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A GENERALIZATION OF FINAL RANK OF
PRIMARY ABELIAN GROUPS

DOYLE O. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. Recall that the final rank of G is
inf,eq {7 (P"G)}, where 7 (p"G) is the rank of p"G and w is the first limit ordinal.
Alternately, if T is the set of all basic subgroups of G, we may define the
final rank of G by supgcr{7(G/B)}. In fact, it is known that there exists a
basic subgroup B of G such that »(G/B) is equal to the final rank of G. Since
the final rank of G is equal to the final rank of a high subgroup of G plus the
rank of p«G, one could obtain the same information if the definition of final
rank were restricted to the class of p-primary Abelian groups of length w.

In this paper we show the existence of appropriate generalizations of these
two definitions of final rank; and, when the length of G is an accessible limit
ordinal (the limit of a countable increasing sequence of lesser ordinals), we
show that the two resulting cardinals are indeed the same. The notation is
pretty close to that of [1] or [3]. We use (. . .) for “‘subgroup generated by . .."”,
and ordinals are in the sense of von Neumann.

Let G be a reduced p-primary Abelian group. Let

pG = {x € G| x = py for some y € G}.

Inductively we define

PG = p(°G)  and PG = N PG

Béa

for @ a limit ordinal. A subgroup H of G is called p*-pure in G if
0—-H—->G—->G/H—0
represents an element of p* Ext(G/H, H). For a a limit ordinal let
T, = {H| H is a p*-pure subgroup of G and G/H is divisible}.
Then the following two generalizations of final rank can be defined:

(1) ra(G) = sup {r(G/H)},
(2) 5.(G) = 1191615 {r(°Glp))}.
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THEOREM 1. Let G be a reduced p-primary Abelian group. Then r,(G) £ s.(G).

Proof. For H € T4, the following hold (see [4]):

(a) p°G N H = pBH for all B € «,

(b) (p8G, H) = G for all B € a.
Thus r(G/H) = r({(p8G, H)/H) = r(p*G/pPH) for all B € a. Now (a) implies
that p8H is pure in pfG. Thus, if {&}c4 is a basis of (pFG/pBH)[p], we can
choose x; € pSG[p] so that x¢ + pPH = &¢. Then {xg ¢c4 is linearly independent
and so

r(pPG/pPH) = r((p°G/pPH)[p]) = r(pPGIPp])
forall B € a. Therefore 7 (G/H) = s.(G) for each H € T,. Hence7,(G) = s.(G).

THEOREM 2. Let G be a reduced p-primary Abelian group of length o, where
o = UiEw a; (ai E (e RN} E afor all’L E w) Then Va(G) é Sa(G).

Proof. Let G; be a chain of p~iG-high subgroups of G; that is, G; C G ;41
for all 2 € w and G; is maximal with respect to G; M p*iG = 0. Define
Py = Go[p], and for ¢ > 0 choose P, such that G;[p] = G.,_1[p] ® P,. Note
that for all B8 € «,

p1C <; Py, <z>“’G>[p1>;

i.e., > ico Py is a dense subsocle of G[p] in the relative p*-topology.
Note that infgelpfG[p]] = R = Ro. Either limy,|2.7=x P/ = X or
lil’nk%m|zf=k Pz! < N

Case 1. 1im, | X7 Ps| < N.Since |X P;| = 3 |P,| and since the cardinals
are well-ordered, there exists an 7y € w such that

i .|_lmi ‘

=10 kol i=

Let K be a neat subgroup of G such that K[p] = > {_0 P;. (We need only
choose K containing Y .;—o P; and maximal with respect to the property of
being disjoint from a complementary summand of % ;7o P; in G[p].) Since
K[p] is dense in G[p] with respect to the relative p=*-topology, we have, by
[4, Theorem 2.9], that K is a p*-pure subgroup of G. Note that G/K is divisible
since it is easy to show that (K, pfG) = G for all B € . From [4, p. 196], we
have that K is isotype in G. Thus

G/K = (p"G, K)/K = p"G/(p"G N K) = p"G/p"K.
Now |pPK[p]| = |> 7= Pi < XK. Choose L such that
(p"G)[p] = L @ pK[p].
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Since [pG[p]| = N, |[L| = X. Then if {x]¢c4 is a basis of L, {x; + p*K}rca
is linearly independent and hence |G/K| = |p’G/p?K| = R, as required.

Case 1I. lim o|X = Pi| = N. It may happen that [> 7o P = X but
[P,| < X for all ¢ € w. Thus we proceed to pick out a subsocle S of 3. P;
to obtain

> Pi/S} = X and (S, 2°G) D > P, for all 8 € a.

€w i€w
Letting K be neat such that K[p] = S will give a p*-pure subgroup with G/K
divisible and of cardinality N.

Let { R} jco be a subsequence of { P} ¢, with the property that [R,| £ |R;4.]
for all j € wand Y. |R;| = N. Note that if |R,| is now finite for all j € w,
thene = B 4+ wand we will choose the K in the following to be a neat subgroup
supported by a socle consisting of the direct sum of the socle of a pfG-high
subgroup of G and the socle of a lower basic subgroup of p#G. Thus we may
assume that |R;| is infinite for all j € w.

Define Q,7, 7, # € w as follows. Let Q° = Ry and Q,” = 0 whenever » > #.
Inductively let R, = Q,° ® ... ® Q,*, where |0,/ = |Q,_i?| for 0 £ j < =,
and Q,” = 0 if |R,| = {R,—1|. This can be done by defining, for each j € o, ),
to be the least ordinal whose cardinal is dim R; (as a vector space over the
integers mod p), choosing a basis {3} e, for R,, and defining

Ot = {m| \im1 = Nor XAi_g € N) and X € \}), where A\_; = 0.

Let A = {dim R,/ € w}. For each u € A let k, be the least element of w
such that 37%¢ [R;| = p. Then Ry, is the first member of the sequence with
dimension p. Thus dim (Qy,"*) = u. Let Q, = Z;f’:k” Q,fe. Let {x,flge. be a
basis of Qy, 4" 7 € w. Let QfF = 3 ,co (0,f) (note that Y, Quf = Qu). Let
S8 C Q.8 be generated by all elements of the form 3./%, x:8, a € w. We show
below that Q.2 € (S, p*G) for all v € o, and |Q.8/S.f] = No. Hence if
Sy = Dpen SJf, then

> 0/

8|

Let Q = {{Siuer, 1P| 1 € wand P; 5 R, for all j € w}).
Thus by construction we have

2P
=0 — leEA — Qﬁ = Z u = x
Q Z S n€A Sn HEA
HEA g
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Let K be a neat subgroup of G with K[p] = Q. If v € «, then

(Q, 'GPy =\ 2 P4 Z Su (P'G)[p ]>

Pi#Rj

(T P.T T S8\ w00)
Pi#Rj KEA  Ben

=\2 P2 2 0 (;b’c>[p1>
Pi#Rj HEA  Bew

= Z P’l! Z (p'YG) >
Pi#Rj HEA

- <; P (6)15)

= Gip].

Since G/K is divisible, we then have that K is p-pure in G. Again by the
construction we have |G/K| = R, as desired.

Finally we will show that Q.8 C (S.%, p'G) for v € a. Let v be given and
find m € wsuch that v € «,. Then, given x,f € Q,8, we have

om+1(r42)—2 m 28 +1(r41)—2 m o 20+1(r42)—2
B 8 __ 8 B
of = 2 xf=2 X ox-22 2 xf
i=2m+1(r41)—1 i=0  j=2i(r+1)—1 =0  j=20(r+2)—1

Each member of the sum on the right side is an element of S,f. The left
side is x,f — 2, where 2 € p*»G C p?G. It follows that

Qnﬁ = Z <xrﬁ> - <Suﬂv p‘yG>-

TEW

Note that [Q,8/S,.f] = Xy as follows. Suppose that # is odd. If x,8 is in S8
we can write

204

Zczzx],

Jj=aqi
where 0 < ¢; < p and 7 < j= a; < a;. Then x,,,* appears only in the last
term and # # 2a,. Thus ¢,x2,* = 0= p|c,, a contradiction. Hence x,f € S8
for n odd. We claim that {x2,01® + S.fl,co is linearly independent. If
Xopp1® — Xopp1® €SP, then, supposing # = k, we have

2a4

x2n+16— x2k+1 + Z Ci Z x]

J=ai

with 0 £ ¢; < p,and 7 < j = a; < a;. Once again we see that p|c,, and thus
Xops1f = x2k+13. Hence |Q.#/S.f] = Xo. This completes the proof.

THEOREM 3. Let G be a reduced p-primary Abelian group and let a be an
accessible limit ordinal. Then 1, (G) = 5,(G).
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Proof. This follows from Theorems 1 and 2 and the fact that if H is a
p*G-high subgroup of G then 7,(G) = r,(H) + r(p*G) and

$a(G) = sa(H) + 7(p°G).

One application of Theorem 3 is as follows. Let G be a reduced p-group
of length @, @ an accessible limit ordinal. Let H be a p-group and B a basic
subgroup of H. Then a necessary and sufficient condition that there exist a
group K such that K/p*K =~ G and p*K = H is that »(B) = s5.(G). (Note
that s,(G) can be replaced by 7,(G) with no restriction on the limit ordinal a.
See [2, Proposition 1.7].)
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