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TWO THEOREMS ON GENERALISED METRIC SPACES

SERGEY SVETLICHNY

We prove that any compact space, and even any countably compact space hav-
ing the weak topology with respect to a sequence of symmetrisable subspaces, is
metrisable. This generalises results of Arhangel'skii and Nedev on metrisability of
symmetrisable compact spaces. Also we define and study contraction functions on
generalised metric spaces whose topology can be described in terms of a 'distance
function' which is not quite a metric. In particular we present necessary and suf-
ficient conditions for a space of countable pseudo-character to be submetrisable in
terms of real-valued contraction functions on this space.

1. INTRODUCTION

This article consists of two sections. The purpose of the first section is to generalise
the well-known result on metrisability of a symmetrisable compact space. In the second
section we study submetrisable spaces and obtain necessary and sufficient conditions
for a space of countable pseudo-character to be submetrisable in terms of real-valued
contraction functions on this space.

We start with the necessary definitions and examples.

1.1 DEFINITION: A space X has the weak topology with respect to a sequence

of subspaces {Xn : n £ N} (or the topology of X is determined by this sequence of

subspaces) if a set U is open in X whenever U fl Xn is open in Xn for all n £ N.

Consider the disjoint sum of countably many copies of a convergent sequence taken
with its limit point and shrink all limit points to one point. Such a quotient space is
known as a Frechet fan [5]. The Frechet fan is an example of a non-metrisable space
having the weak topology with respect to a sequence of metrisable subspaces. On the
other hand, the following corollary to a more general theorem of Filippov holds:

1.2 COROLLARY. [6, 8] Every compact space Laving the weak topology with
respect to a sequence of metrisable subspaces is metrisable.

To see this, suppose that X and {Xn : n £ N} are as in Definition 1.1, X is
compact and Xn is metrisable for each n 6 N. Then the canonical mapping ®{Xn •
n 6 N} —* X sending a point to 'itself' is a quotient s-map (in fact, it is a countable-
to-one quotient map). Thus X is metrisable [6, Theorem 2.2].
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Now we turn to another metrisation theorem for compact spaces.

1.3 DEFINITION: A function d : X x X -> R+ is called a symmetric on X if, for
each x,y £ X,

(a) d(x,y) = d(y,x) ,

(b) d(x,y) = 0 if and only if x = y .

Since the triangle inequality is not present in the definition of a symmetric d, the
usual e-balls

Bd(x,e) = {yeX:d(x,y)<e}

might not form a base for a topology on X. However, the following definition gives
another way to relate the e-balls to a topology.

1.4 DEFINITION: A space X is said to be symmetrisable if there exists asymmetric
d on X such that U C X is open if and only if whenever x G U there is e > 0 such
that Bd{x,e) C U.

Not every symmetrisable space is metrisable [1]. However, as Arhangelskii's theo-

rem shows, the situation is different in the presence of compactness.

1 • 5 THEOREM . [1] A symmetrisable compact space is metrisable.

The main result of the second section is the following generalisation of the previous
theorem:

1 . 6 THEOREM . If X is a compact space having the weak topology with respect

to a sequence of symmetrisable subspaces, then X is metrisable.

What makes our result nontrivial is the fact that there are non-symmetrisable
spaces with the weak topology with respect to a sequence of symmetrisable (even metris-
able) subspaces for example, the Frechet fan [5].

The third section of this article deals with submetrisable spaces. A space X with
the topology T is said to be submetrisable if there is some metric topology T* on X

such that T* C T . If X is a submetrisable space then we simply say that X has a
coarser metric topology. It follows easily that any submetrisable space X has a Gg-

diagonal (that is, the diagonal of X is a Gg-set in X2). This is because X2 also has a
coarser metric topology, hence the diagonal (as a closed subset) is a Gs-set. It is readily
seen that any space having a G^-diagonal has a countable pseudo-character (that is,
each point of this space is a Gg-set).

Martin [9] introduced and investigated spaces of real-valued contraction functions
defined on symmetrisable spaces. In particular, he used spaces of functions to find
conditions for an arbitrary symmetrisable space to be submetrisable [9, Theorem 3.1].
However, this result can not be viewed as a characterisation theorem for submetrisable
spaces for it is restricted to the class of symmetrisable spaces only.
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The purpose of the second part of this note is to exploit Martin's construction
by defining the space of contraction functions Ld{X) on a space of countable pseudo-
character X and to prove the following result

1. 7 THEOREM . The following conditions are equivalent for a space X :

(i) X is submetrisable.
(ii) Ld(X) separates points of X for some separately continuous symmetric

d.
(iii) Ld(X) separates points of X for some continuous symmetric d.

Since every submetrisable space has a countable pseudo-character, we therefore
obtain conditions by which submetrisable spaces can be characterised. Note that such
conditions in terms of sequences of covers for a space with a G^-diagonal are well-known
and can be found in [1, 4] and [7].

In order to get our main results, the concepts of a ip-metric and a ip-metrisable
space are introduced. These concepts enable us to characterise spaces of countable
pseudo-character in terms of a "distance function" which is not quite a metric.

Throughout the paper all spaces are assumed to be Hausdorff; 'metric space' means
'metrisable space' (a standard abuse of terminology). For a space X of countable
pseudo-character we use the notation t/i(X) ^ u>. The space of all real-valued functions
on a space X with the Tychonoff product topology is denoted by M.x. The symbols
R+ and N denote the natural numbers and the set of positive real numbers. All other
terminology and notations are contained in [7] and [5].

2. A METRISATION THEOREM FOR COMPACT SPACES

The main result of this section is the following

2 . 1 THEOREM. If X is a compact space having the weak topology with respect
to a sequence of symmetrisable subspaces, then X is metrisable.

To prove Theorem 2.1 we use the technique of the intersection of topologies and
some ideas developed in [1] and [10].

2.2 DEFINITION: Let topologies X and {%, : a e 5} are defined on a set X. Then
T is the intersection of topologies {%, : a G S} if a set U is open in (X, X) if and only
if U is open in (X, %,) for each a G 5 .

The following lemma is straightforward.

2 . 3 LEMMA. If X is a. compact space having the weak topology with respect to
a sequence of symmetrisable subspaces, then the topology of X is the intersection of a
sequence of symmetrisable topologies.
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2 . 4 LEMMA. If the topology % of a. compact space X is the intersection of a
sequence of symmetrisable topologies, then every closed subset of X is a Gf-set.

PROOF: Let X be the intersection of symmetrisable topologies {%n : n £ N} on

X and let dk be a symmetric with respect to the topology I t • Consider any closed

F C X and an open cover {V, : a £ 5} of X* — X \ F with the relative topology

induced by T. Clearly we can assume that the set 5 is well ordered and for each a G S,

we have [V.}% C X* .

For each n,k £ N and a £ 5 , let us define

U. = V.\\J{Vt:t<s,teS}

and

M?,k = {xeX*:xeU., dk(x,X \ V.) > 1/n}.

It is readily seen that the collection {M™A : a G S} is disjoint, M " t C M"^ 1 and

{M™t : a G 5, n € N} forms a cover of X* for every n, k £ N and a G S.

Suppose that for some m G N the set of non-empty elements of { M ^ : a G S} is

uncountable. Choose any point x, G M™± for every a G 5 . For every e > 0, let

It is clear that F = f]{Oi/n>iF : n £ N} and some Si C 5 can be chosen in such a way
that the set {x, : a G Si} is uncountable and di({x, : a G Si},F) > e. We shall show
that {a;, : a £ S\} is closed and discrete in (X,7 i ) . Suppose there is a set {xt : t £ Ti}
which is not closed in (X,7\) and

Then there exists a; G -X" such that di(x,{s« : t £ 7i}) = 0. Since di({x« : < £
e, it easily follows that x £ X*. First assume

and let
s' = min{s £ 5i : a; £ M^}.

Then d^Xt,*) > 1/"* for any < £ 2 \ , < 5̂  s' and so ^ ( x ^ X t : t £ Tx}) > 0. Therefore

the only option is

Thus d i (x , ,x ) > 1/m for each a £ Si and d!(x,{xt : t £ Ti}) > 0. This contradiction
shows that for each Ti Q Si, the set {xt : t G Tx} is closed in ( X , 7 i ) . Thus the set
{x, : a £ Si} is closed and discrete in {X,Ti).
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Further, consider {M™2 : a G Si, n G N} which is a cover of X. For each a G S\,

the point x, is contained in some set M,2 . Since x, G U, for every a G 5 and the

collection of sets {{/, : a G 5} is disjoint, the map x, —• M™2 *s o n e *° o n e - As
{x, : a G Si} is uncountable, there are a subset {x, : a G 52} Q {x, : a G Si} and
i £ N such that x, 6 M j 2 for all s G S2• For each e > 0, let

Oe>2F = {x £ X : d2(x,F) ^ e}.

Since F = fKOi/n^^ : n G N}, there is 5 > 0 such that d2({x, : s G 52},-F) > 8.
Now similar arguments show that the set {x, : s £ S2} is discrete and closed in {X,7i)
and (X,T2).

We inductively define sequences

{Si C 5 : 5 i + 1 C 5,-, i G N}

such that
(1) {a;, : a G 5<} is uncountable for all i G N;
(2) {x, : a G Si} is discrete and closed in (X,Tn) for all n ^ i and i £ N.

Finally, for each * G N, pick a point

a< G {x, : a £ 5<} C X*.

If the set {a, : i G N} is not closed in (X, T), then there is k G N such that {a< : i G N}
is not closed in (X,7jt), which is impossible due to property (2) above. So {a< : i £ N}
is discrete and closed in (X, T). But (X, T) is a compact space, a contradiction.

Hence, for each m £ N, the set of non-empty elements of {M^ : a £ 5} is
countable. So {M"fc : a £ S,n £ N} is a countable cover of X* for all k £ N and any
open cover of X* has a countable subcover. It follows that F is Gs-set. U

The following lemma is of some independent interest.

2 . 5 LEMMA. If X is a compact space having the topology of intersection of a
sequence of symmetrisable topologies, then the product topology of the space X x X
is also the intersection of a sequence of symmetrisable topologies

PROOF: Let {Tn : n G N} be a sequence of symmetrisable topologies on (X,%)
and X = n(^n : n G N}. Suppose that, for each n G N, the topology Tn is generated
by a symmetric d,,. For each m,k G N, we define a function dmk on X x X by

where (xi,x'1),(x2,x'2) G X x X.
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For every m, k £ N, let Tmk be the following topology on X x X: a set F is closed
in (X x X,Tmk) if and only if dmk(x, F) = 0 for every xe(X xX)\F. It is easy to
show that, for all m, A; £ N, the space (X x X,Tmk) is symmetrisable with respect to
the symmetric dmk •

To show that the topology T x T is the.intersection of topologies {Tmk : m, k £ N},
we first note that (X x X,T xT) is sequential [8, Example 10.2]. Next, let A C
X x X and [^4]rxT ^ A. As (X x X,T x T ) is sequential, there is a point (xo,x'o) £
[A]TXT 7̂  A. and a sequence {(xi,x[) £ A : i £ N} converging to (xo,x'o). Therefore,
for each m, k £ N, the sequences {xi : i £ N} and {x[ : i £ N} converge to the points
XQ and x'o in the topologies Tm and 7t respectively. Finally, by the definition of the
function dmk, it follows that the sequence {(xi,x\) : i £ N} converges to (XQ,X'O) in
the topology Tmk • D

PROOF OF THE THEOREM: According to the Lemma 2.4 and Lemma 2.5, the

compact space X x X has a Cr^-diagonal (as the diagonal is a closed subset of X x X)

and thus is metrisable [12]. U

As a matter of fact, a much more general result holds. Recall that a space X is

said to be countably compact if any countable cover of open sets of X contains a finite

subcover.

2 . 6 COROLLARY . If X is a countably compact space having the weak topology

with respect to a sequence of symmetrisable subspaces, then X is metrisable.

PROOF: Let F = 0 in the proof of the Lemma 2.4. Then for any open cover

{V, : 3 £ 5} it is possible to find a countable collection {M"j : a £ S, n £ N} such that

(1) {-^"l : s £ 5, n £ N} is a cover of X ;
(2) M£i C V, for all s £ 5 .

Hence any open cover of X contains a countable subcover and so X is compact.

An application of the theorem gives the result. D

2.7 REMARK. AS we have mentioned already, the canonical mapping ®{Xn '• n €
N} —> X is countable-to-one and quotient. It is thus tempting to suggest that every
compact space which is a quotient countable-to-one image of a symmetrisable space is
metrisable. However, this is false in general due to a result of Reed [11]. He showed
that any first countable space is an open countable-to-one image of a Moore (and so
symmetrisable) space. Therefore, every non-metrisable first countable compact space
is a quotient countable-to-one image of a symmetrisable space and our result can't be
easily generalised in this direction unless some other specific properties of the canonical
mapping are used.
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3. CONTRACTION FUNCTIONS ON SUBMETRISABLE SPACES

Recall that if d : X x X -> R + is a function, then Bd(x, e) - {y G X : d(x,y) < e}

is the ball of radius e centred at x, with respect to the function d.

3.1 DEFINITION: A function d: X x X ->R+ is called a ^-metric on the set X
if, for each x,y G X, d(x,y) = 0 if and only if x — y.

A topological space X is said to be iji-metrisable if there is a iji-metric d on X

such that, for each x G X and e > 0, the ball Bd(x,e) is open.

3 . 2 LEMMA. The following conditions are equivalent for any space X:

(i) t(X)^w.
(ii) X is ijj-metrisahle.

(iii) TAere is a symmetric function (definition 1.3) d : X x X —> R+ sucA that
x G Int Bd(x, e) for all e > 0 and x G X.

PROOF: (iii)=> (i). Clearly {x} = f|Un(x), where Un(x) = IntBd(x, 1/n).
n

(i)=>- (ii). Suppose that VK-̂ Q = w- Then for each i 6 X we can choose a
sequence (i/n(x)).of open sets in X such that Un+i{x) C £7n(a5) for all n 6 w and
{x} = P) Un(x). Define a function d : X x X -> R+ by

n

d(a;,2/) = 1/m if TO = min{n : y ^ t/n(a5)} (or TO = min{n : x £ Un(y)}).

It is easy to show that the function d is as required.
(ii) =>• (iii). Let d : X x X —> 1R+ be a function as in part (ii) of the lemma. Define:

d,ym(x,y) = min{d(x,y),d(y,x)}.

Evidently, d,ym is a symmetric on X. Moreover, for each x £ X and e > 0, it follows
that

x e Bd(x,e) C Bdiym(x,e).

Since Bd(x,e) is open in X, it follows that z G IntBdtym(x,e). U

3.3 DEFINITION: Let d : XxX —> R+ be a function. Then the space of contraction
real-valued functions on X with respect to d is the following subspace Ld{X) of R*:

Ld(X) = {f£Rx: \f{x) - f(y)\ < d(x,y) for all x,y G X}.

For any ^-function d : X x X —> R+, one can easily show that

(a) Ld{X) is a subspace of the space CP(X) [3] of all real-valued continuous
functions on X;

(b) Ld(X) is closed in Rx;
(c) Ld(X) is a perfect and nowhere dense subset of Rx.
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Even when X is metrisable by a metric d not much is known about topological
properties of the space Ld(X). Since the main properties of the spaces CP(X) have
been already investigated, a comparative study of the spaces Ld(X) and Cv{X) would
be the first step in this direction.

In order to state the main results of this section recall that a subspace E C M.x

separates points of X if, for each x,y £ X, there is an / G E such that f(x) ^ /( j /) .
As usual, if d and d* are any functions from X x X into R + , then we write d ̂  d*

whenever d(x,y) ^ d*(x,y) for all x,y 6 X.

3 . 4 THEOREM . T i e following conditions are equivalent for a. space X:

(i) X is submetrisable,

(ii) X is if)-metrisable (by a ip-metric d) and Ld(X) separates points of X.

(iii) Ld(X) separates points of X for some separately continuous ip-metric d.

(iv) Ld(X) separates points of X for some continuous ifr-metric d.

PROOF: (i)=> (iv). Let p : X x X —+ R + be the metric for a coarser metric
topology on X. As p is continuous we need only prove that the space LP{X) separates
points of X. Consider any points a,b £ X such that a ̂  b. Define f(x) — p(x,a).

Then

\f{x) - f(y)\ = \p(x,a) - p(y,a)\ ^ p(x,y),

that is, / £ LP(X). Further, f(a) = p(a,a) = 0 and f(b) = p(b,a) ± 0.

(iv)=> (iii). Trivial.

(iii)=^ (ii). Follows from the Definition 3.1.

(ii)=> (i). Let X be ^-metrisable by a ^-metric d and suppose that for every
x,y G X there is / £ Ld(X) such that f{x) ^ f(y). Define p : X x X -> R+ as
follows:

p(x,y) = sup{|5(z) - g(y)\ : g £ Ld(X)}.

It is readily seen that p is a metric on X. It remains to show that p is continuous
(that is p generates a coarser metric topology). It follows from the definition of the
space Ld{X) that p ̂  d. Thus for each e > 0 and x G X, we have

Since Bd(x,e) is open, it follows that x G IntJ5p(a,e) for each e > 0 and x 6 X.

Finally, as p is a metric, it is possible, for every y G Bp(x,e), to find some S > 0 such
that

yehitBp(y,6)CBp(x,e).

This shows that every e-ball Bp{x,e) is open and so X is submetrisable. U
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3.5 REMARK. It has been shown in Lemma 3.2 that ij>(X) ^ w if and only if X is tf>-

metrisable. Therefore part (ii) of the theorem gives a necessary and sufficient condition
for a space of countable pseudo-character to be submetrisable.

Using Lemma 3.2 it is not difficult to modify the proof of the previous theorem to
get the following

3 . 6 THEOREM . Tie following conditions are equivalent for a space X:

(i) X is submetrisable.
(ii) Ld(X) separates points of X for some separately continuous symmetric

d.
(iii) Ld(X) separates points of X for some continuous symmetric d.

It is known that a submetrisable pseudocompact space is metrisable [2]. Unfortu-
nately, there appears to be no reference to the proof of this result available and so a
sketch of the proof is given here.

Let a space (X, X) be pseudocompact and submetrisable that is, there exists a
coarser metric topology X* on X. It follows that the space (X,T*) is a metrisable
compact [5, Theorems 3.10.21 and 5.1.20]. If we prove that the space (X, X) is count-
ably compact, then the rest will follow from [7]. Suppose that (X,%) is not countably
compact. Then there is an infinite sequence {xn}^=1 C X which has no limit points
in X. Since the space (X,X*) is metric and compact, one can choose a subsequence
ixn(k)}'kLi converging in the topology X*. Now, for each xn^), it is possible to pick
an open (in X* and so in X) set Z/(zn(j.)) such that the collection {U(xn(k))}k^=i is
discrete in the subspace X \ {x} with the topology induced from X*. Finally, for each
a;n(t), there obviously exists a subset V(xn(k)) of t/(a;n(fc)) such that the collection
{^(x^fc))}^! is discrete in (X,X). This contradicts [5, Theorem 3.10.22].

3 .7 COROLLARY . A pseudocompact space X is metrisable if and only if there
is a function d : X x X —* K+ such that (a) d is separately continuous; (b) d(x,y) — 0
if and only if x = y for all x,y €E X; (c) Ld{X) separates points of X.
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