g,

N, ()

Y dog(lhu(z, k) v 1) +loglts, ()| < C(f, 0, R) < o0,

=1

sup sup
n ke[LolU{o)

(5.54)
for some constant C(f, 9, R) depending only on { f,}?_,., 9, and R. Indeed, noting
that the closed set f,([0, 1]) € B,, we have nq := dist(z, fo([0, 1])) > 0. Upon
using the triangle inequality we therefore conclude that there exists n > 0, such
that for every k € [Lo] U {0}, every root of the polynomial equation }A’z,k *) =0
is greater than n in absolute value. Thus,

N, ()
sup | Y log(lAe(z. k) A D)| < dllog(m)].
kelLolU(0} | =

for all n. Since 1y < [z — fo(k)| < R + sup, o1y | fo(x), for all k € [Lo] U {0},
using (5.53) again the claim in (5.54) follows.
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Next fix x € [0, 1]. It is easy to check that for any x € (0, 1), Az,k()n) — P, (A)

where k = [xN? |. Since the roots of a polynomial are continuous function of its
coefficients we have that

Ny, (k)
> log(lhe(z )V 1) +loglts, ()]
=1
d(x)
— Y log(IAu(z, ¥)| V 1) +log | f5 (X)),

(=1

as n — oo, where k = [xN°]. Therefore, using (5.54) and the bounded
convergence theorem, from (5.52) we deduce that

d(x)

1
lim sup 7;,(2) </ {Zlog(w(z,xn v 1) +10g|f5(x)(x)|}dx =Ly, ,@.
0

n—o0 =1

Now applying Corollary 5.11 and using a similar reasoning as above, it also
follows that for any z € Bc(0, R) \ B., we have liminf, ... ,,(z) > L., ,(2).
This together with (5.50) shows that, for any ¢ > 0, the convergence in (5.49)
holds for all z outside a set of Lebesgue measure at most €. Hence, the proof of
the theorem is now complete. O
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Appendix A. Some algebraic facts

In this section we collect a couple of standard matrix results which have been
used in the proofs appearing in Sections 2, 3, and 5.

The first result shows that the determinant of the sum of the two matrices
can be expressed as a linear combination of products of the determinants of
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appropriate submatrices. The proof trivially follows from the definition of the
determinant. For a proof we refer the reader to [14]. We adopt the convention that
the determinant of the matrix of size zero is one. The following result essentially
follows from the definition of the determinant of a matrix.

LEMMA A.1. Foran N x N matrix A, and X, Y C [N]we write A[X, Y] for the
submatrix of A which consists of the rows in X and the columns in Y. Then for
any two N x N matrices A and B we have

det(A + B) = Z (=100 det(A[X, Y]) det(B[X, Y]),  (A.1)

X.YC[N]
[X|=[Y]

where X = [N]\ X, Y = [NJ\Yand o for Z € {X,Y}is theyermutation on
[N] which places all the elements of Z before all the elements of Z, but preserves
the order of elements within the two sets.

The next lemma deals with the characterization of products of singular values.

LEMMA A.2. Let A be an N x N matrix. Then for any k < N — 1, we have

‘ k
w(A) = inf (det(EfA*AE))/* = inf A&plr, (A2
,H)GN ()= inf (det(EfATAE)' 2 = inf [TlA&ls  (A2)

k'=0

where the infimums are taken over set of orthonormal vectors {&y, &1, ..., &} and
&\ is the matrix whose columns are {ék/}’,z,zo.

The equality (A.2) can be thought of as a generalization of Courant-Fischer—
Weyl min—-max principle. The equality of the leftmost and the rightmost terms in
(A.2) follows from [13, Page 200, Ex. 12]. For completeness, we provide a proof.

Proof. Using Hadamard’s determinantal inequality we first observe that

k
inf (det(E]*A*A[E'k))1/2 < inf lAEL 2.
£0,61, .8k k I kl_[ §

'—0

Next setting &, &1, . . . , & to be the right singular vectors of A corresponding to
on(A),on_1(A), ..., on_r(A), respectively, we see that the product of the £;-
norms of A&, for k' = 0,1, ..., k, equals the product of (k 4+ 1)-st smallest
singular values of A. Hence, we deduce

k k
oy_p(A) = inf Ay |-
k]l w-i( )/s[,,s.,...,gkﬂo” Sl
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Therefore to prove (A.2) it is enough to show that

k
[[ovrd < ,Anf (det(EFA*AE,))"2. (A.3)
0,51 k
k'=0

,,,,,

Let A = U X'W be the singular value decomposition of A. Thus
det(EfA*AE)) = det(E; W*X*W E)). (A4)

Instead of taking the infimum over all =}, whose columns are orthonormal, we
may change variables and take the infimum over all W, = W &, which is again a
collection of (k + 1) orthonormal columns. Applying Cauchy—Binet formula,

det(W; Z*Wy) = Y |det(ZWISDI,
SCIN]
IS|=k+1
where (X W;)[S] is the (k + 1) x (k 4+ 1) matrix with rows in §. Since X is a
diagonal matrix we observe that

k
det((ZWLS]) = det(W)LSD) - [ [ oi(A) = det(WLSD [ [ ow-i(A).

i€S k'=0

Hence

k k
det(W; °We) = [ [ oo (A) D 1det((WISDI® = [ [ ox i (A) det(W; Wy),

k=0 SCIN] K'=0
1S|=k+1

where we have again applied the Cauchy—Binet formula. Since the columns of W,

are orthonormal, combining the above with (A.4), the inequality (A.3) follows.
This completes the proof. O
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