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1. Introduction. In the following we use the notation and terminology of [6] and [7].
If S is an inverse semigroup, then Es denotes the semilattice of idempotents of S. If a

is any element of the inverse semigroup, then a"1 denotes the inverse of a in S. An
inverse subsemigroup S of an inverse semigroup S' is self-con jugate in S' if for all x e S',
x~lSx^S; if this is the case, S' is called a conjugate extension of S. An inverse
subsemigroup S of S' is said to be a full inverse subsemigroup of S' if Es = £s.. If S is a full
self-con jugate inverse subsemigroup of the inverse semigroup S', then S is called a normal
inverse subsemigroup of S', or, S' is called a normal extension of S.

When considering congruences on inverse semigroups one is naturally led to consider
normal inverse subsemigroups. Indeed, if p is any congruence on an inverse semigroup S,
then the kernel of p, that is the union of all p-classes which contain idempotents, forms a
normal subsemigroup of S [10]. Normal extensions of inverse semigroups were investi-
gated in [1] and [8]. The conjugate extensions of inverse semigroups form a generalization
of normal extensions. They were studied in [9].

Let S be an inverse semigroup, and let H(S) be the translational hull of S. Recall that
£1(S) is an inverse semigroup as well ([7, V.4.6]), which may be considered to be the
greatest dense ideal extension of S ([7, HI.5.9]). The set ^(S) consisting of isomorphisms
among subsemigroups of S of the form X.Sp with (A, p) e En(s), forms an inverse
subsemigroup of the symmetric inverse semigroup on the set S; ^P(S) is called the
conjugate hull of S ([9, Section 3]). The set <&(S) of isomorphisms among subsemigroups
of S of the form AeSpe = eSe with e e Es forms an inverse subsemigroup of ^(S), called
the normal hull of S ([8, Section 4]). For any seS, let 6s be the isomorphism

6s : sSs-'-^s^Ss, x-»s~lxs.

The mapping 0 : S—>4>(S), s-*ds is a homomorphism of S onto a normal subsemigroup
0(S) of <E>(S); one can show that ¥(S) is a conjugate extension of 0(S) [8], [9]. The kernel
of the congruence 0 0 " 1 on S is denoted by M(S), and M(S) is called the metacenter of S.
Obviously 0 0 " 1 is idempotent-separating, and so M(S) is a semilattice of groups.

LEMMA 1.1. Let S be an inverse semigroup. An element c of S belongs to M(S) if and only
if cc~x = c~xc = e for some e e Es and c(exe) = (exe)c for all xeS.

Proof. Let c be any element of M{S). Then there exists an idempotent e of S such that
0(c) = 0(c). Hence dom 9C = dom 0C and im 6C = im 6e, from which we have c'^Sc = eSe =
cSc'1. Therefore cc~1 = cT1c = e. Every element of dom 6° = dom 6e = eSe has the form
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exe, xeS. Further,

exe = (exe)6e = {exe)Oc = c~\exe)c.

We conclude that c(exe) = (exe)c for all xeS.
Conversely, if cc~1 = c~^c = e for some eeEs, and c(exe) = (exe)c for all xeS, then

obviously @(c) = @(e), and ceM(S).

It is easy to see that M(S) is a semilattice of abelian groups. The metacenter M(S) is
said to be idempotent if M(S) = Es. This is the case if and only if © is a monomorphism,
and then ty(S) [3>(S)] may be considered to be a conjugate [normal] extension of S.

A conjugate [normal] extension S' of S is said to be essential if the only congruence
on S' whose restriction to S is the identity relation on S must be the identity relation on
S'. We are now in the position to restate some of the most important results of [8], [9].

THEOREM 1.2. Let S be an inverse semigroup with idempotent metacenter. Then
[<J>(S)] is the greatest essential conjugate [normal] extension of ®(S)( = S). Every inverse
subsemigroup of ^ (S) [<J>(S)] containing @(S) is an essential conjugate [normal] extension
of ®(S)( = S). Every essential conjugate [normal] extension of S is isomorphic to an inverse
subsemigroup of ^(S) [<1>(S)] containing @(S).

The purpose of this paper is to show that, if there exists a greatest essential conjugate
[normal] extension of the inverse semigroup S, then the metacenter of S must be
idempotent. We thereby not only establish a kind of converse for the above mentioned
results, but also we create an analogue for the same type of result concerning dense ideal
extensions of a semigroup S, where the translational hull ft(S) takes the place of ^(S)
[4>(S)] under the hypothesis that S be weakly reductive [3, Section 1], [11].

If S is a group, then the metacenter M(S) is actually the center of S. Our result will
generalize Gluskin's Theorem 3.4 of [2] which states that a group S has a greatest
essential (group-) extension if and only if the center of S is trivial. If this is the case then
the automorphism group Aut(S) = 3>(S) of S is the greatest essential group-extension of
the group of inner automorphisms In(S) = @(S)( = S) of S. Our Section 2 contains a
generalization of Theorem 3.2 of [2] and Section 3 generalizes and corrects the wrong
proof of Theorem 3.4 of [2].

2. A construction of an essential normal extension. Let S be an inverse semigroup,
and let us suppose that the metacenter of S is not idempotent. Let c be an element in the
metacenter M(S) of S such that c2^c. In this section we shall construct an essential
normal extension B of S, such that c is in the metacenter of B.

The element c belongs to a maximal subgroup of S. We have remarked above that
ckexe = execk for every integer k, e = cc'1, and all x e S. Note that for all m,neZ and all
x e S we have cmxc" = cm+nxe. The cyclic group (c) which is generated by c is contained in
the maximal subgroup He of S. Let (u) and (v) be cyclic groups which are generated by u
and v respectively, and let us suppose that w—»c[u—»c] extends to a isomorphism of (M)
onto <c)[(u) onto (c)].
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Let us consider the set SeSx(u)x(v). Let eu[^v] denote the identity of (u)[(u)]. For
any xey e SeS, let xey = (xey, eu, ev). Obviously the mapping

SeS-*SeSx(u)x(v), xey-» xey

is a one-to-one mapping of SeS onto the subset SeSx{eu}x{eu} of SeSx<u)x(u). There
exists a set S = {x \ xeS} such that the mappings S-+S, x—*x is a bijection, and

S n (SeS x <u> x <«» = SeS x {eu} x {ej = {xey | x, y e S}.

We shall put S' = SU(SeSx(u)x(t;)). Before we introduce a multiplication on S', we
prove the following lemma.

LEMMA 2.1. I/xey = x1ey1 holds in S, then xcky = x1c
ky1 for all cke(c).

Proof. We have

= xex 1xecky=xckex Txey = xckex 1x1ey, = xex 1x,cky1

and analogously,

Therefore
XicV = (xcky)(y71ey1) = (xex"1)(x1c

fcy1)(y71ey1)

= (xex~1)x1c
k(ey,)(cy1)"

1(eyi) = (xex"1)(x,cky1) = xcky.

On SeSx(u)x(v) we define a multiplication by putting

(x,ey„ um>, vn>){x2ey2, u^ , «"*) = (xlC
m^yix2ey2, um'+m», «"-+n»).

It follows from Lemma 2.1 and from the fact that (u) = (c) = (v), that the above given
multiplication is well-defined. One may check that for all x1ey1,x2ey2eScS, and all
integers m, n

(x,ey,, um, vn)x^ey~2 = (x1eyiX2ey2, u
m, vn) = x7ey~,(x2ey2, u

m, vn),

and in particular,

Therefore we may extend the above given multiplication to the whole of S' in the
following way: for all zuz2eS and all (xey, um, vn)eSeSx.(u)x(v), we put

z^xey, um, vn) = (z,xcy, um, vn),

(xey, um, vn)z2 = (xeyz2, um, vn).

It immediately follows that the mapping S-*S', x ^ x embeds S isomorphically into S'.
Further, SeSx(u)x(v) is an ideal of S'.

LEMMA 2.2. S' is an inverse semigroup, and S( = S) is a full inverse semigroup of S'.
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Proof. It is routine to check associativity. We shall only check the "hardest" case
here. Let

A =[(x1ey1, u" \ u"0(x2ey2, u"^, u
m'+m^, vn>+n*)(x3ey3, um\ «".

and

B = (x^yj, u" \ v^)[(x2ey2, «^ , u"*)(x3ey3, u" \

j , um>, u

Therefore A=B.
The idempotents of S' must all be of the form f, fe E$, and thus Es. = E§. One may

verify that for every (xey, um, vn)e SeSx.(u)x(v), (y^c^x'1, Wm, v~") is an inverse of
(xey, um, vn). Therefore S' is regular. Since Es. is a semilattice, it follows that S' is an
inverse semigroup. Since Es- = E$, we have that S is a full inverse subsemigroup of S'.

Let us put u = (e, M, e,,) and v = (e, cu, v). Then u~x = (e, H~\ ev) and tJ"1 = (e, eu, u"1).
Since uii"1 = u~xii = e = vv~x = u~1u, it follows that e, c, u and v all belong to the same
maximal subgroup of S'.

LEMMA 2.3. S' is generated (as an inverse semigroup) by the elements ofS U{u, u}. For
every xeS we have

U-1XM = u-1xtj = uxu'1 = vxv'1 = exe = exe.

S ( = S) is a normal subsemigroup of S', and c is in the metacenter of S'.

Proof. Let (xey, um, v") be any element of SeSx(u)x(i)). Then

(xey, um, vn) = xeumvney;

hence S' is generated (as an inverse semigroup) by the elements of SU{u,u}. Let xeS.
Then

u~lxu = (e, u'1, ejx(e, u, e,,)

= (exe, eu, ev) = exe = exe.

The other equalities stated above can be proved in a similar fashion. It follows that S is a
self-conjugate inverse subsemigroup of S'. From Lemma 2.2 it now follows that S is a
normal inverse subsemigroup of S'.

The element c belongs to the maximal subgroup of S' which has identity e. Every

https://doi.org/10.1017/S0017089500004894 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004894


EXTENSIONS OF INVERSE SEMIGROUPS 127

element of eS'e is of the form (exe, um, un) for some exe e eSe, um e (u) and v" e (v). Since

c(exe, um, vn) = (cexe, um, vn)

= (exec, um vn)

= (exe, um, vn)c,

it follows from Lemma 1.1 that c is in the metacenter of S'.

LEMMA 2.4. The semigroup S intersects every %C-class of S'. The maximal subgroup Hg

of S' which contains e consists of the elements (x, um, vn), where x$6e in S um e(u) and
vne(v).

Proof. Let (xey, um, u")eSeSx<u)x<u>. Then

(xey,um,vn)(xey,um,vn) 1 = xey xey 1 = xey(xey) \

(xey, um, u")~1(xey, um, u") = xey"lxey = (xey)"lxey,

and so (xey, um, v") dKxey in S'. Hence S intersects all 9i?-classes of S'. Since SeSx(u)x
(v) is an ideal of S', it follows that the $?-class of e in S' consists of the elements
(z,um,vn), where z3ife is in S, ume<u) and une(u>.

LEMMA 2.5. If p is any congruence on S' which separates the elements of S, then p
separates the elements of SUHg.

Proof. Since the restriction of p to S is the identity on S, and since Eg. = E§, we have
that p is idempotent-separating. Hence p £ VC. This implies that every element of H? can
only be p-related to an element of Hg. Therefore it suffices to show that the restriction of
p to Hg is the identity on He, or, that the normal subgroup ep of Hs which consists of all
elements of S' which are p-related to e is trivial. Let us suppose that (x, um, i>") belongs to
ep. Then xVte in S. An easy calculation shows that

c~m(x, um, o") = tT^x, um, vn)v e ep

and

c"(x, um, v") = u~\x, um, vn)u G ep,

and thus c~m,cneep. Since p separates the elements of S, we have c~m = cn = e, and thus
um = eu, v

n = ev. It follows that (x, um, vn) = x e S. Again, since p separates the elements
of S, we have e = (x, um, ti"). We conclude that ep ={e}, and consequently, p separates the
elements of S U He.

We want to remark that part of the proof of Lemma 2.5 is based on ideas from
Theorem 3.2 of [2].

We summarize our findings in the following theorem.

THEOREM 2.6. Let S be an inverse semigroup, and let c be an element of the metacenter
of S such that c2 f c. Then there exists an idempotent e of S such that c belongs to the
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maximal subgroup of S with identity e. There exists an essential normal extension B of S
such that the following are satisfied:

(i) B is generated as an inverse semigroup by the elements of S U{a,b}, where a,b e B\S
and aj=b.

(ii) The elements a, b and c belong to the maximal subgroup of B which has identity e.
(Hi) For all seS, we have a-1sa = asa~1 = ese = b~*sb = bsb'1.
(iv) The element c is in the metacenter of B.

Proof. Let S and S' be as before. We consider the n-semilattice of all congruences
on S' which separate the elements of S. By Zorn's lemma, there exists a maximal element
p of this semilattice. Obviously S'lp is an essential normal extension of §pb by Lemma 2.3.
We identify the inverse semigroup S with Spb, by the isomorphism S-»Spb, x—»xpb, and
we put S'lp = B and a =upb, b = vp°. Then (i) follows from Lemma 2.3 and Lemma 2.5,
(ii) follows from the remark preceding Lemma 2.3, (iii) follows from Lemma 2.3, and
(iv) follows from Lemma 2.3 and Lemma 1.1.

3. On the existence of a greatest essential extension. Our first two results here state
that an inverse semigroup A which has a metacenter which is not idempotent cannot have
a greatest essential conjugate [normal] extension. We thereby solve a conjecture of
Section 5 of [8] and Conjecture 5.4 of [9].

THEOREM 3.1. Let G be an essential conjugate extension of the inverse semigroup A,
and let us suppose that the metacenter of A is not idempotent. Then there exists an essential
conjugate extension of A which contains G properly.

Proof. Let c be an element of the metacenter of A which is not an idempotent. Let %
be the poset of all inverse subsemigroups of G which are essential normal extensions of
A, and which have c in their metacenter. Clearly A e3£. By Zorn's lemma, there exists a
maximal element S of #?. Let e, a, b and B be as in Theorem 2.6, where a, b£G. By
Theorem 2.6(iv) c is in the metacenter of B. For all seS, and all xeA, we have

a~xxa = axa~x = b~1xb = bxb~x = exe e A

by Theorem 2.6(iii), and s~lxs e A, and since B is generated by the elements of S U{a, b},
we may conclude that B is a normal extension of A.

Let p be a congruence on B whose restriction to A is the identity on A. Let T be the
restriction of p to S. Since T is a congruence on S which separates the elements of A, and
since S is an essential normal extension of A, we have that T is the identity on S. Since B
is an essential normal extension of S, it follows that p is the identity on B. We conclude
that B is an essential normal extension of A.

Let us consider the inverse semigroup amalgam [{G, B}; S;{i, i'}] where G C\B = S,
and where t and i' are inclusion mappings. Since the class of inverse semigroups satisfies
the strong amalgamation property [4], [6], there exists an inverse semigroup P which
contains G and B as inverse subsemigroups, such that G C\B = S in P, and such that P is
generated as an inverse semigroup by the elements of G U B. Hence, P is generated as an
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inverse semigroup by the elements of GU{a, b). One can easily check that P is a
conjugate extension of A, since both G and B are conjugate extensions of A.

Let Jf be the D -semilattice of all congruences on P which induce the identity on G,
and let K be a maximal element of Jf; such a maximal element K of Jf exists by Zorn's
lemma. The restriction of K to B is a congruence on B which separates the elements of A.
Since B is an essential normal extension of A, it follows that the restriction of K to B is
the identity on B. Let P/K = D. We have thus shown that the restrictions of K° to G and B
are monomorphisms of G and B respectively into D.

We want to show that D is an essential cojugate extension of AK^ ( = A). Since P is a
conjugate extension of A, it is clear that D is a conjugate extension of A K I Let v be a
congruence on D whose restriction to AK° is the identity on A«s. Let v* be the
congruence on P which is defined by

Obviously K £ v*, and v* separates the elements of A. Since G is an essential conjugate
extension of A, it follows that the restriction of v* to G is the identity of G. Hence,
v* e Jf. By the maximality of « in Jf we have v* = K and so v is the identity on D. We
have proved that D is an essential conjugate extension of AK^ (= A) which contains GK°
( = G). In order to complete our proof, it suffices to show that D contains GK* properly.

Let us suppose that D = G«b. It should be obvious that B*b is an essential normal
extension of AK° which has CK3 in its metacenter; furthermore, B«:fc must be an inverse
subsemigroup of GK° which contains SK^. By the maximality of S in $£ we have SK°= BK";
yet, this is impossible since S is properly contained in B, and since Kti is injective on B.
Thus the assumption D = GK° is false, and we conclude that GK^ is properly contained
in D.

THEOREM 3.2. Let G be an essential normal extension of the inverse semigroup A, and let
us suppose that the metacenter of A is not idempotent. Then there exists an essential normal
extension of A which contains G properly.

Proof. The proof proceeds along the same lines as the proof of the foregoing
theorem. The main difference consists in the fact that P may be considered to be an
inverse semigroup such that EA=Ea=Es=EP [5]; consequently, P will be a normal
extension of A, and P/K = D is an essential normal extension of AKti, which contains GK*
properly.

We now may conclude with the main result of our paper. The following is a
combination of Theorem 1.2, Theorem 3.1 and Theorem 3.2.

THEOREM 3.3. An inverse semigroup S has a greatest essential conjugate [normal]
extension if and only if the metacenter of S is idempotent.
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