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Jespers and Sun conjectured in [27] that if a finite group G has the property ND,
i.e. for every nilpotent element n in the integral group ring ZG and every primitive
central idempotent e ∈ QG one still has ne ∈ ZG, then at most one of the simple
components of the group algebra QG has reduced degree bigger than 1. With the
exception of one very special series of groups we are able to answer their conjecture,
showing that it is true—up to exactly one exception. To do so, we first classify
groups with the so-called SN property which was introduced by Liu and Passman in
their investigation of the Multiplicative Jordan Decomposition for integral group
rings.

The conjecture of Jespers and Sun can also be formulated in terms of a group
q(G) made from the group generated by the unipotent units, which is trivial if and
only if the ND property holds for the group ring. We answer two more open
questions about q(G) and notice that this notion allows to interpret the studied
properties in the general context of linear semisimple algebraic groups. Here we show
that q(G) is finite for lattices of big rank but can contain elements of infinite order in
small rank cases.

We then study further two properties which appeared naturally in these
investigations. A first which shows that property ND has a representation theoretical
interpretation, while the other can be regarded as indicating that it might be hard to
decide ND. Among others we show these two notions are equivalent for groups with
SN.
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2 L. Margolis and G. Janssens

1. Introduction

Already in the 1860s Weierstrass and Jordan introduced what students today
learn to call the Jordan normal form of a matrix, cf. [18] for a historic overview.
Reformulating this theory in a more general context for A an algebra over a field F
every invertible element a ∈ A can be uniquely decomposed as a = auas such that
au is unipotent, as is semisimple and auas = asau. When A contains a substructure
B of interest, e.g. when F is a number field and B an order in A, one could ask,
if for every invertible b ∈ B one can still achieve this Jordan decomposition in B,
i.e. whether bn, bs ∈ B holds. Motivated by the study of units in integral group
rings Hales, Luthar, and Passi asked when the above will happen for A = QG
the rational group algebra of a finite group G and B = ZG the integral group
ring therein. Namely they defined a finite group G to have Multiplicative Jordan
Decomposition, if for every unit u ∈ ZG the elements un and us, which a priori are
defined in QG, actually live in ZG, and asked which groups satisfy this property.
Though quite a lot of research has been developed to this, the problem remains
open in general, see §5.3 for more details and references.

A major breakthrough in this investigation came when it was observed in [17]
that a group which has Multiplicative Jordan Decomposition also has the Nilpotent
Decomposition (ND for short). Namely, G is said to have ND, if for every nilpo-
tent element n ∈ ZG and every central idempotent e ∈ QG, the product ne still
lies in ZG. This property can be reformulated in terms of the associated unipo-
tent elements 1 + n. More precisely, denote by U(ZG) the unit group in ZG
and let

U(ZG)un := {α ∈ U(ZG) | α is unipotent }

be the set of unipotent elements in U(ZG). Furthermore, for e a primitive central
idempotent of QG consider the set EG(e) := {α ∈ U(ZG)un | (α − 1)e = α − 1}
of unipotent elements projecting trivially to all components except the eth one.
Denote by PCI(QG) the set of all the central primitive idempotents in QG. Now,
by considering the group q(G) := 〈U(ZG)un〉/〈EG(e) | e ∈ PCI(QG)〉 one obtains
the alternative characterization:

q(G) = 1 if and only if G has ND. (1)

Looking on the Wedderburn–Artin decomposition

QG = Mn1(D1)⊕ · · · ⊕Mn`
(D`), (2)

where Mni(Di) denotes the ni×ni-matrix ring over a division algebra Di, one sees
that property ND will hold if at most one of the ni is bigger than 1, as the only
unipotent element in a division algebra is the trivial one. This observation during
the search for groups having ND led Jespers and Sun to define a group G as having
at most one matrix component, if at most one of the ni in (2) is bigger than 1 [27].
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On integral decomposition of unipotent elements in integral group rings 3

Their investigations even made them conjecture that these properties are in fact
equivalent:

Conjecture 1.1 (Jespers–Sun, [27 Conjecture 1]). A finite group G has ND if
and only if QG has at most one matrix component.

Using the perspective of q(G) in (1) and work of Kleinert-del Río [28], conjec-
ture 1.1 can be elegantly reformulated in terms of unipotent elements. Namely,
it conjectures that 〈U(ZG)un〉 is indecomposable. From this point of view, their
conjecture is even more surprising.

Note that the indecomposability statement of the group generated by all unipo-
tent elements is of interest for arithmetic subgroups of arbitrary semisimple
algebraic groups. In §4.2, we expand on this generality. In [27, Section 6] also
the questions of when q(G) is finite and whether there is a connection between the
structure of q(G) and the simple components of QG were asked. The aim of this
article is to answer all the problems above.

The latter two questions will be answered in §4. The study of property ND, with
the solution of the conjecture above as the ending point, is done in §3. This, how-
ever, will require to classify in §2 the so-called SN groups, which is a problem of
independent interest. Finally, in §5, we show that property ND has also a represen-
tation theoretical interpretation and yields concrete structural information when
considered for specific subsets of all nilpotent elements. We will now explain the
main results of this article in more detail.

1.1. Jespers–Sun conjecture and SN groups

Conjecture 1.1 has been the starting point for the investigations presented here. To
describe our result on it, define a finite group G to be an SSN group of unfaithful
type, if there exist primes p and q such that G = P o Q for P a cyclic group of
order p and Q a cyclic group of q-power order which acts non-trivially, but also not
faithfully on P (the reason for the name will become clear later). Then our main
result, obtained in Theorem 3.1, states:

Theorem A. Let G be a finite group which is not an SSN group of unfaithful type.
Then G has ND if and only if either QG has at most one matrix component or
G = 〈a, b | a4 = b8 = 1, ab = a−1〉 ∼= C4 o C8.

Hence we show that though the conjecture of Jespers and Sun is not correct
in general, we know only about one counterexample and all the other potential
counterexamples lie in a very specific family of groups. Interpreting the conjecture
as a statement on how far the rational group algebra QG determines properties of
G and its integral group ring, this allows still to show a strong implication:

Corollary B. Let G and H be groups such that QG ∼= QH and G has ND. Then
H has ND.

This result is obtained in corollary 3.2. Note, that there are many groups which
have isomorphic rational group algebras [40, Theorem 14.1.11] and it is hence not
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4 L. Margolis and G. Janssens

a typical situation that a property of G can be recovered from its group algebra
over Q.

A concept which turns out to be crucial to reduce our studies to certain classes of
groups is that of groups with SN. Namely, G is said to have SN, if for every normal
subgroup NEG and subgroup Y ≤ G one has N ≤ Y or NY EG. This property was
introduced by Liu and Passman to restrict the group-theoretical structure of those
groups which have ND [31] (the name was later coined in [30]), so that a group which
does not have SN will not have ND. Liu and Passman obtained some properties
of groups with SN [33], but they were more interested in groups with SSN, which
are those in which every subgroup has SN, as this property is a consequence of
the Multiplicative Jordan Decomposition. They were able to achieve quite explicit
descriptions of all the groups having SSN and we generalize their findings in some
sense, giving restrictions on the structure of groups with SN. Recall that a group
is said to be Dedekind, if all its subgroups are normal.

Theorem C. Let G be a finite group. Then G is a group with SN if and only if it
is one of the following types:

(i) a group with SSN,
(ii) G ∼= P o H with P an elementary abelian Sylow p-subgroup and H a pʹ-

Hall subgroup which is Dedekind with cyclic or generalized quaternion Sylow
subgroups such that the action of H on P is irreducible and faithful,

(iii) G has a unique minimal normal subgroup S and S is not solvable and G/S
Dedekind,

(iv) QG has one matrix component.

As remarked before, groups with SSN have been classified in [33], so that we
have a precise group-theoretical descriptions for those groups with SN which do
not have one matrix component.

Theorem C is proven in §2 by dividing it into three separate subcases: nilpo-
tent groups (which are handled in Proposition 2.8), solvable non-nilpotent groups
(Proposition 2.17), and non-solvable groups (Proposition 2.18). The classification of
nilpotent groups with SN turns out to be the hardest of those. With those prepara-
tions, we then prove Theorem A and corollary B in §3, where the former is obtained
by dividing in the same cases.

1.2. A general perspective on the obstruction to have ND

In §4, we investigate the group q(G) which by (1) measures how far a given group
G is from having ND or in other words it as an obstruction to have ND. Jespers
and Sun [27, Section 6] formulated the following two problems about q(G):

(1) Classify the finite groups G such that q(G) is finite. ([27] Problem 1, §6)
(2) Find a connection between the structure of q(G) and the simple components

of QG. ([27] Problem 2, §6)
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In §4.1, we give answers to both questions. More precisely, Proposition 4.1 and
the proof of Theorem 4.2 will show that for unipotent elements to have an inte-
gral decomposition is not truly connected to the simple components of QG. The
relationship is rather a combination of the congruence level of ZG in the maximal
order of QG on the one hand and the rank of the simple matrix components of QG
on the other hand.

Besides, the second problem fits in a more general context of semisimple algebraic
groups. More precisely, let F be a number field and S a non-empty finite set of places
of F containing the Archimedean places. Furthermore, let G be a simply connected
semisimple algebraic group. In particular, G is a direct product of simply connected
almost-simple algebraic F -subgroups [41, Theorem 2.6], say G =

∏m
i=1 Gi. Finally

let Γ be an S -arithmetic subgroup of G(F ). In Proposition 4.7, we obtain the
following:

Proposition D. Consider the notations above and suppose S-rank(Gi(F )) ≥ 2
for all anisotropic Gi(F ). Then, |q(Γ)| < ∞. In particular, in this case, finiteness
of q(Γ) does not depend on the chosen S-arithmetic subgroup Γ.

In the case that F = Q,G(F ) = SL1(QG), and Γ = SL1(ZG), we give in
Proposition 4.1 a precise and down-to-earth upper bound. Our arguments heavily
rely on solutions of the Congruence Subgroup Problem.

Next, recall that a finite dimensional simple algebra is called exceptional of type
II if it is M2(D) with D either Q, an imaginary quadratic extension of Q or a
totally definite quaternion algebra with centre Q.

In Theorem 4.2, we show the Theorem below, saying that the finiteness of q(G)
depends on the presence of exceptional components. For instance, if 3 - |G| and
QG has a simple component isomorphic to M2(Q), then by [3, Remark 6.17] G is
an extension of D8. In §4.1, we formulate some condition on the exponent of the
preimage of D8 in G, called (?), which, in turn, we prove to have an impact on the
size of q(G).

Theorem E. Let G be a finite group. Then the following hold:

(i) If QG has no exceptional components of type II, then q(G) is finite.
(ii) If G has order at most 16, then q(G) is finite.
(iii) If G has order bigger than 16, maps onto D8 and this surjection satisfies

(?), then q(G) is an infinite non-torsion group.

Interestingly the group C4 o C8 in Theorem A is the smallest group fitting in
none of the cases covered by Theorem E.

1.3. A representation theoretical and local look at ND

In §5, we will introduce two more properties which appeared in our investigations of
the nilpotent decomposition. The first is a purely representation-theoretical prop-
erty, called DK, namely that any two non-equivalent irreducible Q-representations
have different kernels. We show in Theorem 5.2 that this is the case for groups with
at most one matrix component, but also other interesting classes of groups are show
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6 L. Margolis and G. Janssens

in §5.1 to have that property. We then study in §5.2 what one could call a partial
nilpotent decomposition, namely that the nilpotent decomposition does hold for
those nilpotent elements of ZG which are the easiest to construct and which we
call bicyclic nilpotent. When a decomposition does hold for all such elements, we
call a group bicyclic resistant. The reason for the definition of the SN property is
essentially that a group which does not have SN is also not bicyclic resistant. We
will show, however, that the class of not bicyclic resistant groups is bigger than the
class of groups with SN, though it does not incorporate some classes relevant in the
study of the ND property. Finally, we connect these two new notions by showing:

Theorem F. Let G be a finite group with SN. Then the following are equivalent:

(1) G is bicyclic resistant.
(2) G is supersolvable or QG has one matrix component.
(3) G has DK.

This result is proven in Theorem 5.16.

1.4. Conventions and notations

G will always denote a finite group. If QG ∼=
∏

i Mni
(Di) is the Wedderburn–Artin

decomposition of the semisimple algebra QG, then we call the factors Mni
(Di)

simple components of QG. Recall that n is called the reduced degree of the simple
component Mn(D). If a component has reduced degree 2 or more we will speak of
a matrix component. The set PCI(G) denotes the primitive central idempotents of
QG.

Moreover, we use standard group-theoretical notation: for a group G, we denote
by G ʹ the derived subgroup of G, by Z(G) the centre of G, by Φ(G) the Frattini
subgroup of G, by gG the conjugacy class of an element g ∈ G in G, and by Soc(G)
the socle of G. Moreover for g, h ∈ G, we set gh = h−1gh and [g, h] = g−1h−1gh =
g−1gh. A cyclic group of order n is denoted Cn, a dihedral group of order 2n by
D2n, an alternating group of degree n by An and Q2n denotes the generalized
quaternion group of order 2n , i.e.

Q2n = 〈a, b | a2
n−1

= b4 = 1, b2 = a2
n−2

, ab = a−1〉.

When speaking about generalized quaternion groups, we assume them to be non-
abelian, i.e. at least of order 8.

If H is a subgroup of G we denote two elements in the rational group algebra
QG as

H̃ =
∑
h∈H

h and Ĥ =
1

|H|
∑
h∈H

h.

2. Description of groups with SN

Recall that a group G has the SN property if for every normal subgroup N of
G and every subgroup Y ≤ G either N ⊆ Y or NY E G. The main goal of this
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section is to prove Theorem C. We separate this in essentially three steps: the
nilpotent groups with SN (which are handled in Proposition 2.8), the solvable non-
nilpotent groups with SN (Proposition 2.17), and the non-solvable groups with SN
(Proposition 2.18). The combination of these cases then gives exactly Theorem C.

Recall that the group G has SSN if every subgroup has SN. Such groups have
been classified in [33]. In fact, we will give a precise classification of groups with
SN in case G is non-nilpotent. Namely, in Theorem C, the non-nilpotent groups
with SN are exactly those from (iii) and solvable non-nilpotent groups with SN. As
proven in Proposition 2.17, the latter come in two families with one having SSN
and the other being the groups from (ii). Though we have made no attempt to
classify groups with one matrix component, some restrictions can be filtered out of
our proofs.

2.1. Background results on groups with SN

If every subgroup of G is normal, then G obviously has SN. Recall that these groups
are called Dedekind groups and have been classified by Baer and Dedekind:

Theorem 2.1 ([37, Theorem 1.8.5.]). G is a Dedekind group if and only if it is
abelian or G ∼= Q8×Cn

2 ×A for some n ∈ N0 and A an abelian group of odd order.

Many basic properties of group with SN and SSN have been studied by Liu and
Passman and we will use several of their results. For the convenience of the reader,
we collect them here as well as some other results we will need.

Lemma 2.2 ([33, Lemma 2.1]). Let G be a group with SN and N a non-trivial
normal subgroup of G. If N is not cyclic, then G/N is a Dedekind group. Moreover,
if H is a subgroup of G such that H ∩N = 1, then NH EG and H is a Dedekind
group.

For the description of solvable groups with SN, the following lemma will be key.

Lemma 2.3 ([33, Lemma 2.4]). Let G be a group with SN, P ∈ Sylp(G) such that
P EG and G = P oH for a pʹ-group H which acts non-trivially on P. Then P is
elementary abelian and H acts irreducibly on P. Moreover, if H acts non-faithfully,
then G is an SSN group of unfaithful type.

The following is [33, Lemma 2.5. (1)] where it was stated for groups with SSN.
However, its proof only uses properties of groups with SN, so that we restate it
in this form. The moreover part has been added and follows directly by using
lemma 2.2.

Lemma 2.4. Let G be a group with SN with non-trivial normal p-subgroup P0,
say contained in the Sylow p-subgroup P of G. Then G contains a nilpotent
p-complement H, we have P0H E G and G=PH. In particular G is solvable.
Moreover, if P0 is not cyclic then H is Dedekind and P EG.

Proof. Suppose P0 is not cyclic. Then lemma 2.2 implies that G/P0 is Dedekind.
Therefore P/P0 E G/P0, which implies that P E G. The proof of the rest of the
statement is completely as the proof of [33, Lemma 2.5. (1)]. �
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8 L. Margolis and G. Janssens

We will also need a particular way to construct primitive central idempotents
of QG. For this, we will use the theory of strong Shoda pairs. For now, we give
definitions that are sufficient for this section and refer the reader to §3.1 and [24,
Chapter 3] for more details. Suppose G is metabelian. Then all the irreducible Q-
representations of G are monomial, i.e. they all arise as the induced representations
λG of a linear representation λ of some subgroup H of G. In that case, one considers
K = ker(λ) and denotes by e(G,H,K) the associated primitive central idempotent
of QG.

Lemma 2.5. [24, Theorem 3.5.12 and Exercise 3.4.4] Assume G is a metabelian
group and A a maximal abelian subgroup of G containing Gʹ. Then the primitive
central idempotents of QG are the elements e(G,H,K) where H and K are sub-
groups of G such that H is a maximal element of the set {B ≤ G | A ≤ B and B′ ≤
K ≤ B} and H/K is cyclic. Moreover e(G,H,K1) = e(G,H,K2) if and only if K1

and K2 are conjugate in G.

As the construction of central idempotents from normal subgroups or Shoda
pairs is not always possible or practical, we will sometimes need to work
with the central idempotents coming from characters instead. We recall their
construction:

Theorem 2.6 [34, Theorem 2.1.6] Let F be a field of characteristic 0 and χ the
character of a simple FG-module L with D = EndFG(L). Then the primitive central
idempotent of the Wedderburn component of FG corresponding to χ is

χ(1)

[D : F ]|G|
∑
g∈G

χ(g−1)g.

In practice, we will use the following lemma.

Lemma 2.7. Let Mk(D) be a simple component of the group algebra FG, for F
a field of characteristic 0, with character χ and corresponding primitive central
idempotent e. Moreover, let n =

∑
g∈G α(g)g be a generic element in FG. Then

the coefficient of ne at g can be expressed in the two forms

k

|G|
∑
h∈G

α(gh−1)χ(h−1) =
k

|G|
∑
h∈G

α(h)χ(g−1h).

Proof. Note that dimF (eFG) = k2[D : F ] and χ(1) = k[D : F ]. So the primi-
tive central idempotent e corresponding to this component by Theorem 2.6 has
the form

e =
χ(1)

[D : F ]|G|
∑
g∈G

χ(g−1)g =
k

|G|
∑
g∈G

χ(g−1)g.
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Hence for the product we have

ne =
k

|G|
∑
g∈G

∑
h∈G

α(g)χ(h−1)gh

=
k

|G|
∑
g∈G

(∑
h∈G

α(gh−1)χ(h−1)

)
g =

k

|G|
∑
g∈G

(∑
h∈G

α(h)χ(g−1h)

)
g.

So the coefficient of ne at g is

k

|G|
∑
h∈G

α(gh−1)χ(h−1) =
k

|G|
∑
h∈G

α(h)χ(g−1h).

�

2.2. Nilpotent groups

The goal of this subsection is to describe nilpotent groups with SN:

Theorem 2.8. Let G be a nilpotent group with SN. Then it has property SSN or
QG has at most one matrix component.

To start, one can quickly reduce to studying p-groups.

Lemma 2.9. Let G be a nilpotent group with SN which is not a Dedekind group.
Then G is a p-group.

Proof. Assume P and Q are a non-cyclic p-Sylow and a q-Sylow subgroup of G
respectively. Then P E G and so by lemma 2.2 we know that Q is a Dedekind
group. But as this argument applies to every prime, this means that G is Dedekind,
contradicting the assumption. �

Recall that it was shown by Liu and Passman that p-groups with SSN coincide
with the so-called NCN groups.

Lemma 2.10. [33, Proposition 2.2] Let G be a p-group. Then G has SSN if and
only if every non-cyclic subgroup of G is normal.

Now, the advantage of this is that non-normal subgroups of p-groups with SN
are very restricted as the following result shows. This is a variation of [30, Lemma
3.2] which includes 2-groups.

Lemma 2.11. Let G be a group with SN and Q a subgroup of G which is not
normal.

(a) If there exists N ≤ Q such that N EG, then N is cyclic.
(b) Now assume G is a p-group. Then Q is cyclic, elementary abelian or iso-

morphic to a quaternion group of order 8. If moreover, N ≤ Q such that
N EG and N≠ 1, then Q is cyclic or isomorphic to Q8.
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We will need the following well-known classical result.

Lemma 2.12. [20, III, Satz 8.2] Let G be a p-group which contains exactly one
cyclic subgroup of order p. Then G is cyclic or a generalized quaternion group.

Proof of lemma 2.11. Assume N is a normal subgroup of G contained in Q. If N
is not cyclic, then G/N is Dedekind by lemma 2.2, so that Q/N E G/N , which
implies the contradiction QEG. So part (a) follows.

The proof of part (b) is by two ‘iterations’. First assume N with the described
properties exists. Then Q is cyclic or a generalized quaternion group: indeed, if
n ∈ N has order p and q ∈ Q is an element of order p not lying in 〈n〉, then
〈n〉〈q〉 E G, as G is a group with SN. But this contradicts part (a) as 〈n〉〈q〉 is
not cyclic. So Q contains exactly one subgroup of order p, implying Q is cyclic or
generalized quaternion by lemma 2.12. Next we claim that, independently from the
existence of N, the group Q is cyclic, elementary abelian or generalized quaternion.
For this assume Q is maximal non-normal and let M be a subgroup of G containing
Q such that [M : Q] = p. By the maximality of Q, we get M EG and so Φ(M)EG,
where Φ(M) denotes the Frattini subgroup of M. As Q is a maximal subgroup of
M, it contains Φ(M) and so Φ(M) is cyclic by part (a). If Φ(M) = 1, then Q is
elementary abelian. If Φ(M) 6= 1, then Q is cyclic or generalized quaternion by the
first claim proved in this paragraph.

It remains to show that in the two claims proven in the previous paragraph we can
replace generalized quaternion groups by quaternion groups of order 8. Assume first
N exists and Q is a generalized quaternion with n ∈ Q the unique involution. Then
Q/〈n〉 is a dihedral group of order |Q|/2. If |Q|/2 ≥ 8, this implies, by the claim
proven in the previous paragraph and the fact that the SN property is inherited
by quotients, that Q/〈n〉 E G/〈n〉. This would imply Q E G. So |Q|/2 ≤ 4 which
means that Q is the quaternion group of order 8. Now again ignore the existence
of N, let Q be again maximal non-normal, M a normal subgroup of G containing
Q such that [M : Q] = p and assume that Q is generalized quaternion. Then as
before Φ(M) E G and Φ(M) 6= 1, as Q is not elementary abelian. It follows that
the unique involution of Q is central in G and so the same argument as before can
be used to show |Q| = 8. �

With these preparations, we are ready to show that groups with SN but without
SSN necessarily have one matrix component. We will separate two cases.

Proposition 2.13. Let G be a p-groups which has SN, but not SSN. Assume that
either p is odd, or p=2 and G contains an elementary abelian subgroup Q which
is not normal. Then G has at most one matrix component.

Proof. If p=2 let Q be the elementary abelian subgroup of G which is not normal.
When p is odd, by lemma 2.10, G contains a non-cyclic subgroup Q which is not
normal in G. Then Q is elementary abelian by lemma 2.11. We choose Q maximal
with these properties, in particular for Q � M ≤ G we have MEG. By lemma 2.11,
if Q contains a subgroup N which is normal in G, then N =1 (note that this is
trivial if |Q| = 2). In particular, we have Z(G) ∩Q = 1.

Claim 1: Z(G) is cyclic.
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Assume first that Z(G) contains an elementary abelian subgroup 〈z1〉 × 〈z2〉.
Then, by our choice of Q and the fact that Z(G) ∩Q = 1, we have Q〈z1〉EG and
Q〈z2〉 E G. This implies that [G,Q] ≤ Q〈z1〉 and [G,Q] ≤ Q〈z2〉, respectively. So
[G,Q] ≤ Q〈z1〉∩Q〈z2〉 = Q, which would imply that QEG. Hence Z(G) contains at
most one subgroup of order p. As Z(G) cannot be generalized quaternion, because
such a group is not abelian, the claim follows from lemma 2.12.

We denote an element of order p in Z(G) by z.
Claim 2: G′ = 〈z〉. Moreover, if g ∈ G such that z /∈ 〈g〉, then gp = 1.
Let g, h ∈ G such that [g, h] 6= 1. Assume first that z /∈ 〈g〉. Note that we can

assume this without changing the value of [g, h] when p is odd. As G is a group with
SN, this implies 〈g, z〉 = 〈g〉× 〈z〉EG. As z is central and G is a p-group we hence

get [G, g] ⊆ 〈gp〉 × 〈z〉. If gp 6= 1, then we have [G, gp] ⊆ 〈gp2〉, [G, gp
2

] ⊆ 〈gp3〉,
…,[G, g◦(g)/p] = 1, implying g◦(g)/p ⊆ Z(G) which contradicts Claim 1, as z /∈ 〈g〉
by assumption. Hence gp = 1 and [G, g] ⊆ 〈z〉, in particular [g, h] ∈ 〈z〉. Now
suppose that z lies in every non-trivial subgroup of 〈g, h〉, i.e. 〈g, h〉 is a generalized
quaternion group. If 〈g, h〉 has order 8, then [g, h] = z and there is nothing more to

prove. So assume 〈g, h〉 ∼= Q2m for some m ≥ 4. Say g2
m−1

= h4 = 1 and gh = g−1.
Note that hg = hg2. As Q is elementary abelian and maximal non-normal, we get
〈Q,h〉EG. As also Q× 〈z〉EG, we have that [h, q] has order at most 2 and so hq
has order at most 4 for every q ∈ Q. Note for this that h2 = z is central in G. But
as hg = hg2 ∈ 〈Q,h〉, we have g2 ∈ 〈Q,h〉, a contradiction, since g2 has order at
least 8.

In particular Claim 2 implies that G is metabelian. Moreover, there exists a
cyclic subgroup C of G containing z such that A = C × Q is a maximal abelian
subgroup of G. We are now finally ready to prove that G has at most one matrix
component by applying lemma 2.5. So assume Qe(G,H,K) is a non-commutative
component of QG. As K lies in the kernel of a representation corresponding to
this component, we have G′ 6≤ K, i.e. z /∈ K by Claim 2. Hence, again by Claim
2, the unique maximal element of {B ≤ G | A ≤ B and B′ ≤ K ≤ B} is A
and e(G,H,K) = e(G,A,K) with A/K a cyclic group. By lemma 2.5, it is thus
sufficient to prove that all subgroups of A which do not contain z and have cyclic
quotients are conjugate. We call such subgroups ‘good’. Note that good subgroups
are elementary abelian, so contained in 〈z〉×Q. A good subgroup U is determined
by (〈z〉×Q)/U and these quotients are exactly the images of the groups 〈zq〉, where
q runs through the elements of Q. Hence there are |Q| good subgroups. It is clear
that Q itself is a good subgroup. So we need to prove that Q has |Q| conjugates
in G, i.e. [G : NG(Q)] = |Q|. By the maximality of Q, and since z ∈ NG(Q), we
have NG(Q) E G. As G ʹ is a central subgroup of order p, the group G/NG(Q) is
elementary abelian. So we can view V = Q × G/NG(Q) as an Fp-vector space of
dimension |Q|+ |G/NG(Q)|. We define a non-degenerate symplectic bilinear form

V × V → 〈z〉, (v, w) 7→ [v, w].

As no element of G/NG(Q) leaves all elements of Q fixed under conjugation, Q and
NG(Q) are maximal isotropic subspaces of V, so that each of them has dimension
1
2 · (|Q|+ |G/NG(Q)|) by [20, II, Satz 9.11], i.e. |G/NG(Q)| = |Q|. �
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12 L. Margolis and G. Janssens

By lemma 2.11, it hence remains to study the case that G is a 2-group and all
the non-normal subgroups of G are isomorphic to a quaternion group of order 8.
This turns out to be surprisingly hard. We would be very interested in an easier
proof.

Lemma 2.14. Let G be a 2-group which has SN, but not SSN. Then every
involution of G is central if and only if G ∼= Q8 ×Q8.

Proof. Assume that every involution in G is central. We first note that G is not
a generalized quaternion group. Indeed Q8 and Q16 have SSN [30, Theorem 2.3,

BJ6] and if G = 〈g, h | g2n = h4 = 1, g2
n−1

= h2, gh = g−1〉 for some n ≥ 4,
then G does not have SN. This can be observed by taking N = 〈g4〉, Y = 〈h〉, so
that N 6⊆ Y and NY 5 G as hg = hg2 /∈ NY . In particular, the centre of G is not
cyclic.

By lemmas 2.10 and 2.11, we can assume G contains a non-normal subgroup Q
isomorphic to Q8. We fix a, b ∈ Q as generators of Q and c = a2. We will prove
several small facts on G which will lead to the proof of the lemma.

(i) Z(G) has rank 2:
Z(G) is not cyclic, as G is not generalized quaternion. So assume

the rank of Z(G) is bigger than 2. Say z1, z2 ∈ Z(G) are indepen-
dent elements of order 2 such that (〈z1〉 × 〈z2〉) ∩ Q = 1. Then
Q × 〈z1〉 and Q × 〈z2〉 are both normal subgroups of G. Hence
[G,Q] ≤ Q〈z1〉 ∩Q〈z2〉 = Q which would imply QEG.

Convention: We let z ∈ G be an involution not lying in Q, so 〈c〉 × 〈z〉 is the
unique maximal elementary abelian subgroup of G.

(ii) |G/Φ(G)| ≤ 16, i.e. G is at most 4-generated:
This follows from (i) using [35, Four Generator Theorem].

(iii) The groups 〈a〉, 〈b〉, and 〈ab〉 are not normal in G :
Say 〈a〉 E G. As 〈a〉 6⊆ 〈b〉 and G has SN this implies 〈a〉〈b〉 =

QEG, a contradiction. Similarly 〈b〉 and 〈ab〉 are not normal in G.
(iv) aG = {a, a−1, az, a−1z}, bG = {b, b−1, bz, b−1z}, and (ab)G =

{ab, (ab)−1, abz, (ab)−1z}:
As G has SN we have 〈a〉 × 〈z〉 E G. So by (iii) there is g ∈ G

such that ag = az or ag = a−1z. As ab = a−1 and (az)b = a−1z
the claim for aG follows. Similarly the conjugacy classes of b and
ab follow from (iii).

(v) For g ∈ G, we have g2 ∈ CG(Q):
By (iv) we have [g, a] ∈ {1, c, z, cz}, in any case a central element

of order at most 2. So [g2, a] = [g, a]g[g, a] = 1. Of course for b and
ab we similarly have [g2, b] = [g2, ab] = 1.

(vi) If g ∈ CG(Q) and g /∈ 〈c〉, then c /∈ 〈g〉:
This is clear if g has order 2. So assume the order of g is 2n for

n ≥ 2 and such that g2
n−1

= c. Then (g2
n−2

a)2 = c · c = 1, so

g2
n−2

a is an involution. Here we used that g ∈ CG(Q). As gb = g

we have (g2
n−2

a)b = g2
n−2

a−1, so this involution is not central,
contradicting the assumptions on G.
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(vii) If g /∈ NG(Q), but g is centralizing a, b, or ab, then c /∈ 〈g〉:
Say g ∈ CG(a), ◦(g) = 2n and assume c ∈ 〈g〉. As g /∈ NG(Q), we

must have g /∈ NG(〈b〉), so bg = b±1z by (iv). Note that g2 ∈ CG(Q)

by (v). So g2
n−2

a is an involution with (g2
n−2

a)b = g2
n−2

ac, if n > 2,

or (g2
n−2

a)b ∈ {gaz, gacz}, if n =2. In any case we would have a
non-central involution.

(viii) If g /∈ NG(〈a〉) and g /∈ NG(〈b〉), then g ∈ NG(〈ab〉). The same
holds for every permutation of a, b, and ab:

If g /∈ NG(〈a〉) and g /∈ NG(〈b〉), then ag = a±1z and bg = b±1z,
so that

(ab)g = a±1b±1zz ∈ {ab, a−1b, ab−1, a−1b−1}.

Noting that a−1b = ab−1 = (ab)−1 and a−1b−1 = ab, the claim
follows.

(ix) NG(Q)EG and G/NG(Q) ∼= C2 × C2:
NG(Q)EG follows, as NG(Q) contains z and is thus bigger than

Q. By (v) the groupG/NG(Q) is elementary abelian. IfG/NG(Q) ∼=
C2 would hold, then by (viii) one of 〈a〉, 〈b〉, or 〈ab〉 would be
normal in G, which would contradict (iii). On the other hand, if
g, h /∈ NG(〈a〉), then gh ∈ NG(〈a〉) by (iv). This implies that G
has only three non-trivial ways to act on the cyclic subgroups of
the normal subgroup Q× 〈z〉, implying |G/NG(Q)| ≤ 4.

Convention: By (viii) and (ix), we can choose x, y ∈ G such that ◦(x) ≥ ◦(y)
and x /∈ NG(〈a〉), x ∈ NG(〈b〉) as well as y ∈ NG(〈a〉), y /∈ NG(〈b〉).
To assure the condition ◦(x) ≥ ◦(y) we might have to rename the
elements a and b.

(x) CG(Q) = Φ(G) and {a, b, x, y} is a minimal generating set of G :
First note that if g ∈ G, then Qg ≤ Q〈z〉 by (iv). As z is central,

this implies that for every h ∈ CG(Q), the element h is also cen-
tralizing Qg. Hence hg ∈ CG(Q), implying that CG(Q) is normal
in G. Now, by the action of a, b, x, and y on Q× 〈z〉, we see that
no element of the form aαbβxγyδ with at least one of the α, β,
γ, and δ odd is centralizing Q. Hence the images of a, b, x, and
y in G/CG(Q) generate an elementary abelian subgroup of order
16. By (ii), this is a maximal elementary abelian quotient of G,
so the well-known properties of Frattini subgroups of p-groups, as
recorded for instance in [20, III, Section 3], imply the claim.

(xi) G2 = Φ(G). Moreover for any g, h ∈ G we have [g, h]g = [g, h] and
(gh)2 = g2h2[h, g]:

The equation G2 = Φ(G) holds in every 2-group [20, III, Satz
3.14(b)]. Let i ∈ G be an involution so that i /∈ 〈g〉. Hence 〈g〉×〈i〉E
G and so [g, h] ∈ 〈g2, i〉, which implies [g, h]g = [g, h]. Moreover,
this gives (gh)2 = g2h[h, g]h = g2h2[h, g].

(xii) For g, h ∈ G, we have [g2, h] = [g, h]2 and [g2, h] ∈ 〈g4〉 ∩ 〈h4〉.
Furthermore, 〈g2〉EG:
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In general [g2, h] = [g, h]g[g, h], so [g2, h] = [g, h]2 holds by (xi).
Moreover, if i, j ∈ G are involutions such that i /∈ 〈g〉 and j /∈ 〈h〉,
then 〈g〉 × 〈i〉 and 〈h〉 × 〈j〉 are normal subgroups of G, so that
[g, h] ∈ 〈g2, i〉 and [g, h] ∈ 〈h2, j〉. So [g2, h] = [g, h]2 ∈ 〈g4〉 ∩ 〈h4〉.
Finally, as 〈g〉×〈i〉EG we have [g,G] ⊆ 〈g2, i〉, so that [g2, G] ⊆ 〈g4〉
by the previous, implying that 〈g2〉EG.

(xiii) If g, h ∈ CG(Q) and both have order at least 4, then 〈g〉 ∩ 〈h〉 6= 1:
Say 〈g〉∩〈h〉 = 1. By (vi), we know that c is not contained in 〈g〉

or 〈h〉. So we can assume z ∈ 〈g〉 and cz ∈ 〈h〉. Assume first that
◦(g) = 2n ≥ 8 and say ◦(h) = 2m. By (xii) and the assumption

〈g〉∩ 〈h〉 = 1, we have [g2, h] = 1, so that (g2
n−2

h2m−2

)2 = zzc = c.

Hence g2
n−2

h2m−2

is an element of order 4 in CG(Q) squaring
to c, contradicting (vi). Now assume g and h are both of order
4. As g ∈ CG(Q) and G2 = Φ(G) = CG(Q) by (x) and (xi),
there are g1, . . . , gk ∈ G such that g = g21g

2
2 · · · g2k. By the general

commutator formulas and (xii), we get

[g, h] = [g21 · · · g2k, h] = ([g1, h]
2)g

2
2 ···g

2
k([g2, h]

2)g
2
3 ···g

2
k · · · [gk, h]2.

As [gi, h]
2 ∈ 〈h4〉 = 1 for all i by (xii) we get [g, h] = 1 and so

(gh)2 = g2h2 = zcz = c, again contradicting (vi).
Convention: In case CG(Q) contains an element g of order 4, we set z = g2. By

(vi) and (xiii), this is well defined. If there is no such element, we
just keep the z from before.

(xiv) There is z̃ ∈ CG(Q) such that z ∈ 〈z̃〉 and CG(Q) = 〈c〉 × 〈z̃〉:
Let g, h ∈ CG(Q). As CG(Q) = G2 by (x) and (xi) as in the proof

of (xiii) we have [g, h] ∈ 〈h4〉, where we also need that 〈h2〉 E G
by (xii). Hence [CG(Q), CG(Q)] ≤ CG(Q)4, so that CG(Q) is a
powerful 2-group (cf. the definition in [13, I, Definition 2.1]). Hence
CG(Q)2 = {g2 | g ∈ CG(Q)} [13, I, Proposition 2.6]. By (vi), this
implies c /∈ Φ(CG(Q)) = CG(Q)2, hence 〈c〉 is a direct factor of
CG(Q) and we have CG(Q) = 〈c〉×H for a subgroup H containing
only the involution z. Then H is cyclic or generalized quaternion
by lemma 2.12, but as quaternion groups are not powerful, H must
be cyclic and the claim follows.

(xv) For g, h ∈ G, we have [g2, h2] = 1:
By (v), we know g2, h2 ∈ CG(Q) which is an abelian group by

(xiv).
(xvi) Without breaking the conventions, we can assume that y has order

4, ay = a and z ∈ 〈y〉:
We first aim to replace y by an element of order 4. By (xiv) we

know x4, y4 ∈ 〈z̃〉, so, as by convention ◦(x) ≥ ◦(y), there is ` ∈ Z
such that x4`y4 = 1. If x has order 4, then also y. So assume x has
order at least 8. Note that as x2, y2 ∈ 〈c〉× 〈z̃〉 by (v) and (xiv) we
have y2 ∈ 〈x2, c〉, so that [x, y2] = 1. Hence by (xi) and (xii)

(x`y)4 = (x2`y2[y, x`])2 = x4`y4[y2, x`] = x4`y4 = 1.
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Note that by the defining properties of x and y we have x`y /∈
NG(〈b〉), so x`y cannot be an involution. So, x`y has order 4 and
we replace y by x`y, where we replace a by ab if ` is odd, so that
the convention is kept. In case with the new y, we have ay 6= a,
we replace y by by. Finally, if z /∈ 〈y〉, then cz ∈ 〈y〉 as c ∈ 〈y〉
is impossible by (vii). Then ay satisfies all the conventions and
moreover (ay)2 = a2y2 = ccz = z, so that we choose ay as the new
y.

Convention: We choose y as described in (xvi).
(xvii) ◦(x) = 4:

Assume ◦(x) = 2n > 4. Then by (v) and (xiv) we have x4 ∈
〈z̃〉 and so z ∈ 〈x4〉. As [x2, y] ∈ 〈y4〉 = 1 by (xii) we then get

(x2n−2

y)2 = zz = 1 and x2n−2

y is an involution. But as it is not
centralizing b this gives a contradiction.

(xviii) z̃ = z:
Assume ◦(z̃) > 2 holds. First note that as x and y have order 4

by (xvi) and (xvii), the defining properties of x and y then imply
that z̃ is not a power of x or y. Moreover, again as x has order 4, we
have x2 ∈ Z(G) and so 1 = [x2, y] = [x, y]2 by (xii). In particular,
[x, y] has order at most 2, implying that it is an element of the
maximal elementary abelian subgroup 〈c〉 × 〈z〉 which is contained
in 〈c〉 × 〈z̃2〉. So, G/(〈c〉 × 〈z̃2〉) is an elementary abelian group
where the images of a, b, x, y, and z̃ are independent elements.
To see the this use again the fact that ◦(x) = ◦(y) = 4. But this
cannot be true, as G is 4-generated by (x).

(xix) We can assume bx = b and x2 = z without breaking the
conventions:

As x ∈ NG(〈b〉), we have bx = b±1. If bx = b−1, we can replace x
by ax. Next, x2 = c is not possible by (vii). So if x2 6= z, we must
have x2 = cz (note that ◦(x) = 4 by (xvii)). If this is the case, we
replace x by bx noting that (bx)2 = ccz = z.

Convention: We choose x as described in (xix).
(xx) ax = az and by = bz:

Assume ax 6= az. Then ax = a−1z by the properties of x and
(iv). Then using (xi) we get (ax)2 = a2x2[x, a] = czcz = 1, so that
ax would be an involution not centralizing b. Similarly, if by 6= bz,
then by would be an involution not centralizing a.

Relations: We summarize the obtained relations:

x4 = y4 = 1, x2 = y2 = z,

ax = az, bx = b, ay = a, by = bz.

We also note (ab)x = abz and (ab)y = abz.
(xxi) 〈x, y〉 and 〈bx, ay〉 are normal subgroups of G isomorphic to Q8:

By the relations already obtained for x and y to show that
〈x, y〉 ∼= Q8 it suffices to show [x, y] = z. As x and y have order
4 the commutator [x, y] has order at most 2 by (xii) and the fact
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that involutions are central. We consider the other possible val-
ues for [x, y]. If [x, y] = 1, then xy is an involution no centralizing
b. If [x, y] = cz, then by (xi) we get (axy)2 = a2(xy)2[xy, a] =
c(x2y2cz)z = 1, so that axy would be an involution not central-
izing a. Similarly, if [x, y] = c, then abxy is an involution not
centralizing a. Hence [x, y] = z and 〈x, y〉 ∼= Q8. We next observe
〈bx, ay〉 ∼= Q8. This follows from calculating (bx)2 = (ay)2 = cz as
well as (bx)ay = bxcz = (bx)−1. It remains to show that both these
subgroups are normal, but as {a, b, x, y} is a generating set of G
by (x), it is sufficient to consider their conjugates under these four
elements. A direct calculation using the relations above then gives
the claim.

(xxii) G = 〈x, y〉 × 〈bx, ay〉 ∼= Q8 ×Q8:
By (xxi), both groups 〈x, y〉 and 〈bx, ay〉 are normal subgroups of

G and isomorphic to Q8. As they have trivial intersection, 〈x, y〉×
〈bx, ay〉 is a subgroup of G. This subgroup contains a, b, x, and y
which is a generating set of G by (x).

Finally, we show that if G ∼= Q8 × Q8, then G has SN but not SSN using the
notation for the elements of G as in the Q8×Q8 we just found. First, as a

x = az the
subgroup 〈a, b〉 is not normal in G and G does not have SSN by lemma 2.10. Next,
note that every subgroup containing the three non-trivial involutions is normal in
G, as G′ = 〈c〉 × 〈z〉. Moreover, it is easy to see that a cyclic subgroup Y of order
4 is non-normal in G if and only if Y 2 = 〈c〉. Hence, a general subgroup Y is non-
normal if and only if Φ(Y ) = 〈c〉 and Y is either cyclic of order 4 or a quaternion
group of order 8. Hence, for every normal subgroup N and non-normal subgroup Y,
the relation N 6≤ Y implies that N contains an involution different from c, giving
NY EG. Overall, G has SN. �

The main result of this subsection now follows easily.

Proof of Proposition 2.8. Let G be a nilpotent group which has SN but not SSN.
By lemma 2.9, G is a p-group. If p is odd, or p=2 and G contains a non-central
involution, then the result is contained in Proposition 2.13. Finally consider the
case p=2 and that all involutions of G are central which only applies to the group
Q8 ×Q8 by lemma 2.14. As Z(G) is not cyclic, G has no faithful irreducible repre-
sentations. It hence suffices to consider the components of the maximal quotients
of G. Say c and z are the involutions of the direct factors. Then G/〈c〉, G/〈z〉,
and G/〈cz〉 are the maximal quotients. The first two of those are isomorphic to
Q8 × C2 × C2 which is a Hamiltonian group not contributing matrix components
to QG. Finally, we show that the group G/〈cz〉 has SN, but not SSN, and contains
non-central involutions, so that the result then follows from Proposition 2.13. To
see this say a is an element of order 4 in the first direct factor and x an element
of order 4 in the second. Then (ax)2 = cz, so that ax is mapped to a non-central
involution when mapping to G/〈cz〉. To see that this quotient does not have SSN
consider the subgroup generated by the first direct factor and x : then 〈x〉 is mapped
to a normal subgroup not contained in the image of 〈a〉, but 〈a, x〉 is not mapped
to a normal subgroup. �
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Remark 2.15. An alternative proof of lemma 2.14 could be derived from the
classification of 2-groups all of whose non-normal subgroups are cyclic, elementary
abelian of rank 2 or quaternion of order 8 in [9, Section 175]. The group Q8 ×Q8

is one of those, but one would need to exclude the other groups appearing.

2.3. Non-nilpotent groups

We will start with the case that G is solvable. For this, we need to introduce the
following class of groups which will in §3 distinguish themselves by being the only
finite groups for which we cannot determine the equivalence between property ND
and having at most one matrix component. Recall,

Definition 2.16. Let G be a group whose order is divisible by exactly two different
primes p and q and let P ∈ Sylp(G) and Q ∈ Sylq(G). Assume P and Q are both
cyclic, P has order p and G = P o Q such that Q acts non-trivially but also
non-faithfully on Q. Then we call G an SSN group of unfaithful type.

We note that the name in the previous definition is justified by [33, Theorem
2.7].

When we speak of the rank of a p-group P we will mean the minimal number of
generators of a maximal elementary abelian subgroup of G.

Proposition 2.17. G is a solvable non-nilpotent group with SN if and only if the
following holds: G contains a normal elementary abelian Sylow p-subgroup P and
a pʹ-Hall subgroup H which is Dedekind. Each Sylow subgroup of H has rank 1 and
if P has rank 1, then H is cyclic. Moreover,

(i) either G is an SSN group of unfaithful type
(ii) or the action of H on P is irreducible and faithful. In this case also no

non-trivial element of H is centralizing a non-trivial element of P.

Proof. We first show that G being a solvable and non-nilpotent group with SN
implies the described properties. Assume first that G contains a normal elementary
abelian subgroup of rank at least 2 for some prime p. Then by lemma 2.4, we know
that P E G for P ∈ Sylp(G) and G contains a nilpotent pʹ-Hall subgroup H. By
lemma 2.3, the action of H on P is irreducible and faithful and P is elementary
abelian. It remains to show that the Sylow subgroups of H all have rank 1. The
action of H on P corresponds to a faithful and irreducible representation of H over
Fp. Let χ be the character of this representation, M the FpG-module and F a field
extension of Fp which is a splitting field for H. Then by [21, Theorem 9.21] the
character of the module F ⊗Fp M is a sum of certain Galois-conjugate characters
of an irreducible F -character η of H. If H contains an elementary-abelian subgroup
Q of rank at least 2, then by the structure of Dedekind groups, Q is central in H
and η has a non-trivial kernel on Q. But this kernel is then also contained in the
kernel of χ, contradicting the fact that the action of H on P is faithful. Note also
that if D is a representation corresponding to η and h ∈ H \ {1}, then D(h) has
no eigenvalue 1. This follows again from the structure of Dedekind groups, as this
is true for faithful characters of the quaternion group of order 8 and cyclic groups.
Hence there is no g ∈ P \ {1} such that gh = g.
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We can hence assume that every elementary abelian normal subgroup of G has
rank 1. Let P0 be such a normal p-subgroup, so P0 is a cyclic group of order p,
and let H be a nilpotent pʹ-Hall subgroup of G which exists by lemma 2.4. We
first consider the case that some Sylow subgroup of H acts trivially on P0. Let
Q ∈ Sylq(G) be a such a Sylow subgroup, i.e. [P0, Q] = 1. Then P0 × Q E G, as
G has SN, and so Q E G, as it is characteristic in P0 × Q. So by lemma 2.4, we
have G =QR for R a q ʹ-Hall subgroup of G. Moreover, the action of R on Q is not
faithful, as P0 acts trivially on Q. We conclude by lemma 2.3 that G is an SSN
group of unfaithful type.

So we can assume that every Sylow subgroup of H acts non-trivially on P0. Let
Q ∈ Sylq(H). We first show that the rank of Q is 1. Assume it is not and that
〈x〉 × 〈y〉 is an elementary abelian group of rank 2 contained in Q. As Aut(P0)
is cyclic, some element of 〈x〉 × 〈y〉 must act trivially on P0, say this is x. Then
P0 × 〈x〉 E G, as G has SN and so 〈x〉 E G, as 〈x〉 is a characteristic subgroup of
P0 × 〈x〉. Hence, again using the SN property of G, also 〈x〉 × 〈y〉 E G, but this
contradicts our assumption that G contains no normal elementary abelian subgroup
of rank at least 2. Hence Q has rank 1. So, every Sylow subgroup of H is cyclic or
generalized quaternion by lemma 2.12.

We show that H contains no quaternion group. Indeed, assume Q = 〈g, h | g2n =

g4 = 1, g2
n−1

= h2, gh = g−1〉 is a subgroup of H for some n ≥ 2. As Aut(P0) is
cyclic, some element of order 4 in Q must act trivially on P0. As in the previous
paragraph, this element must generate a normal subgroup of G. When n ≥ 3
the only normal subgroup of Q of order 4 is 〈g2n−2〉, so it must act trivially. When

n =2 we can assume this without loss of generality. Now G/〈g2n−2

, h〉 is a Dedekind
group, so that the image of Q in this quotient acts trivially on the image of P0.
Hence g acts trivially on P0 and h non-trivially. As before we get then 〈g〉EG and
the SN property implies 〈g〉〈h〉 = QEG. But this cannot be as h acts non-trivially
on P0. We conclude that all the Sylow subgroups of H are cyclic.

We now show that under all the assumptions G has a normal Sylow p-subgroup.
Let {q1, q2, . . . , qk} be the prime divisors of |H| with q1 < q2 < · · · < qk. Note that
as a Sylow qi-subgroup of H acts non-trivially on P0 we have qi | (p − 1) and so
qi < p for each i. By successively applying the famous corollary of Burnside’s p-
complement Theorem on cyclic Sylow subgroups for minimal primes [20, IV, Satz
2.8], we obtain that G contains a normal q1-complement H 1, which contains a
normal q2-complement H 2,…, which contains a normal qk-complement P which
must be a Sylow p-subgroup of G. Note that in each step the normal complement
found is characteristic, so that all these groups are also normal in G, in particular
P. So G = P oH. It follows from lemma 2.3 that the structure of G is as claimed.
Moreover, as all the Sylow subgroups of G are cyclic and the action of each Sylow
subgroup of H on P is now faithful we get [g, h] 6= 1 for all h ∈ H \ {1} and
g ∈ P \ {1}.

Finally, we also show that the described groups are groups with SN. This is clear
for the SSN groups of unfaithful type, as these have even SSN by [33, Theorem
2.7]. So assume G is as described in (ii). As the action of H on P is irreducible and
faithful, P is the unique minimal normal subgroup of G. So if N E G and N ≠ 1,
then P ≤ N . Let moreover Y ≤ G. If N is not a subgroup of Y, then NY/NEG/N ,
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as G/N is a quotient of H and hence a Dedekind group. This implies NY EG and
so G indeed has SN. �

Finally, using the methods from [33, Section 3], we readily classify the non-
solvable groups with SN.

Proposition 2.18. Let G be a non-solvable group. Then G has SN if and only if
G has a unique minimal normal subgroup S such that S is non-abelian and G/S
Dedekind. Moreover in that case S = Soc(G) is a direct product of isomorphic finite
simple groups and if S is simple, then G is an almost simple group.

Proof. Let G be a non-solvable group with SN. Recall that minimal normal sub-
groups are direct products of isomorphic simple groups, see [2, (8.3)]. By lemma 2.4,
we cannot have an abelian minimal normal subgroup. Hence every minimal normal
subgroup is the direct product of non-abelian simple groups, the socle S of G is
non-abelian and the Fitting subgroup trivial. In particular, S equals the generalized
Fitting subgroup which is the unique largest normal semisimple subgroup.

Next, write S as the internal direct product
∏n

i=1 Ai with Ai a minimal normal
subgroup of G. Using lemma 2.2, we see that G/A1 is Dedekind which is only possi-
ble if all Ai = 1 for i ≠ 1. Thus S is the unique minimal normal subgroup. Moreover,
S is the direct product of isomorphic non-abelian simple groups. Furthermore, as
S is non-abelian, lemma 2.2 also yields that G/S is Dedekind.

Conversely, suppose S ≤ G is the unique minimal normal subgroup of G, that
S is non-abelian and G/S is Dedekind. Now, every N E G contains the unique
minimal normal subgroup S. Hence if Y ≤ G, then S ≤ NY and so NY/S ≤ G/S
is normal. Therefore, NY EG as needed.

Finally, suppose that G has SN and S = Soc(G) is simple. As S is also
the generalized Fitting subgroup, it contains its own centralizer. In other words,
CG(S) = Z(S) is trivial and hence G acts faithfully on S. Thus one may identify
G with a subgroup of Aut(S) with S simple, i.e. G is almost simple. �

3. Groups with the ND property and the Jespers–Sun conjecture

Let G be a finite group and n ∈ ZG nilpotent. Then G has ND if ne ∈ ZG for
every n and every primitive central idempotent e of QG. In this section, we answer
property ND for all finite groups which are not as in definition 2.16. In particular
for such groups, we show that there is a unique counterexample to Jespers–Sun’s
conjecture 1.1.

Theorem 3.1. Let G be a finite group which is not an SSN group of unfaithful
type. Then G has ND if and only if QG has at most one matrix component or
G ∼= 〈a, b | a4 = b8 = 1, ab = a−1〉.

Any group with ND is necessarily a group with SN. This follows almost directly
from the definition and is recorded in [31, Proposition 2.5], where this follows from
the proof, and more explicitly in [27, Proposition 3.4]. So to prove Theorem 3.1 we
will use Theorem C. Furthermore, we will have to distinguish the case where G is
nilpotent or not. In particular, the above result is the combination of Theorems 3.5
and 3.15.
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One may now draw easily interesting consequences from Theorem A. For exam-
ple, if G is not metacyclic, then Jespers–Sun’s conjecture is actually correct. In the
philosophy ‘what does a group ring RG know about G?’ we can give a positive
answer to a variation of the Jespers–Sun conjecture:

Corollary 3.2. Let G and H be groups such that QG ∼= QH and G has ND.
Then H has ND.

Proof. Assume first that G has at most one matrix component. Then QG ∼= QH
implies, that so has H and so H has ND. By Theorem 3.1, it remains to consider
the cases that G is the non-abelian group C4 o C8 or an SSN group of unfaithful
type. Assume first that G ∼= C4oC8. Then G/G′ ∼= C8×C2

∼= H/H ′ [15, Theorem
2.8]. It follows that if 〈c〉 = H ′, then either there is an element h ∈ H of order 4
or 16 such that c ∈ 〈h〉 or there is no element at all squaring to c. As a generalized
quaternion group of order 32 has derived subgroup of order 8, it follows that Z(G)
has rank bigger than one and with the previous H ∼= G or it is one of the groups

H1 = 〈a, b | a16 = b2 = 1, ab = a9〉,
H2 = 〈a, b, c | a8 = b2 = c2 = 1, ab = ac, [a, c] = [b, c] = 1〉.

None of these groups map onto a quaternion group, so both QH1 and QH2 do not
have a simple component isomorphic to the rational quaternion algebra, while QG
does. We conclude G ∼= H.

So assumeG is an SSN group of unfaithful type, sayG ∼= CpoCqk for some primes
p and q and a positive integer k. Then QG ∼= QH implies |H| = p·qk. Moreover, the
maximal commutative direct summand of QG is isomorphic to Q(G/G′) ∼= QCqk .
So H/H ′ ∼= Cqk , which implies also H ′ ∼= Cp. Hence H ∼= Cp o Cqk . To show
that G ∼= H it remains to show that the action on the derived subgroup has the
same order or equivalently Z(G) ∼= Z(H). It is easy to calculate that the number
of conjugacy classes of cyclic subgroups of G and H is the same if and only if
Z(G) ∼= Z(H). As this number coincides with the number of simple components of
a rational group algebra [24, Corollary 7.1.12], the result follows. �

3.1. Background on describing simple components via Shoda pairs

As could be expected from the content of conjecture 1.1, we need to recall some
methods to construct primitive central idempotents of QG. These methods were
introduced by Olivieri–del Río–Simón [39], see [24, Chapter 3] for a good introduc-

tion. To start, recall that if H E G, then Ĥ is a central idempotent in QG. Now,
set ε(H,H) = Ĥ and for a strict normal subgroup K of H define

ε(H,K) =
∏

M/K∈M(H/K)

(K̂ − M̂) = K̂
∏

M/K∈M(H/K)

(1− M̂), (3)

where M(H/K) denotes the set of the non-trivial minimal normal subgroups of
H/K. In both cases, the construction results in a central idempotent in QH. Next,
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with K EH, one associates the element

e(G,H,K) =
∑
t∈T

ε(H,K)t, (4)

where T is a right transversal of CenG(ε(H,K)) in G. The element e(G,H,K) is
central in QG and is a primitive idempotent when (H,K ) is a Strong Shoda pair
of G. A tuple (H,K ) is called a strong Shoda pair when K ≤ H E NG(K), H/K
is cyclic and a maximal abelian subgroup of NG(K)/K, and the G-conjugates of
ε(H,K) are orthogonal.

To a central idempotent e, we will also need the associated homomorphism

ϕe : G → Ge, g 7→ ge. (5)

The following is a combination of [24, Proposition 3.4.1, Theorems 3.4.2 & 3.5.5
and Problem 3.5.1].

Theorem 3.3. ([39]). With notations as above, e(G,H,K) is a primitive cen-
tral idempotent of QG if (H,K) is a strong Shoda pair. Moreover, in that case
CenG(ε(H,K)) ∼= NG(K) and ker(ϕe(G,H,K)) = coreG(K) =

⋂
g∈G Kg.

We also need the Q-dimension of the simple algebra associated with a strong
Shoda pair which directly follows from the known description of QGe(G,H,K).

Lemma 3.4. Let (H,K) be a strong Shoda pair of G. Then

dimQ QGe(G,H,K) = [G : H][G : NG(K)]φ([H : K]),

where φ(·) denotes the phi-Euler function.

Proof. Following [24, Theorem 3.5.5], QGe(G,H,K) ∼= M[G:NG(K)](Q(ζ[H:K]) ?
NG(K)/H) for some crossing that can be made explicit (see [24, Remark 3.5.6]).
Therefore, one has that

dimQQGe(G,H,K) = [G : NG(K)]2φ([H : K])[NG(K) : H]

= [G : H][G : NG(K)]φ([H : K]).

�

3.2. Nilpotent case

In this section, we completely solve conjecture 1.1 for nilpotent groups. It turns out
that in this class the conjecture is almost true—there is exactly one counterexample.
From the results of the previous section, we know that we need to consider the
question only for nilpotent groups with SSN. For many of those Jespers and Sun
did prove their conjecture [27, Corollary 4.12], but as it turns out, quite some work
remains. Overall in this section, we get:

Theorem 3.5. Let G be a nilpotent group. Then G has ND if and only if either
G has one matrix component or G ∼= 〈a, b | a4 = b8 = 1, ab = a−1〉 ∼= C4 o C8.
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The identifier of the exception appearing in the theorem in the
SmallGroupsLibrary [10] is [32, 12].

It turns out that from our results in the previous section and the previous work
of others, mostly Liu and Jespers–Sun, there is one series of groups we need to
address which we define now. For a prime p and positive integers n ≥ 1 and m ≥ 2
define the group

G(p,m, n) = 〈a, b | 1 = ap
m

= bp
n

, ab = a1+pm−1

〉. (6)

Note that the centre of G(p,m, n) is 〈ap〉 × 〈bp〉. When working with a group
G(p,m, n) we will always assume that it has generators and relations exactly as
given in (6).

Theorem 3.6. The group G(2, 2, 3) has (ND), but QG(2, 2, 3) has more than one
matrix component. Consequently, conjecture 1.1 is not correct.

Before we proceed to prove the theorem, we record an easy property of nilpotent
2× 2-matrices.

Lemma 3.7. Assume A =

(
x y

z w

)
is a 2× 2-matrix over a commutative domain

R. Then A is nilpotent if and only if x = −w, x2 = −yz.

Proof. As A is nilpotent, i.e. An = 0 for some n, the multiplicativity of the
determinant gives det(A) = 0, implying xw = yz. Hence,

A2 =

(
x2 + yz xy + yw

xz + zw w2 + yz

)
=

(
x2 + xw y(x+ w)

z(x+ w) w2 + xw

)
= tr(A)A.

So, 0 = tr(A)n−1A, which gives tr(A) = 0. Hence, x = −w and from xw = yz we
also get x2 = −yz. �

Proof of Theorem 3.6. Let

G(2, 2, 3) = G = 〈a, b | a4 = b8 = 1, ab = a−1〉.

We note that G′ = 〈a2〉 and Z(G) = 〈a2, b2〉. Then G/G′ ∼= C2×C8, so the algebra
QG has a direct summand

Q[C2 × C8] ∼= 4Q⊕ 2Q(i)⊕Q(ζ8).

Moreover, G/〈a2b2〉 ∼= Q8 and G/〈b2〉 ∼= D8, so that QG has also direct summands
HQ, the standard rational quaternions, and M2(Q). Moreover, G/〈a2b4〉 is a group
of order 16 sometimes denoted by D+

16. The rational group algebra of this group
has one matrix component isomorphic to M2(Q(i)). We mention that it has been
used in [5] to solve another problem on integral group rings. Overall

QG ∼= 4Q⊕ 2Q(i)⊕Q(ζ8)⊕HQ ⊕M2(Q)⊕M2(Q(i)).

This can also be easily checked using GAP [45] and the wedderga package therein
[7].
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Furthermore, the following representations correspond to the non-commutative
components (in the order as above):

G → HQ, a 7→ i, b 7→ j,

G → M2(Q), a 7→

(
0 −1

1 0

)
, b 7→

(
−1 0

0 1

)
, (7)

G → M2(Q(i)), a 7→

(
−i 0

0 i

)
, b 7→

(
0 1

i 0

)
.

Here we denote by i and j the standard generators of HQ.
We first derive the properties which are equivalent to having a nilpotent element

in ZG. Let n be a generic nilpotent element in ZG and write

n =
∑
g∈G

α(g)g.

In the quotient G/G′, the element n must map to 0 which is equivalent to the fact
that for each h ∈ G one has

∑
g∈G′ α(hg) = 0. This is, in turn, equivalent to

α(g) = −α(ga2) ∀g ∈ G, (8)

since G′ = 〈a2〉. As in the three non-commutative components the element a2 is
always send to −1, this will always give a factor 2 in the considerations below
and reduces the number of indeterminants by half. So we will always replace an
expression of shape α(g)− α(ga2) by 2α(g).

Next we consider the HQ-component where the projection of n must equal 0.
With the representation above n is sent to

2(α(1)− α(b2) + α(b4)− α(b6)

+i(α(a)− α(ab2) + α(ab4)− α(ab6))

+j(α(b)− α(b3) + α(b5)− α(b7))

+ij(α(ab)− α(ab3) + α(ab5)− α(ab7))).

Setting this equal to 0 gives the equations

α(1) = α(b2) + α(b6)− α(b4),

α(a) = α(ab2) + α(ab6)− α(ab4),

α(b) = α(b3) + α(b7)− α(b5), (9)

α(ab) = α(ab3) + α(ab7)− α(ab5).

Together with (8), this can be written compactly as

α(g) + α(gb4) = α(gb2) + α(gb6) ∀g ∈ G. (10)
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We denote the representation of n in the M2(Q)-component by

(
x1 y1
z1 w1

)
and

in the M2(Q(i))-component by

(
x2 y2
z2 w2

)
.

From the representation given above, we get

x1 = 2(α(1) + α(b2) + α(b4) + α(b6)− α(b)− α(b3)− α(b5)− α(b7))

which using (9) transforms to

x1 = 4(α(b2) + α(b6)− α(b3)− α(b7)). (11)

Similarly, we get

w1 = 4(α(b2) + α(b6) + α(b3) + α(b7)). (12)

As one of our conditions on n is x1 = −w1 by lemma 3.7 this gives, using also (9),

α(b2) = −α(b6), α(1) = −α(b4). (13)

Furthermore, we compute

y1 = 2(−α(a)− α(ab2)− α(ab4)− α(ab6)− α(ab)− α(ab3)− α(ab5)− α(ab7))

which we convert using (9) to

y1 = 4(−α(ab2)− α(ab6)− α(ab3)− α(ab7)). (14)

Similarly

z1 = 4(α(ab2) + α(ab6)− α(ab3)− α(ab7)). (15)

We now calculate the Q(i)-representation. We get

x2 = 2(α(1)− α(b4) + α(ab2)− α(ab6)

+ i(−α(a) + α(ab4) + α(b2)− α(b6))).

Using (9) and (13), this becomes

x2 = 2(−2α(b4) + α(ab2)− α(ab6)

+ i(2α(ab4)− 2α(b6)− α(ab2)− α(ab6))).

Similarly,

w2 = 2(−2α(b4)− α(ab2) + α(ab6)

+ i(−2α(ab4)− 2α(b6) + α(ab2) + α(ab6))).

With the condition x2 = −w2 from lemma 3.7, this gives α(b4) = 0 = α(b6) and
together with (13) we conclude

α(1) = α(b2) = α(b4) = α(b6) = 0 (16)

https://doi.org/10.1017/prm.2025.10013 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10013


On integral decomposition of unipotent elements in integral group rings 25

and

x2 = 2(α(ab2)− α(ab6) (17)

+ i(2α(ab4)− α(ab2)− α(ab6)))

as well as

w2 = 2(−α(ab2) + α(ab6) (18)

+ i(−2α(ab4) + α(ab2) + α(ab6))).

We compute the other coefficients as

y2 = 2(α(b)− α(b5) + α(ab3)− α(ab7)

+ i(α(b3)− α(b7)− α(ab) + α(ab5))

which by (9) transforms to

y2 =2(−2α(b5) + α(b3) + α(b7) + α(ab3)− α(ab7) (19)

+ i(2α(ab5) + α(b3)− α(b7)− α(ab3)− α(ab7))).

Similarly, also by (9),

z2 =2(2α(ab5)− α(b3) + α(b7)− α(ab3)− α(ab7) (20)

+ i(−2α(b5) + α(b3) + α(b7)− α(ab3) + α(ab7))).

Moreover, from (11) and (16), we have

x1 = −4(α(b3) + α(b7)). (21)

We now compute the quadratic equations from lemma 3.7. Then

x2
1 = 16(α(b3)2 + 2α(b3)α(b7) + α(b7)2) (22)

and from (14) and (15) we get

−y1z1 = −16(−α(ab2)2 − 2α(ab2)α(ab6)− α(ab6)2 + α(ab3)2

+ 2α(ab3)α(ab7) + α(ab7)2). (23)

The analogues equations for the M2(Q(i))-component give by (17)

x2
2 = 8(−2α(ab4)2 + 2α(ab2)α(ab4) + 2α(ab6)α(ab4)− 2α(ab2)α(ab6) (24)

+ i(2α(ab2)α(ab4)− 2α(ab6)α(ab4)− α(ab2)2 + α(ab6)2))
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and by (19) and (20)

−y2z2 = −8(2α(b3)α(b5)− 2α(b7)α(b5)− α(b3)2 + α(b7)2

+ 2α(ab3)α(ab5)− 2α(ab7)α(ab5)− α(ab3)2 + α(ab7)2 (25)

+ 2i(α(ab5)2 − α(ab3)α(ab5)− α(ab7)α(ab5)

+ α(b5)2 − α(b3)α(b5)− α(b7)α(b5)

+ α(b3)α(b7) + α(ab3)α(ab7))).

We now show certain congruences modulo 2 which will provide the key for the final
argument. First note that the imaginary part of −y2z2 is divisible by 16. So this
is also true for the imaginary part of x2

2 implying −α(ab2)2 + α(ab6)2 ≡ 0 mod 2
which means

α(ab2) ≡ α(ab6) mod 2. (26)

We next show that α(b3) ≡ α(b7) mod 2 and also α(ab3) ≡ α(ab7) mod 2. Assume
that α(b3) 6≡ α(b7) mod 2. Then one of them is even and the other is odd which

implies by (22) that
x2
1

16 ≡ 1 mod 4. Note that (26) implies that

α(ab2) + 2α(ab2)α(ab6) + α(ab6)2 = (α(ab2) + α(ab6))2 ≡ 0 mod 4.

So from (23)

−y1z1
16

≡ −(α(ab3)2 + 2α(ab3)α(ab7) + α(ab7)2) = −(α(ab3) + α(ab7))2 mod 4

which can only be congruent to 0 or −1 modulo 4, contradicting x2
1 = −y1z1. Hence

α(b3) ≡ α(b7) mod 2. (27)

We now consider the real parts of x2
2 and −y2z2. The real part of x2

2 is divisible by
16. So by (25) and (27)

0 ≡ Re(−y2z2) ≡ −8(−α(ab3)2 + α(ab7)2) mod 16

which implies

α(ab3) ≡ α(ab7) mod 2. (28)

Together with (8), (10), and (16), the congruences (26), (27), and (28) can be
compactly written as

α(g) + α(gb4) ≡ 0 mod 2 ∀g ∈ G. (29)

These are all the equations and congruences we need.
Let now e ∈ PCI(QG). If e corresponds to a component which is not a matrix

component, then ne =0 which is clearly an element in ZG. To analyse the other
elements of PCI(QG), we will deploy lemma 2.7. Let first e ∈ PCI(QG) be the
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element corresponding to the M2(Q)-representation and let χ be its character.
Then from the representation given above we get

χ(g) =


2, g ∈ 〈b2〉,
−2, g ∈ a2〈b2〉,
0, else.

So by lemma 2.7 we can compute the coefficient of ne at a generic element g ∈ G
in the following way, where we use first the values of χ, then (8) and then (10):

k

|G|
∑
h∈G

α(gh−1)χ(h−1)

=
2

32

(
2(α(g) + α(gb2) + α(gb4) + α(gb6)

−α(ga2)− α(ga2b2)− α(ga2b4)− α(ga2b6))
)

=
1

8

(
2(α(g) + α(gb2) + α(gb4) + α(gb6))

)
=

1

4

(
2(α(g) + α(gb4))

)
=

1

2

(
α(g) + α(gb4)

)
.

By (29), all these numbers are integers and hence ne ∈ ZG.
Finally let e ∈ PCI(QG) be the element corresponding to the component

M2(Q(i)) and χ its character. The argument will be similar to the previous case.
Note that we consider χ as a character of a Q-representation, so that each of the
entries in the representation given in (7) corresponds to a 2× 2-matrix and i cor-

responds to a matrix with trace 0, e.g. to its rational canonical form

(
0 −1

1 0

)
.

Hence

χ(g) =


4, g ∈ 〈a2b4〉,
−4, g ∈ {a2, b4},
0, else.

We again use lemma 2.7 to compute the coefficient of ne at g, where we use first
the values of χ and then (8):

k

|G|
∑
h∈G

α(gh−1)χ(h−1) =
2

32

(
4(α(g) + α(ga2b4)− α(ga2)− α(gb4))

)
=

1

4

(
2(α(g) + α(gb4))

)
=

1

2

(
2α(g) + α(gb4)

)
.

Hence again by (29), all the coefficients of ne are integers. Overall we conclude that
G has the (ND) property. �

Our next goal is to show that G(2, 2, 3) is in fact the only nilpotent counterexam-
ple to conjecture 1.1. In the nilpotent case, by Theorem 2.8, we need to understand
nilpotent groups with SSN and the groups G(p,m, n) from (6) in particular. The
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proof for this class of groups will proceed through several lemmas which separate
the cases which remain open. All of them will be handled by a similar construction
which will be made concrete in all the cases. It is inspired by an argument in [30].

Lemma 3.8. Let p be a prime, r, s ∈ ZG, y ∈ Z(ZG), and e ∈ QG a central
idempotent such that the following hold:

(i) r2 = s2 = rs = sr = 0,
(ii) er= r, es= 0,
(iii) y(r + s)/p ∈ ZG,
(iv) yr/p /∈ ZG.

Then G does not have ND.

Proof. By (i), we have rs = sr, so that by (i) (y(r+ s)/p)2 = y2(r+ s)2/p2 = 0. So
by (iii) y(r + s)/p is a nilpotent element in ZG and moreover ey(r + s)/p = yr/p
by (ii). So by (iv) (y(r + s)/p is non-zero and G does not have ND. �

The property of having one matrix component was systematically studied for
groups with SSN by Jespers and Sun. We record the result relevant for this section
which motivates the following lemmas.

Lemma 3.9. [28, Lemmas 4.2, 4.3] For G = G(p,m, n) the algebra QG has one
matrix component if and only if n=1 or p = m = n = 2.

The proofs of the next four lemmas all employ lemma 3.8. The first one will be
especially detailed to facilitate the understanding of the arguments later also.

Lemma 3.10. Let G = G(2,m, n) with n ≥ 2 and (m,n) /∈ {(2, 2), (2, 3)}. Then G
does not have ND.

Proof. In this situation, it was already shown by Liu that G does not have ND
when either m =2 and n ≥ 4 or m =3 [30, Lemma 2.8]. While Liu’s statement of
the lemma is different, the proof shows exactly that these groups do not have (ND).
As our proof is uniform for all cases, this will include a repetition of Liu’s result.
The goal is to use lemma 3.8 and the items (i)–(iv) refer to this lemma. We set
p=2.

Let

r = a(ap
m−1

+ b)(1− ap
m−1

)(1 + bp)b̃p2 ,

s = a(ap
m−2

+ b)(1− ap
m−1

)(1− bp)b̃p2 ,

y = 1 + ap
m−2

.

Note that

(1 + bp)(1− bp)b̃p2 = (1− bp
2

)b̃p2 = 0,
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so that rs = sr = 0 follows using that bp is central in G. Furthermore,

a(ap
m−1

+ b)a(ap
m−1

+ b) = ap(ap
m−1

+ bap
m−1

)(ap
m−1

+ b)

= ap(1 + bap
m−1

+ b+ bpap
m−1

) = ap((1− bp) + (1 + ap
m−1

)(b+ bp)).

As

(1− bp)(1 + bp)b̃p2 = 0 = (1 + ap
m−1

)(1− ap
m−1

), (30)

this implies r2 = 0. Moreover,

a(ap
m−2

+ b)a(ap
m−2

+ b) = ap(ap
m−2

+ bap
m−1

)(ap
m−2

+ b)

= ap(ap
m−1

+ bap
m−2

+ bap
m−1+pm−2

+ bpap
m−1

)

= ap(ap
m−1

(1 + bp) + bap
m−2

(1 + ap
m−1

))

which by (30) also implies s2 = 0. So (i) follows.
To construct the idempotent for (ii), note again that bp is central in G so that

if f ∈ PCI(QG), then bpf = ζI for a certain root of unity ζ, where I denotes

the identity matrix of some size. The same argument applies to ap
m−1

. Now let
e ∈ PCI(QG) which is the sum of all primitive central idempotents f such that

fap
m−1

has order p and fbp is the identity. Note that as G′ = 〈apm−1〉, this implies
that fb is not central. So for each such f we have rf ≠ 0. It is clear that se =0 as
(1− bp)e = 0. Furthermore, if f ʹ is any primitive central idempotent such that f ′bp

is not the identity, then f ′(1+ bp)b̃p2 = 0. Similarly, if f ′ap
m−1

does not have order

p, it must be the identity, so f ′(1 − ap
m−1

) = 0. We conclude r(1 − e) = 0 and so
re = r and (ii) holds.

Next,

y(r + s) = ya(1− ap
m−1

)b̃p2((ap
m−1

+ b)(1 + bp) + (ap
m−2

+ b)(1− bp))

= ya(1− ap
m−1

)b̃p2(ap
m−1

+ bpap
m−1

+ ap
m−2

− bpap
m−2

+ 2b)

= ya(1− ap
m−1

)b̃p2((ap
m−2

(1 + ap
m−2

) + bpap
m−2

(−1 + ap
m−2

) + 2b).

Using that 1 + ap
m−2 ≡ −1 + ap

m−2 ≡ 1− ap
m−2

mod 2 this means

y(r + s) ≡ a(1 + ap
m−2

)(1− ap
m−2

)(1− ap
m−1

)b̃p2(ap
m−2

+ bpap
m−2

)

= a(1− ap
m−1

)(1− ap
m−1

)b̃p2(ap
m−2

+ bpap
m−2

)

≡ a(1 + ap
m−1

)(1− ap
m−1

)b̃p2(ap
m−2

+ bpap
m−2

) = 0 mod 2.

Hence y(r + s)/p ∈ ZG and (iii) holds.
Finally, it is easy to see that the coefficient of ab in the element

yr = (1 + ap
m−2

)a(ap
m−1

+ b)(1− ap
m−1

)(1 + bp)b̃p2

is 1, so that yr/p /∈ ZG. This proves (iv) and the fact that G does not have (ND)
hence follows. �
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For the case of odd primes, we will use the following technical lemma.

Lemma 3.11. Let p be an odd prime, k a positive integer and

X = 〈x, z | xp2

= 1, zp
k

= 1, [x, z] = 1〉 ∼= Cp2 × Cpk .

Then there exist α, β ∈ ZX such that in ZX the following congruences hold:

(1− xp)(1− xpz) + (1− x−p)(1− x−pz) ≡ (1− x)p+1α mod p

and

x(1− xp)(1− xpz) + x−1(1− x−p)(1− x−pz) ≡ (1− x)p+1β mod p.

Proof. To simplify notation, we write for a positive integer `:

γ(x, `) = 1 + x+ x2 + · · ·+ x`.

We will several times use the equation

(1− x`) = (1− x)γ(x, `− 1). (31)

We will also use that

(1− xp) ≡ (1− x)p mod p. (32)

We proceed to show the first congruence using first 1 − x−p = −x−p(1 − xp) and

later (31) and finally (32). We also use x−p = xp2−p and x−3p = xp2−3p.

(1− xp)(1− xpz) + (1− x−p)(1− x−pz)

=(1− xp)(1− xpz)− x−p(1− xp)(1− x−pz)

=(1− xp)(1− xpz − x−p(1− x−pz))

=(1− xp)((1− x−p)− xpz(1− x−3p))

=(1− xp)((1− x)γ(x, p2 − p− 1)− xpz(1− x)γ(x, p2 − 3p− 1))

=(1− xp)(1− x)(γ(x, p2 − p− 1)− xpzγ(x, p2 − 3p− 1))

≡(1− x)p+1(γ(x, p2 − p− 1)− xpzγ(x, p2 − 3p− 1)) mod p.

Note that when p=3, then in the fourth line 1−x−3p = 0, so that p2−3p−1 does
not appear later in this case. This shows the first congruence.
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Next, we show the second congruence, also using 1− x−p = −x−p(1− xp), (31)

and (32) and also that x−3p−2 = xp2−3p−2 for p ≠ 3 and x−3p−2 = xp2−2 for p=3:

x(1− xp)(1− xpz) + x−1(1− x−p)(1− x−pz)

=x(1− xp)(1− xpz)− x−1x−p(1− xp)(1− x−pz)

=(1− xp)(x(1− xpz)− x−p−1(1− x−pz))

=(1− xp)(x− x−p−1 − xp+1z + x−2p−1z)

=(1− xp)(x(1− x−p−2)− xp+1z(1− x−3p−2))

=(1− xp)(1− x)(xγ(x, p2 − p− 3)− xp+1zγ(x, p2 − 3p− 3))

≡(1− x)p+1(xγ(x, p2 − p− 3)− xp+1γ(x, p2 − 3p− 3)) mod p,

where in the last two lines in case p=3 the expression p2−3p−3 has to be replaced
by p2 − 3. This shows the second congruence. �

The next three lemmas will now take care of the remaining cases for the groups
G(p,m, n).

Lemma 3.12. Let p be odd, m ≥ 3 and n ≥ 2. Then G = G(p,m, n) does not have
ND.

Proof. Set

r = (b− ap
m−2

)a(1− ap
m−1

)b̃p2

p−2∏
i=0

(1− bpaip
m−1

),

s = (b− a−pm−2

)a(1− a−pm−1

)b̃p2

p∏
i=2

(1− bpaip
m−1

),

y = (1− ap
m−2

)p(p−1)−1.

We will again show (i)–(iv) from lemma 3.8 which will imply that G does not have
(ND). We analyse the irreducible representations of G in which r and s are not
mapped to 0. Note that as ap and bp are central, they are mapped to a central matrix
under every irreducible representation. Let R be an irreducible Q-representation
and e the corresponding primitive central idempotent of QG. Denote by I the

identity matrix. If R(bp
2

) 6= I, then eb̃p2 = 0, as the sum over all the powers of
a primitive p`th root of unity equals 0 when ` ≥ 1. Moreover R(bp) = I implies

e(1− bp) = 0. Hence, as both r and s contain the factor (1− bp)b̃p2 the inequality
er ≠ 0 implies that R(bp) = ζI for ζ a primitive pth root of unity while es ≠ 0

implies R(bp) = ζ ′I for ζ ′ a primitive pth root of unity. Moreover, if R(ap
m−1

) = I,

then e(1 − ap
m−1

) = 0. As ap
m−1

has order p, we conclude that er ≠ 0 implies

R(ap
m−1

) = ξI while es ≠ 0 implies R(ap
m−1

) = ξ′I for certain primitive pth roots

of unity ξ and ξ′. The factor
∏p−2

i=1 (1 − bpaip
m−1

) in r means that er ≠ 0 implies

R(bp) 6= R(aip
m−1

)−1 for every 1 ≤ i ≤ p − 2. From the fact that both bp and

ap
m−1

are mapped to elements of order p, we conclude that er ≠ 0 means R(bp) =
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R(ap
m−1

), i.e. ebp = eap
m−1

. Similarly es 6= 0 implies ebp = ea−pm−1

. It follows
that r and s live in different components of QG, so that rs = sr = 0 and also (ii)
holds.

We next show that rp = 0. The non-central factors of r give

((b− ap
m−2

)a)p = ap(b− ap
m−2

)(ba(p−1)pm−1

− ap
m−2

)(ba(p−2)pm−1

− ap
m−2

)

· · · (bap
m−1

− ap
m−2

).

From the paragraph before we know that when er ≠ 0, then R(ap
m−1

) = ζI for
some primitive pth root of unity ζ. So then

e((b− ap
m−2

)a)p = eap(b− ap
m−2

)(bζ−1 − ap
m−2

)(bζ−2 − ap
m−2

) · · · (bζ − ap
m−2

).

We claim that the coefficient of aip
m−2

in the expression

(b− ap
m−2

)(bζ−1 − ap
m−2

)(bζ−2 − ap
m−2

) · · · (bζ − ap
m−2

)

is 0 for every 1 ≤ i ≤ p− 1. Indeed, using
∏p−1

j=0(X − ζj) = Xp − 1, as an equation

in the polynomial ring Z[X], up to the factor bi and possibly a sign this coefficient

is the same as in
∏p−1

j=0(a
pm−2 − ζj) = (ap

m−2

)p − 1. So,

e((b− ap
m−2

)a)p = eap(bp − ap
m−1

) = 0,

where the last equality follows from the previous paragraph. Hence, rp = 0. A
similar calculation shows also sp, so that (i) follows.

We proceed to show (iii). We first calculate

y(r + s) = yb̃p2(1− bp)

p−2∏
i=2

(1− aip
m−1

bp)

· ((b− ap
m−2

)a(1− ap
m−1

)(1− ap
m−1

bp)

+ (b− a−pm−2

)a(1− a−pm−1

)(1− a−pm−1

bp))

= yb̃p2(1− bp)

p−2∏
i=2

(1− aip
m−1

bp)

· (ba((1− ap
m−1

)(1− ap
m−1

bp) + (1− a−pm−1

)(1− a−pm−1

bp))

− a(ap
m−2

(1− ap
m−1

)(1− ap
m−1

bp)

+ a−pm−2

(1− a−pm−1

)(1− a−pm−1

bp))).

So the last two lines mean that, taking into account the factor y, it is enough to
show that

y((1− ap
m−1

)(1− ap
m−1

bp) + (1− a−pm−1

)(1− a−pm−1

bp)) ≡ 0 mod p (33)
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and

y(ap
m−2

(1− ap
m−1

)(1− ap
m−1

bp)

+ a−pm−2

(1− a−pm−1

)(1− a−pm−1

bp)) ≡ 0 mod p. (34)

Note that

y(1− ap
m−2

)p+1 = (1− ap
m−2

)p(p−1)−1+p+1 = (1− ap
m−2

)p
2

≡ (1− ap
m

) = 0 mod p

by (32). So to prove (33) and (34), it is enough to show that the factors to the right

of y contain a factor (1−ap
m−2

)p+1 modulo p. This follows by applying lemma 3.11

with x = ap
m−2

and z = bp. This shows (iii).
Finally, to get (iv), note that the coefficient of ba in yr is 1. This follows as none

of the products one can get by factoring out the element yr gives ba except the
trivial one which in turns follows as the powers appearing for a and b are otherwise
not big enough to sum up to pm or pn, respectively, when a and b are both taken
in as a factor. �

Lemma 3.13. Let p be odd, m=2 and n>m. Then G = G(p,m, n) does not have
ND.

Proof. Again we will show (i)–(iv) from lemma 3.11, this time using the elements:

r = (a− bp
n−2

)b(1− bp
n−1

)

p−2∏
i=0

(1− apbip
n−1

),

s = (a− b−pn−2

)b(1− b−pn−1

)

p∏
i=2

(1− apbip
n−1

),

y = (1− bp
n−2

)p(p−1)−1.

We again first analyse the properties of primitive central idempotents which do not
map r or s to 0. Note that ap and bp

n−1

both have order p. Let e ∈ PCI(QG). The
factor (1− ap) in both r and s means that er ≠ 0 implies that eap has order p and

also es ≠ 0 means that eap has order p. From the factor (1 − bp
n−1

) in r and the

factor (1− b−pn−1

) in s, we also get that er ≠ 0 implies that ebp
n−1

has order p and
es ≠ 0 implies the same. Finally, the rest of the factors appearing on the right from
b then mean that er ≠ 0 implies eap = ebp

n−1

and es ≠ 0 implies eap = eb−pn−1

.
This, in particular, gives that rs = sr = 0 and (ii).

Computing rp and sp is also very similar to the previous case. Namely the non-
central part of r gives

((a− bp
n−2

)b)p = bp(a− bp
n−2

)(aap − bp
n−2

)(aa2p − bp
n−2

) · · · (aa(p−1)p − bp
n−2

).

As eap has order p when er ≠ 0, the coefficient of (bp
n−2

)i in the expression

e(a− bp
n−2

)(aap − bp
n−2

)(aa2p − bp
n−2

) · · · (aa(p−1)p − bp
n−2

)
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is 0 for all 1 ≤ i ≤ p− 1, so that e((a− bp
n−2

)b)p = ebp(ap − bp
n−1

) = 0, implying
rp = 0. Similarly sp = 0. Overall, we obtain (i).

Now,

y(r + s) = y(1− ap)

p−2∏
i=2

(1− apbip
n−1

)

· ((a− bp
n−2

)b(1− bp
n−1

)(1− apbp
n−1

)

+ (a− b−pn−2

)b(1− b−pn−1

)(1− apb−pn−1

))

= y(1− ap)

p−2∏
i=2

(1− apbip
n−1

)

· (ab((1− bp
n−1

)(1− apbp
n−1

) + (1− b−pn−1

)(1− apb−pn−1

))

− b(bp
n−2

(1− bp
n−1

)(1− apbp
n−1

)

+ b−pn−2

(1− b−pn−1

)(1− apb−pn−1

))).

As y(1 − bp
n−2

)p+1 = (1 − bp
n−2

)p(p−1)−1+p+1 = (1 − bp
n−2

)p
2 ≡ 0 mod p, it is

hence enough to show that the expressions

(1− bp
n−1

)(1− apbp
n−1

) + (1− b−pn−1

)(1− apb−pn−1

) (35)

and

bp
n−2

(1− bp
n−1

)(1− apbp
n−1

) + b−pn−2

(1− b−pn−1

)(1− apb−pn−1

) (36)

when considered modulo p both contain a factor (1 − bp
n−2

)p+1. This follows by

applying lemma 3.11 for x = bp
n−2

and z = ap. So we have (iii). Moreover analysing
yr, we see that the coefficient of ab equals 1, so also (iv) follows and G does not
have (ND) in this case. �

Lemma 3.14. Let p be odd. Then G = G(p, 2, 2) does not have ND.

Proof. We note that the case p=3 was considered in [32, Lemma 2.2], but we will
use different arguments. We will again show (i)–(iv) from lemma 3.11 using

r =(b− a)(1− ap)

p−2∏
i=0

(1− aipbp),

s =(b− a−1)(1− a−p)

p∏
i=2

(1− aipbp),

y =(1− a)p(p−1)−1.

The proof of the fact that rp = sp = 0 is different from the cases before, so that we
postpone this to the end. We start again by analysing the properties of primitive
central idempotents not annihilating r and s. Similarly as in the other cases, we
get that er ≠ 0 implies that eap and ebp have order p and eap = ebp holds. Also,
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es ≠ 0 implies that eap and ebp have order p and eap = eb−p. So rs = sr = 0 and
(ii) follow.

Similarly as we had to show (33) and (34) before we now need to obtain that

(1− ap)(1− apbp) + (1− a−p)(1− a−pbp)

and

a(1− ap)(1− apbp) + a−1(1− a−p)(1− a−pbp)

both contain a factor (1−a)p+1 when considered modulo p. This follows by applying
lemma 3.11 for x = a and z = bp and so we obtain (iii). It is also easy to see that
the coefficient of b in yr is 1, so that (iv) holds.

It remains to prove rp = sp = 1. We first claim that there is exactly one e ∈
PCI(QG) such that er ≠ 0. To see this, note that, since the centre of G is 〈ap〉×〈bp〉
and isomorphic to an elementary abelian group of rank 2, for each possible kernel
different from the derived subgroup 〈ap〉 there can be only one component with
centre Q(ζ) for dimension reasons. Here ζ denotes a primitive pth root of unity.
Also, there is exactly one ∈ PCI(QG)e such that es ≠ 0. We will work in these
unique components using explicit representations to see that rp = sp = 0. Set

A =


0 0 · · · 0 1

ζ 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


and

C =


1 0 0 · · · 0

0 ζ−1 0 · · · 0

0 0 ζ−2 · · · 0
...

. . .
...

0 0 0 · · · ζ

 .

Then Ap = ζI, where I denotes the identity matrix, and C−1AC = Ap+1. Hence
each map Ri : G → Mp(Q(ζ)) sending a to A and b to AiC for 0 ≤ i ≤ p − 1
is a representation of G, since also (AiC)p = Aip is an element of order p. In
fact, all these representations are irreducible: the degree of the representations is
the smallest non-trivial divisor of the order of G, so any non-trivial decomposition
would involve only linear representations. But the linear representations contain
the derived subgroup 〈ap〉 in their kernel, hence the character values of ap under
the sum of p linear representations is p, while the character value of ap under every
of the representations Ri is pζ. We note also that when D is a diagonal matrix
with one of the diagonal entries being 0, then (AiD)p = 0. This follows, since the
characteristic polynomial of AiD equals −Xp + ζid1d2 · · · dp, where d1, . . . , dp are
the diagonal elements of D, so that the only eigenvalue of AiD is 0 when one of
the dj’s equals 0.
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The e ∈ PCI(QG) which satisfies er ≠ 0 corresponds to the representation R1, as
in general Ri(a

ip) = Ri(b
p) and as we saw before eap = ebp. Now R1(a−b) = AC−

A = A(C−I) and C − I is a diagonal matrix containing 0 on the diagonal. So, rp =
0 follows. SimilarlyRp−1 is the representation corresponding to the primitive central
idempotent not annihilating s and Dp−1(b−a−1) = Ap−1C−A−1 = A−1(ApC−I)
and as also ApC − I is a diagonal matrix containing 0 on the diagonal, we get
sp = 0 by the paragraph before. This finishes the proof of (i) in this case and the
theorem follows. �

We are finally ready to prove the main theorem of this section.

Proof of Theorem 3.5. By Theorem C, it remains to consider nilpotent group which
have SSN. As observed in [33, Section 4], these were in fact classified in [12]. They
fall into nine categories. For eight of these categories, it is shown in [27, Section
4] that if G lies in one of them, it has ND if and only if QG has at most one
matrix component. The last category which remains open in general are the groups
G(p,m, n).

We already know by Theorem 3.6 that G(2, 2, 3) does have ND. So to exclude
the cases of G having one matrix component by lemma 3.9, we can assume that
n ≥ 2 and (m,n) /∈ {(2, 2), (2, 3)} if p=2. Then G does not have ND for any of
the remaining cases by lemmas 3.10, 3.12, 3.13, and 3.14. �

3.3. Non-nilpotent groups

The goal of this section is to handle the non-nilpotent part of Theorem A. Namely,
we show:

Theorem 3.15. Let G be a finite group which is not nilpotent and not an SSN
group of unfaithful type. Then G has ND if and only if it has one matrix component.

In case that G has more than one matrix component the proof of Theorem 3.15
will, in fact, construct an explicit nilpotent element n ∈ ZG and central idempotent
e such that ne /∈ ZG. In §5.2, we will dig deeper into this and it will turn out
that the existence of these elements is connected to the kernels of the irreducible
Q-representations of G.

Proof of Theorem 3.15 for G solvable. For every finite group G whenever QG has
at most one matrix component, then G has ND. Conversely, assume that G has
ND and hence property SN. As G is assumed to not be an SSN group of unfaithful
type, Proposition 2.17 says that G ∼= P oH for an elementary abelian p-group P,
where the action is faithful, irreducible and [x, h] 6= 1 for every non-trivial x ∈ P
and h ∈ H. Moreover H is Dedekind. In other words, by Theorem 2.1, either H is
abelian or H ∼= Q8 ×D with D an abelian group of odd order. In the latter case,
we denote by c ∈ Q8 the unique (central) element of order 2.

Claim 1: P is the unique maximal abelian subgroup. Moreover, it contains no
non-trivial subgroup which is normal in G. Also, a subgroup N of G is normal in G
iff P ⊆ N . If H is abelian, then G is metabelian with G′ = P . If H is non-abelian,
then G′ = 〈P, c〉 and G′′ = P.
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First notice that since P is elementary abelian and the action of H on P is
irreducible it cannot contain a subgroup normal in G. Moreover, as [x, h] 6= 1 for
all non-trivial x ∈ P, h ∈ H, P is indeed the unique maximal abelian subgroup.
Now, if G/P ∼= H is abelian, then G′ ⊆ P and thus by the first part G′ = P . If
H ∼= Q8 ×D, we directly see that G′ ⊆ 〈P, c〉. Using that G′ ∩ P ⊆ P is normal in
G one has that P ⊂ G′ and hence G′ = 〈P, c〉. Analogously we see that G′′ ⊆ P
and in fact G′′ = P as G ʹʹ is normal. Finally, consider N E G. Then N ∩ P ⊆ P
is normal in G, hence N ⊆ P as H contains no normal subgroups. Conversely, if
P ⊆ N then N/P ≤ G/P . As mentioned above G/P is Dedekind and thus N/P is
normal as claimed.

Next note that G is strongly monomial, being abelian-by-supersolvable, and
hence by [24, Theorem 3.5.10] all primitive central idempotents of QG are of the
form e(G,N,K) for some strong Shoda pairs (N,K ). As recorded in [27, Lemma
2.4.], Q[G]e(G,N,K) is commutative if and only if G′ ⊆ K.

Claim 2: The tuples in {(P,K) | [P : K] = p} are strong Shoda pair of G.
Conversely, if (N,K ) is a strong Shoda pair with N EG, then P ⊆ K or N =P.

LetKENEG. Then [24, Corollary 3.5.11] tells that (N,K ) is a strong Shoda pair
exactly when N/K is cyclic and N/K is a maximal abelian subgroup of NG(K)/K.
In particular, N ′ ⊆ K.

To start notice that 〈P, h〉/K is non-abelian for every K � P and non-trivial h ∈
H. This follows from [2, (24.6), p. 112] asserting that P = [P, 〈h〉]. Consequently,
P/K is maximal abelian in NG(K)/K and hence (P,K ) is a strong Shoda pair
when [P : K] = p. Next, by the first claim P ≤ N when N EG. Suppose P * K.
If N/P is abelian, then N ′ ≤ P ∩K � P . As N ′ EG, the first claim yields N ′ = 1
and so N =P. If N/P is non-abelian, then H is non-abelian and c ∈ N . So in that
case G′ = 〈P, c〉 ≤ N , which entails that G′′ = P ≤ N ′ ≤ K, a contradiction. This
proves the second claim.

By [24, Problem 3.4.4.], the number of simple components QGe(G,P,K) with
[P : K] = p, denoted s, is equal to the number of orbits of H acting on S := {K |
[P : K] = p}. To count the latter we decompose S =

⋃
d||H| Sd with Sd := {K ∈

S | |NH(K)| = d}. Note that the action of H on S preserves each Sd and denote
by sd the number of H -orbits thereon. Thus s =

∑
d||H| sd and

sd =
1

|H|
∑

K∈Sd

|NH(K)| = d . |Sd|
|H|

. (37)

Next let TK be a left transversal for NH(K) in H. Then as every K ∈ Sd is a
maximal subgroup, one has by Theorem 3.3 that

eK := e(G,P,K) =
∑
h∈TK

(K̂h − P̂ ).

Now consider any non-trivial nilpotent element of the form

x = (1− y)gH̃

with 1 6= y ∈ H and g ∈ G \NG(H) (which exists as H is non-normal).
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Claim 3: If xeK ∈ ZG for all K ∈ S, then s =1.
First write yg = t.v with t ∈ P and v ∈ H. As x is non-trivial, also t ≠ 1 and

x = g(1 − yg)H̃ = g(1 − t)H̃. Therefore g−1xeK = (1 − t)eKH̃ ∈ ZG. Because
K ⊆ P EG, one has that supp((1− t)eK) ⊆ P and so (1− t)eK ∈ ZP . Next note

that (1−t)P̂ = 0 and (1−t)K̂h = 0 exactly when t ∈ Kh. Therefore (1−t)eK ∈ ZP
exactly means that

|{h ∈ TK | t /∈ Kh}|
|K|

∈ Z.

Recall that coreG(K) = ker (g 7→ geK), by Theorem 3.3, which is trivial in this case.
In particular |{h ∈ TK | t /∈ Kh}| 6= 0. Therefore, if K ∈ Sd then |K| ≤ |TK | =
|H|/d. Now (37) entails that sd|K| ≤ |Sd| which sums up to s|K| ≤ |S| = |P |−1

p−1 ,

since |S| is the number of maximal dimensional subspaces in the Fp-vector space
P. As [P : K] = p the latter inequality simplifies to s(p − 1) ≤ p − 1

|K| ≤ p − 1,

hence s ≤ 1. In fact s =1 by the second claim.
Next notice that by [27, Lemma 3.3], QH has no non-zero nilpotent elements.

Therefore, when decomposing QG as

QG ∼= QGP̂ ⊕QG(1− P̂ )

the piece QGP̂ ∼= QG/P ∼= QH has no matrix components. So, it remains to prove

that QG(1− P̂ ) is simple. By lemma 3.4

dimQ(QGeK) = |H|(p− 1)[G : NG(K)].

Furthermore, [G : NG(K)] = [H : NH(K)] = |Td| if K ∈ Sd. By the third claim,
there is a unique d | |H| such that s = sd and s =1. So (37) translates to |Td| =
|S| = |P |−1

p−1 . Altogether,

dimQ(QGP̂ ) + dimQ(QGeK) = |H|+ |H|(|P | − 1) = |H|.|P | = dimQ(QG).

Thus QG(1− P̂ ) = QGeK is indeed simple, finishing the proof. �

It now remains to consider finite non-solvable groups. In this case, we prove that
none of the groups as in Proposition 2.18 have ND. This will be done by proving
that for every such group there is always a bicyclic nilpotent element which does
not have ND.

Proof of Theorem 3.15 for G non-solvable. If G has SN, then it does not
have ND by [27, Proposition 3.4]. So assume G has SN. By Proposition 2.18,
we know G has a unique minimal normal subgroup S which is a
direct product of isomorphic non-abelian simple groups and that G/S is
Dedekind.

Let y ∈ G be an element of order 2 and x ∈ G such that yx /∈ 〈y〉. Such x and y
exist, as S has even order by the Feit–Thompson Theorem. Hence we can construct
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the non-trivial nilpotent element n = (1− y)x(1+ y). If we write n in the shape as
in lemma 2.7, then

α(g) =


1, g = x or g = xy,

−1, g = yx or g = yxy,

0, else.

So by lemma 2.7 the coefficient of ne at x is

k

|G|
∑
h∈G

α(h)χ(x−1h) =
k

|G|
χ
(
1 + y − x−1yx(1 + y)

)
=

k

|G|
χ (1− [x, y]) , (38)

where in the last step we used y = y−1 as well as the fact that y and x−1yx are
conjugate and so have the same character value, which allows us to cancel them.
If S is not contained in the kernel of χ, then the value appearing in (38) is not 0.
Moreover, we have∣∣∣∣ k

|G|
χ (1− [x, y])

∣∣∣∣ ≤ 2χ(1)k

|G|
=

2dimQ(eQG)

|G|
.

So if the last is a rational number smaller than 1 for χ corresponding to a faithful
representation, the product ne cannot lie in ZG.

Now set f = Ŝ. Then QG = fQG ⊕ (1 − f)QG and the direct summand (1 −
f)QG corresponds to all the irreducible faithful representations of G. None of the
indecomposable direct summands in (1 − f)QG is a division algebra, as SL(2, 5)
is the only non-solvable group which is a finite subgroup of a division algebra
[44, 2.1.4]. If (1 − f)QG is decomposable, then one of its indecomposable direct

summands must have dimension smaller than |G|
2 , as fQG has positive dimension

and |G| = dim(fQG)+dim((1− f)QG). Now the number of simple components of
QG equals the number of conjugacy classes of cyclic subgroups of G [24, Corollary
7.1.12]. The components in fQG correspond to conjugacy classes in G/S, i.e. classes
not lying in S except for the class of the trivial element. But as S certainly contains
at least three conjugacy classes, we conclude that (1 − f)QG has at least two
indecomposable summands. �

4. On a measure for unipotents to have an integral decomposition

In [27, Section 6], it was observed by Jespers–Sun that one can measure how far
a given finite group G is from not having ND via a certain group denoted q(G),
whose definition only depends on U(ZG). In loc.cit. also two rather general problems
about q(G) were presented: to classify the groups G for which q(G) is finite and to
establish a connection between the structure of q(G) and the simple components
of QG. We present answers to the two problems. Namely we will show that q(G) is
a finite group when no simple component of QG is exceptional, and infinite when
it has a simple component isomorphic to M2(Q) and a further group-theoretical
condition holds. We end by defining and pointing out that the obstruction might
also be of interest for arithmetic subgroups of general semisimple algebraic groups.
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4.1. The measure and link to elementary subgroups

Consider the Wedderburn–Artin decomposition

QG ∼=
⊕

e∈PCI(QG)

Mne
(De), (39)

where QGe ∼= Mne
(De) with De a finite-dimensional division algebra over Q.

Moreover let U(ZG)un := {α ∈ U(ZG) | α is unipotent } be the set of unipotent
units in U(ZG). For every e ∈ PCI(QG) consider the subset

EG(e) := {α ∈ U(ZG)un | (α− 1)e = α− 1}

of unipotent elements such that QGe is the only component to which the element
projects non-trivially.

Denote by SL1(ZG) the group of elements in U(ZG) whose projections to every
simple component of QG all have reduced norm 1 over the centre of that component
(cf. [24, p. 67] for the definition). Note that 〈U(ZG)un〉 and 〈EG(e)〉 are normal
subgroups of U(ZG) which are contained in SL1(ZG). The measure is the following
quotient group:

q(G) := 〈U(ZG)un〉/〈EG(e) | e ∈ PCI(QG)〉. (40)

As noticed in [27, Section 6], G has ND if and only if q(G) = 1. As such it
indeed measures how far G is from having ND. Furthermore in loc.cit., the authors
asked when this group is finite and how its structure is connected to the simple
components of QG. To answer this, we will investigate certain concrete subgroups
of 〈U(ZG)un〉.

Let O be an order in a division algebra D of finite dimension over Q and J a
non-zero ideal in O. Then we set

En(J) := 〈eij(r) | 1 ≤ i 6= j ≤ n, r ∈ J〉,

where eij(r) is the elementary matrix in GLn(O) which has 1 on the diagonal and
r in the (i, j )-entry. Next, partition PCI(QG) into the two subsets PCI(QG)div :=
{e ∈ PCI(QG) | QGe is a division algebra} and its complement PCI(QG)≥2 of
primitive central idempotents yielding simple components of reduced degree at
least 2. In this definition, we also view a field as a division algebra.

Classical results imply directly the following useful fact, where the index at the
right hand side can be infinite.

Proposition 4.1. With notation as in (39), let f =
∑

e′∈PCI(QG)div
e′ and for

every e ∈ PCI(QG)≥2 fix a maximal order Oe in De. Then, there exists a subgroup
Ue of 〈U(ZG)un〉 which is of the form 1− e+ Ene(Je) for some non-zero ideal Je
of Oe. Consequently,

|q(G)| ≤ [SL1(ZG)(1− f) :
∏

e∈PCI(QG)≥2

Ue] ≤
∏

e∈PCI(QG)≥2

[SLne(Oe) : Ene(Je)].

Proof. For every e ∈ PCI(QG)≥2 one can choose an idempotent fe in QG such
that efe is non-central in QGe. Consider the associated generalized bicyclic units
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GBic{fe}(QG), see [24, Section 11.2] for definition. Then following [22, Theorem

6.3] the group GBic{fe}(QG) contains a subgroup Ue of the form 1 − e + Ene
(Je)

for some non-zero ideal Je of Oe. As GBic{fe}(QG) is a subgroup of 〈U(ZG)un〉 the
previous implies the first part of the statement.

Next note that SL1(ZG)(1 − f) is the projection of SL1(ZG) onto the simple
components of QG of reduced degree at least 2. Also notice that a unipotent
unit α in ZG projects in every simple component to a unipotent element and
in particular has reduced norm 1 there. Thus 〈U(ZG)un〉 can be viewed as a sub-
group of SL1(ZG)(1 − f). Moreover, by definition SL1(ZG)(1 − f) is a subgroup
of
∏

e∈PCI(QG)≥2
SLne

(Oe). Furthermore, Ue ≤ EG(e) as elementary matrices are

unipotent. Altogether, as we are both increasing the nominator and decreasing the
denominator, this yields the desired inequalities. �

Whether the elementary subgroups En(I), for n ≥ 2, are of finite index in
SLn(O) is related to the celebrated answers on the Subgroup Congruence Problem.
In particular, it depends on the so called S -rank of SLn(D) where S is the set of
Archimedian places of Z(D). More precisely, if this invariant is at least 2, then
En(I) will be of finite index in SLn(O) [6, 8, 43, 46, 49]. These facts lead to call a
finite dimensional simple algebra exceptional if it is of one of the following types:

I: a non-commutative division algebra which is not a totally definite quaternion
algebra,

II: M2(D) with D either Q, an imaginary quadratic extension of Q or a totally
definite quaternion algebra with centre Q.

As recorded in [4, Lemma 6.9], the exceptional simple algebras Mn(D) with
n ≥ 2 are exactly those for which the S -rank of SLn(D) is 1. If n =1, there is
no non-trivial unipotent element in SLn(O). Thus the terminology ‘exceptional’
refers to the fact that subgroups generated by unipotent elements in SLn(O) are
not sufficient to describe SL1(ZG) up to commensurability.

By [14], QG has an exceptional component of reduced degree 2 if and only if G
maps onto a list of 56 groups. The table in the appendix of [4] demonstrates that
M2(Q) is the most recurrent exceptional component of that type as for only 19
of the 56 groups no M2(Q) is implied. Now suppose that there exists a primitive
central idempotent e of QG such that QGe ∼= M2(Q). If |G| is not divisible by 3,
then [3, Remark 6.17] tells that Ge ∼= D8 = 〈a, b | a4 = b2 = 1, ab = a−1〉. In other
words, in that case, G is an extension of the form

1 → Q → G → D8 → 1.

Thus there exist some g, h ∈ G such that ge = a and he = b. As shown below when
Q is big enough, under the following condition G is very far from having ND:

(?)
o(h)

o(hQ)
≤ 2.

Theorem 4.2. Let G be a finite group. Then the following hold:
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(i) If QG has no exceptional components of type II, then q(G) is finite.
(ii) If G has order at most 16, then q(G) is finite.
(iii) If G has order bigger than 16, maps onto D8 and this surjection satisfies

(?), then q(G) is an infinite non-torsion group.

The above answers both questions of Jespers–Sun formulated in [27, Section
6]. More precisely, Proposition 4.1 and the proof of Theorem 4.2 will show that
for nilpotent elements to have an integral decomposition is not truly connected
to the simple components of QG. The relationship is rather a combination of the
congruence level of ZG in the maximal order of QG on the one hand and the rank
of the simple matrix components of QG on the other hand.

The algebra QG has a component M2(Q) if and only if G maps onto D8 or S 3

[3, Remark 6.17]. Thus the mapping onto D8 in Theorem 4.2 is implied, if QG
has a M2(Q) component and 3 - |G|. The latter restriction appears due to the use
of results in [22, Section 10], but we expect it is not needed. As explained in the
examples below, some variant of the condition (?) is however certainly necessary.

Example 4.3.

(1) All the groups in the family

G(2, 2, n) = 〈a, b | 1 = a4 = b2
n

, ab = a−1〉

have a matrix component M2(Q) since G(2, 2, n)/〈b2〉 ∼= D8. The surpris-
ing G(2, 2, 3) has order 32 and satisfies o(b) = 4o(bQ). Furthermore, by
Theorem 3.6, it has ND (i.e. q(G) = 1). Thus G(2, 2, 3) is minimal with
respect to being in none of the cases described in Theorem 4.2.

(2) Examples of groups satisfying (?) are split extensions of D8 or more generally
split extension of D2n with n ≥ 3. These groups even satisfy o(h) = o(hQ),
giving a wide class of examples where q(G) is an infinite (non-torsion) group.
However, when o(h) = 2o(hQ), there also exist examples that are not split
extension of D2n , such as G(2, 2, 2) = 〈a, b | a4 = b4 = 1, ab = a−1〉 or the
families of groups with the property that all simple matrix components of
QG are of the form M2(Q). Such groups have been classified in [23] and in
case of 2-groups are given by seven possible families (see [22, Section 10.3]),
some of which are split extensions of D8 while others are not. The groups in
all these families except the last have exponent 4, so they certainly satisfy
(?). The last series is a split extension of a generalized quaternion group of
order 16 and also satisfies (?).

(3) It follows from [27, Section 5.2] that the SSN groups of unfaithful type
defined in definition 2.16 have no exceptional components of type II. Thus
by Theorem 4.2 for these groups q(G), the obstruction to ND, is finite. In
§5, we will see more fine properties of that class of groups, which all indicate
the difficulty to understand those.
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Now denote for a positive integer n by Γ(n) the principal congruence subgroup of
level n in SL2(Z), which is the kernel of the reduction modulo n map. Concretely,

Γ(n) =

{(
1 + nk11 nk12
nk21 1 + nk22

)
∈ SL2(Z) | kij ∈ Z

}
.

We will need the following results which seems to be known to experts, but which
we could not find explicitly in the literature.

Lemma 4.4. Let u be a unipotent matrix in SL2(Z). Then u is conjugate inside

SL2(Z) to a matrix of the form

(
1 m

0 1

)
with m ∈ Z.

Proof. Denote u− 1 =

(
x y

z w

)
which is by definition a nilpotent matrix. We will

prove that u − 1 is conjugate inside SL2(Z) to a matrix of the form

(
0 m

0 0

)
with

m ∈ Z.
To start, by lemma 3.7, x = −w and x2 = −yz. Hence if z =0 or y =0, then

u − 1 is of the form

(
0 y

0 0

)
, respectively

(
0 0

z 0

)
= S−1

(
0 −z

0 0

)
S with S =(

0 1

−1 0

)
. Hence we may assume that y ≠ 0 in which case u− 1 =

(
x y

−x2

y −x

)
.

We will now give the required conjugating matrix explicitly.
Define x = x

gcd(x,y) and y = y
gcd(x,y) . Also take a, b ∈ Z such that ax + by = 1.

Now define S =

(
y a

−x b

)
. Note that S−1 =

(
b −a

x y

)
is in SL2(Z). Thus the

following claim would finish the proof of the first part of the statement.

Claim: S−1(u− 1)S =

(
0 m

0 0

)
for some m ∈ Z.

It suffices to prove that

(
y

−x

)
is an eigenvector of u − 1 with eigenvalue 0 and

that

(
a

b

)
is a generalized eigenvector. The former is directly verified using the

definition of x and y. For the latter simply note that the columns of u − 1 are linearly

dependent and that the Q-spans of

(
y

−x

)
and

(
y

−x

)
are equal. In other words,

both columns of u − 1 are eigenvectors and hence every vector is a generalized
eigenvector. �
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For a group Γ and a subgroup H ≤ Γ, we will denote by clΓ(H) the normal
closure of H in Γ. This will only be needed in the next lemma and the following
proof of Theorem 4.2.

Lemma 4.5. Let be H a finite index subgroup of Γ(n) for some n where n is largest
such that H ≤ Γ(n). Then the quotient H/〈B ∈ H | B is unipotent 〉 is infinite
provided n ≥ 6. In that case, it is a non-torsion group.

Moreover, if n is a positive integer smaller than or equal to 5, then the subgroup

clSL2(Z)

(
〈

(
1 n

0 1

)
〉

)
has finite index in SL2(Z).

Proof. Consider the normal subgroup

N = 〈B ∈ H | B is unipotent 〉

of H. As Γ(n) is a normal subgroup of SL2(Z) lemma 4.4 yields that every generator

of N is conjugate to an element of the form

(
1 m

0 1

)
with m ≡ 0 mod n. Thus

N is a subgroup of clSL2(Z)

(
〈

(
1 n

0 1

)
〉

)
. Denote the image of this normal closure

in PSL2(Z) by K (n). It is known, e.g. see [38, Chapter VIII, Section 13], that
PSL2(Z)/K(n) is isomorphic to the triangle group 〈x1, x2 | x2

1 = x3
2 = (x1x2)

n = 1〉
with parameters (2, 3, n). Moreover, this group is infinite if and only if n ≥ 6. This
directly yields the last part of the lemma. Furthermore, since Γ(n) is of finite index

in SL2(Z) the quotient Γ(n)/clSL2(Z)

(
〈

(
1 n

0 1

)
〉

)
is infinite if n ≥ 6. Subsequently,

as H is of finite index in Γ(n), the quotient H/N is infinite in that case and the
description of the conjugacy classes of torsion elements in PSL2(Z)/K(n), see [36,
Theorem 2.10], also yields that H/N is non-torsion. �

We can now prove the main result of this section.

Proof of Theorem 4.2. Assume the notation of (39). Take e ∈ PCI(QG)≥2 and let
Oe be any maximal order in De where QGe ∼= Mne

(De). Now consider the subgroup
Ue = 1− e+En(Je) of 〈U(ZG)un〉 given by Proposition 4.1. As mentioned earlier,
if QGe is not exceptional, then Ene(Je) is a finite index subgroup of SLne(Oe) (e.g.
see [6, 48]). Therefore if QG has no exceptional components of type II, then the
right most bound in Proposition 4.1 is finite, yielding the first part.

Now suppose that the order of G is bigger than 16, G maps onto D8 and this
surjection satisfies (?). Then there exists a primitive central idempotent e of QG
such that Ge ∼= D8 and QGe ∼= M2(Q). Let ϕe : G → Ge and Q = ker(ϕe).
Therefore, we can take g, h ∈ G such that Ge ∼= 〈ϕe(g)〉o 〈ϕe(h)〉 with o(gQ) = 4,
o(hQ) = 2 and [gQ, hQ] = (gQ)2. Denote a := ϕe(g) and b := ϕe(h).

One has a ring monomorphism

φ : ZGe → M2(Z)
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defined by

a 7→

(
0 1

−1 0

)
, ab 7→

(
1 0

0 −1

)
, b 7→

(
0 1

1 0

)
with image

Im(φ) =

{(
a b

c d

)
∈ M2(Z) | a ≡ d and b ≡ c mod 2

}
.

That the image is the latter can be directly verified and is also recorded in [22,
Proposition 8.1]. The triple (gh, h,Q) obtained above satisfies the conditions from
[22, Definition 10.5 & Theorem 10.6] and thus one has the associated non-trivial
group of H -units H(gh, h,Q). As G = 〈gh, h,Q〉, we can use [22, Theorem 10.8],
saying that H(gh, h,Q) = SL1(ZG) ∩ 1 − e + QGe. In other words, H(gh, h,Q)
is the largest subgroup of SL1(ZG) fully contained in SL2(Z) (with contained we
mean that the subgroup projects trivially on all the other simple components of
QG). Furthermore, H(gh, h,Q) = 1− e+ Vme

with me = 2|Q| and where

Vme
=

{(
1 +me l2 me t1
me t2 1 +me l1

)
∈ SL2(Z) | l1 ≡ l2 and t1 ≡ t2 mod 2

}

is a subgroup of index 2 in Γ(me) and Vme
is a normal subgroup of U(ZGe). By

lemma 4.5, the subgroup

Ne := 〈u ∈ Vme
| u is unipotent 〉 (41)

is a subgroup of infinite index in Vme
if me ≥ 6. In other words, Ne is of infinite

index when |Q| > 2. This inequality is satisfied as 16 < |G| = 8|Q|. Remark that
by the above Ne = ϕe(〈EG(e′) : e′ ∈ PCI(QG)〉).

Next we investigate the image of the subgroup Bic(G) of 〈U(ZG)un〉 which is
generated by the bicyclic units, i.e. all elements of the form 1+(1−t)vt̃ or 1+t̃v(1−t)

with t, v ∈ G. Concretely, consider the element u := 1+ h̃ gh(1−h−1). One directly
sees that

ue = e+
o(h)

o(hQ)
(1 + b) ab(1− b).

A direct computation yields that

φ(ue) =

(
1 + 2o(h)

o(hQ) − 2o(h)
o(hQ)

2o(h)
o(hQ) 1− 2o(h)

o(hQ)

)
∈ Γ

(
2o(h)

o(hQ)

)
.

Using the procedure from the proof of lemma 4.4, we find that S−1φ(ue)S =(
1 − 2o(h)

o(hQ)

0 1

)
with S =

(
1 −2

1 −1

)
. However, S is not an element in ϕe(SL1(ZG));

therefore, we will take normal closures to finish the argument. More precisely, we
will make use of the following general group theoretical fact which is easy to prove.
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Claim: Let K ≤ H ≤ Γ ≤ Γ̂ with K normal in Γ̂ and H normal in Γ. If [H : K]

and [Γ̂ : Γ] are finite, then also [clΓ̂(H) : K] is finite.
We apply this to K = Ne defined in (41) which is a normal subgroup in

H(gh, h,Q)e = Vme
. As unipotent matrices stay unipotent under conjugation, it is

also normal in Γ̂ = U(ZGe). By [22, Proposition 8.2], U(ZGe) has index 3 in SL2(Z).
We also takeH = ϕe(〈U(ZG)un〉) which is normal in Γ = SL1(ZG)e. Now, since ZG
is an order contained in the order

∏
f∈PCI(QG)div

ZGf ×
∏

e∈PCI(QG)≥2
Mne

(Oe), it

follows that the corresponding SL1 are subgroups of finite index [24, Lemma 4.6.9

& Proposition 5.5.1]. Therefore, Γ = SL1(ZG)e is of finite index in Γ̂ = U(ZGe).
Now suppose that Ne would be of finite index in ϕe(〈U(ZG)un〉. Then by the above
claim Ne would also be of finite index in clU(ZGe)(ϕe(〈U(ZG)un〉). The latter group

contains clU(ZGe)(〈φ(ue)〉) which is isomorphic to clU(ZGe)S

(
〈

(
1 −4

0 1

)
〉

)
which

is of finite index in SL2(Z) by lemma 4.5. Consequently also Ne is of finite index in
SL2(Z) which, as noticed earlier, is a contradiction since me ≥ 6.

Altogether we have obtained that [ϕe(〈U(ZG)un〉) : ϕe(〈EG(e′) : e′ ∈ PCI(QG)〉)]
is infinite. But would |q(G)| = [〈U(ZG)un〉 : 〈EG(e′) : e′ ∈ PCI(QG)〉] be finite, then
so would be the image under ϕe. Thus indeed q(G) is an infinite group and also
non-torsion in view of how we used lemma 4.5.

Finally assume that |G| ≤ 16. Following [27, Remark 3.12.(ii)] if G has also SN,
then it has at most one matrix component and hence has ND. In fact looking at
the classification of groups of small order one readily verifies that the only groups
of order at most 16 with more than one matrix component are D12, D16, D8 × C2,
the semidihedral group D−

16 = 〈a, b | a8 = b2 = 1, ab = a3〉 and

G(16, 3) := 〈a, b | a4 = b4 = (ab)2 = 1, (a2)b = a2〉.

The last two groups have SmallGroup ID [16, 8] and [16, 3], respectively. The latter
is sometimes given in the literature with the presentation 〈a, b, c | a2 = b2 = c4 =
[a, b] = [b, c] = 1, ca = bc〉.

In case of D8 × C2 and G(16, 3), the simple matrix components are of the form
M2(Q). For D16, there is also a non-exceptional component of the form M2(Q(

√
2)).

As explained earlier, for each of their components M2(Q), there exists a primitive
central idempotent e and a triple (g, h,Q) such that H(g, h,Q)e = V2|Q| is a sub-
group of finite index in SL1(ZGe) ≤ SL2(Z). Since these groups have order 16 one
has thatH(g, h,Q)e = V4. For the component M2(Q(

√
2)), we apply Proposition 4.1

to find a subgroup Ue in EG(e) of the form E2(Je) with Je a non-zero ideal in the ring
of integers of Q(

√
2). As M2(Q(

√
2)) is not exceptional, E2(Je) is of finite index

in SL1(ZGe). Summarized, in all these cases, we find in 〈EG(e) | e ∈ PCI(QG)〉
a subgroup which is of finite index in

∏
e∈PCI(QG)≥2

SLne(Oe) and hence also in

〈U(ZG)un〉, as desired.
For the groups D12 and D−

16 such a subgroup in 〈EG(e) | e ∈ PCI(QG)〉 can
also be constructed. In case of D12, the matrix components are of the form M2(Q)
and the required subgroups are constructed in the proof of [25, Theorem 2]. In
the case of D−

16, the matrix components are both exceptional, namely M2(Q) and
M2(Q(

√
−2)). For the M2(Q) component, one can use the same argument as for
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the other groups of order 16 and for M2(Q(
√
−2)) the necessary subgroup is the

matrix group from [26, Theorem 2]. �

Remark 4.6.

(1) In [27, Section 6], it was stated that q(G) is always torsion. The explana-
tion given there, however, only yields that for every element u ∈ U(ZG)un
there exists an integer m such that um ∈

∏
e∈PCI(QG) EG(e). As shown in

Theorem 4.2, in general, q(G) is not torsion.
(2) One could also consider RG for R an order in some number field F. Then

U(FG) ∼=
∏q

i=1 GLni
(Di) for some finite dimensional division algebras over

F. Completely analogously one could define a quotient group as (40), say
q(U(RG)). Proposition 4.1, in fact, also holds in this generality and the first
part of Theorem 4.2 also. From the description of exceptional components
of type II, we see that if F is not Q or an imaginary quadratic extension
of Q, then FG has no such exceptional components and hence q(U(RG)) is
finite. This conclusion, for example, holds if R contains a primitive mth root
of unity with m not a divisor of 4 or 6.

4.2. A brief look at general semisimple algebraic groups

To finish this section, we would like to briefly point out that the group q(G) can
also be introduced for arithmetic subgroups of more general semisimple algebraic
groups than U(QG).

Let F be a number field and S a non-empty finite set of places of F containing
the Archimedean places. Associated is the ring of S -integers OS = {x ∈ F | |x|v ≤
1for all v /∈ S}. Now consider a linear algebraic F -group G and fix an F -embedding
G ↪→ GLn(F ). Using this the group of S -integral points is defined as G(OS) :=
G(F ) ∩ GLn(OS). A subgroup of G(F ) commensurable with G(OS) is called an
S -arithmetic subgroup

Suppose now that G is a semisimple algebraic group which we also assume to be
simply connected. In that case G is a direct product of simply connected almost-
simple algebraic F -subgroups [41, Theorem 2.6], say G =

∏m
i=1 Gi. Let Γ be an

S -arithmetic subgroup of G(F ). Analogously as in the case of U(ZG), denote by
Γ+ the group generated by the F -rational unipotent elements lying in Γ and by
EΓ(i) the subgroup generated by those unipotents projecting only non-trivially in
Gi(F ). Then one can define

q(Γ) = Γ+/

q∏
i=1

EΓ(i).

Again this group measures to what extend the unipotents of Γ have a decomposition
in unipotents over OS . As in the case of U(ZG), the size of q(Γ) can be bounded
using elementary subgroups of EΓ(i). In this generality, for an ideal J of OS , a
principal congruence subgroup is a group of the form G(J) := G(F ) ∩ SLn(J). If
U+
i is the unipotent radical of a minimal parabolic F -subgroup ofGi(F ) and U−

i the
unipotent radical of an opposed (i.e. U+

i ∩U−
i = {1}) minimal parabolic subgroup,
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then the elementary subgroup E(Ji) is the group generated by U+
i ∩ Gi(J) and

U−
i ∩Gi(J).
The known solutions to the Subgroup Congruence Problem [42, 50] again yield

that each EΓ(i) contains some E(Ji) which is of finite index, if S-rank(Gi(F )) =∑
v∈S rankFv

(Gi(F )) is at least 2. Here Fv is a local field, the completion of F at v,
and rankFv

(Gi(F )) the dimension of a largest split Fv-torus. Finally recall that by
a theorem of Borel-Tits [11] Gi(F ) contains non-trivial unipotent elements if and
only if F -rank(Gi(F )) ≥ 1. In that case Gi(F ) is called anisotropic. Thus with an
analogue reasoning one can obtain the following variant of Proposition 4.1:

Proposition 4.7. Consider the notations above and suppose S-rank(Gi(F )) ≥ 2
for all anisotropic Gi(F ). Then,

|q(Γ)| < ∞.

In particular, in this case, finiteness of q(Γ) does not depend on the chosen S-
arithmetic subgroup Γ.

It would be interesting to know for which other types of algebraic groups and
arithmetic subgroups, the triviality and finiteness of q(Γ) is of significance. In par-
ticular, recall that Γ is a lattice in the Lie group G(R) and the following seems
relevant to obtain for example a variant of Theorem 4.2.

Question 4.8. Does the group q(Γ) or its cardinality have a topological interpre-
tation?

5. Further related properties: nilpotent decomposition, different
kernels, and bicyclic resistance

In this final section, we introduce and study two further properties which naturally
appeared in our research on the ND property. The first is a property, having different
kernels, which turns out to hold for all groups with one matrix component but
behaves better from a structural perspective. The second property, being bicyclic
resistant, can be regarded as a partial ND property. We find that for groups with SN
these two new properties are equivalent which also explains some of the hardships
we had to endure in the previous sections. We then finish the article by some
remarks on the connection of bicyclic resistance with the Zassenhaus conjectures,
remark 5.22, as well as in §5.3 with observations on the Multiplicative Jordan
Decomposition and a final question which remains open.

5.1. Property of having different kernels

In this section, we consider a property which turns out to be satisfied by all groups
having at most one matrix component, but which is also a natural property by
itself in the context of representation theory over Q. To introduce this property, let
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e ∈ QG be a central idempotent. Recall that in (5) we defined the homomorphism

ϕe : G → Ge, g 7→ ge.

If e is the primitive central idempotent corresponding to a given irreducible Q-
representation of G, then ker(ϕe) equals the kernel of that representation.

Definition 5.1. A finite group G is said to have the Different Kernel property,
DK in short, if for every orthogonal pair e, f ∈ PCI(QG) one has ker(ϕe) 6=
ker(ϕf ). In other words, any two non-equivalent irreducible Q-representations of
G have different kernels.

As we will see in §5.2, property DK is connected to property ND but behaves
better from a structural perspective. We remark that in principle one can define the
DK property also over bigger fields than Q. We do not go further in this direction,
but note that the classes of groups one considers will be directly restricted by this.
For example, the cyclic group of order 3 has DK but does not have the corresponding
property over a field containing a primitive 3rd root of unity.

One of our main motivations to introduce this property in the context of this
article is the following result.

Theorem 5.2. Let G be a finite group such that QG has at most one matrix
component. Then G has DK.

Before proving this, we make some other interesting observations. We first
reformulate DK as a condition on the set of primitive central idempotents.

Proposition 5.3. Let G be a finite group. Then G has DK if and only if
PCI(QG) ⊆ {ε(G,N) | N E G}. In that case PCI(QG) = {ε(G, ker(ϕe)) | e ∈
PCI(QG)}.

Proof. Given a normal subgroup N of G we define the set I(N) = {e ∈ PCI(QG) |
N ⊆ ker(ϕe)} which corresponds to the irreducible Q-representations contain-

ing N in their kernel. Note that QGN̂ =
⊕

e∈I(N)

QGe and hence QG(1 − N̂) =⊕
e∈PCI(QG)\I(N)

QGe. Therefore, using the most right form of ε(G,N) in (3), we see

that by construction ε(G,N) is the central idempotent which corresponds to exactly
those irreducible Q-representations which have kernel equal to N. Thus ε(G,N) is
not primitive, say e, f ∈ PCI(QG) are orthogonal summands of ε(G,N), if and only
if N = ker(ϕe) = ker(ϕf ), i.e. if and only if G does not have DK. �

A direct consequence together with [24, Corollary 3.3.3] is:

Corollary 5.4. Abelian groups have DK.

This also gives:

Lemma 5.5. Let e, f ∈ PCI(QG) such that QGe and QGf are commutative. Then
ker(ϕe) = ker(ϕf ) if and only if e= f. Consequently, if there is a unique e ∈
PCI(QG) such that QGe is not commutative, then G has DK.

https://doi.org/10.1017/prm.2025.10013 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10013


50 L. Margolis and G. Janssens

Proof. If e ≠ f but ker(ϕe) = ker(ϕf ), then the group G/G′ would not have DK,
contradicting corollary 5.4.

Next assume that e is the unique idempotent with QGe not commutative. In
other words, G′ 6⊆ ker(ϕe) but G′ ⊆ ker(ϕf ) for every other f ∈ PCI(QG).
Moreover, the first part tells that the primitive central idempotents different from
e have also different kernels, hence altogether G has DK. �

Example 5.6. Q8, D8, and A4 all have DK. Indeed this follows directly from the
preceding lemma as

QQ8
∼= 4Q⊕HQ, QD8

∼= 4Q⊕M2(Q), QA4
∼= Q⊕Q(ζ)⊕M3(Q),

where HQ denotes the rational quaternions and ζ a primitive 3rd root of unity.

Example 5.7. The two smallest groups not to have DK are the symmetric group
S 4 and SL(2, 3). This is clear for S 4: the natural permutation representation
from which the trivial submodule has been cancelled is an integral irreducible
representation. But so is its twist by the sign representation S4 → {±1}.

Setting G = SL(2, 3) ∼= Q8 o C3, one has

QG ∼= QA4 ⊕HQ ⊕M2(Q(ζ)) ∼= QC3 ⊕M3(Q)⊕HQ ⊕M2(Q(ζ)),

where HQ denotes the rational quaternions and ζ a primitive third root of unity.
The representations of G corresponding to HQ and M2(Q(ζ)) are both faithful,
i.e. have trivial kernel.

It might be tempting to attempt a proof of Theorem 5.2 by assuming G does
not have DK and taking orthogonal e, f ∈ PCI(QG) such that ker(ϕe) = ker(ϕf )
and such that QGe and QGf are both matrix components. However, example 5.7
shows that this cannot be assumed in general. Hence we have to follow another
strategy.

Proposition 5.8. Let N EG and H be a finite groups. Then the following hold.

(1) If G has DK, then G/N has DK.
(2) If G and H have DK and the orders of G and H are coprime, then G×H

has DK.

Proof. Every irreducible Q-representation of G/N is also an irreducible Q-
representation of G, so the first item follows.

For the second claim recall that Q[G × H] ∼= QG ⊗ QH. If e ∈ PCI(QG) and
f ∈ PCI(QH) then e⊗f is a central idempotent in Q[G×H]. If e′ ∈ PCI(QG) such
that ee′ = 0, then (e ⊗ f)(e′ ⊗ f) = 0, so different central idempotents obtained
in this way are orthogonal. We claim that all these idempotents are in fact central
primitive. Indeed the number of primitive central idempotents in Q(G × H) is
the same as the number of conjugacy classes of cyclic subgroups in G ×H by [24,
Corollary 7.1.12]. As the orders of G and H are coprime, this is the same as the
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product of the numbers of conjugacy classes of cyclic subgroups of G and H, so we
have

|PCI(Q[G×H])| = |PCI(QG)| · |PCI(QH)|. (42)

As we saw above every primitive summand of e⊗ f is orthogonal with every prim-
itive summand of e′ ⊗ f . So if e⊗ f would not be primitive, this would contradict
(42).

It remains to show that ker(ϕe⊗f ) 6= ker(ϕe′⊗f ) which will follows from the
assumptions by showing ker(ϕe⊗f ) = ker(ϕe) × ker(ϕf ) ≤ G × H. For this recall
that the representation corresponding to e ⊗ f can be obtained as the Kronecker
product between the representations corresponding to e and f. Denote by I the
identity matrix (abusing notation it will have varying size). Now if A⊗B = I for A
and B matrices of finite order, then A and B must be diagonal and dB = I for any
element d on the diagonal of A. But if A is a matrix coming from a representation
of G and B a matrix coming from a representation of H, then the orders of A and
B are coprime. So dB = I implies d =1 and B = I, in total A= I and B = I. �

Example 5.9. We show that property DK is not closed under taking direct prod-
ucts when the orders of the factors are not assumed to be of coprime order and that
(42) is also not correct in general. For this let G = D10 × C5. If G

′ = 〈a〉 and b is
a central element of order 5, then from lemma 2.5 we deduce that (〈a, b〉, 〈ab〉) and
(〈a, b〉, 〈a2b〉) are strong Shoda pairs which correspond to non-equivalent faithful
Q-representations.

Example 5.10. We show that property DK is not closed under taking sub-
groups. First consider the following group which has GroupId [32,11] in the
SmallGroupLibrary[10]:

H = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] = [b, c] = 1, [a, c] = a2b〉 ∼= (C4 × C4)o C2.

Using lemma 2.5, we see that in H the strong Shoda Pairs (〈a, b〉, 〈a〉) and
(〈a, b〉, 〈ab〉) provide two different elements in PCI(QH) such that both correspond-
ing representations are faithful, i.e. H does not have DK.

Now consider the group

G = 〈a, b, c, d | a4 = b4 = c2 = d2 = [a, b] = [b, c] = 1, [a, c] = a2b,

[a, d] = a2b2, [b, d] = b2, [c, d] = a2b−1〉
∼= ((C4 × C4)o C2)o C2

∼= H o C2

which has GroupId [64, 135]. As this group is metabelian, we can apply lemma 2.5
with A = 〈a, b〉. We list the strong Shoda pairs which provide all the non-
commutative components of QG one obtains in this way without further details.
Note that G′ = 〈a2, b〉:
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(〈A, c〉, 〈a2b, c〉), (〈A, c〉, 〈a2b, a2c〉), (〈A, d〉, 〈a, b2, d〉), (〈A, d〉, 〈ab, b2, d〉),
(〈A, cd〉, 〈b, cd〉), (〈A, cd〉, 〈b, a2cd〉), (〈A, d〉, 〈a〉).

We compute the kernels of the corresponding representations by Theorem 3.3. These
are 〈a2b, c〉, 〈a2b, a2c〉, 〈ad, a2〉, 〈abd, a2〉, 〈b, cd〉, 〈b, a2cd〉, and 1, respectively. Hence
all kernels are different and G has DK.

Lemma 5.11. Let m be an integer, q a prime not dividing m and G = Cm o Q
a non-trivial semi-direct product where Q is a q-group which is either abelian or
generalized quaternion. Let a ∈ G be of order m. In case Q is generalized quater-
nion, assume that a maximal cyclic subgroup of Q acts trivially on 〈a〉. Moreover,
if [a, g] 6= 1 for some g ∈ Q, then [〈a〉, 〈g〉] = 〈a〉 holds. Then G has DK.

Proof. G is metabelian and hence we can apply lemma 2.5 looking for strong Shoda
pairs (H,K ) in G. By lemma 5.5, we can restrict our attention to those satisfying
G′ 6⊆ K and we will further assume this condition. Let A be a maximal abelian
subgroup of G containing G ʹ. As [A, 〈g〉] = G′ for every g /∈ A, we get A=H. When
Q is generalized quaternion we can write A = 〈a〉 × 〈b〉, where 〈b〉 is a maximal
cyclic subgroup of Q. If Q is abelian we have A = 〈a〉 × (Z(G) ∩Q). In any case,
the condition that q does not divide m implies that every subgroup of A is normal
in G. Hence when (A,K ) is a strong Shoda pair and e = e(G,A,K), we have
ker(ϕe) = K by Theorem 3.3. In particular, each irreducible Q-representation of G
is uniquely determined by its kernel and G has DK. �

With this we can show DK for some interesting classes of groups.

Corollary 5.12. Let G be an SSN group of unfaithful type. Then G has DK.

Proposition 5.13. Let G be a finite subgroup of the multiplicative group of a divi-
sion algebra in characteristic 0. Then G has DK if and only if it is not isomorphic
to one of the following:

(1) the binary octahedral group,
(2) SL(2, 5),
(3) SL(2, 3)×H for H a group of order coprime to 6.

Proof. The finite subgroups of division algebras in characteristic 0 were obtained
by Amitsur, we refer to [44, Theorems 2.1.4 and 2.1.5] for a full account. It follows
that when G is not one of the three possibilities listed explicitly in the statement,
then G is the direct product of groups of coprime orders such that each factor has
the shape given in lemma 5.11. So by lemma 5.11 and Proposition 5.8, we conclude
that G has DK. It remains to show that this is not the case for the three cases
listed.

If G is the binary octahedral group, then G/Z(G) ∼= S4, so that G does not
have DK by Proposition 5.8 and example 5.7. Similarly, if G ∼= SL(2, 3)×H, then
G maps onto SL(2, 3), so we can again use Proposition 5.8 and example 5.7. For
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G = SL(2, 5), we observe that G maps onto a non-abelian simple group, namely A5.
But a non-abelian simple group can never have DK, indeed otherwise QG would
only have two components, but G has certainly more than two conjugacy classes
of cyclic subgroups, which would contradict [24, Corollary 7.1.12]. �

Proof of Theorem 5.2. To start we reduce the statement to the case that G embeds
in a division algebra of finite dimension over Q. Let G be a group of minimal order
violating the conditions, i.e. G is a group with at most one matrix component,
but there exist orthogonal e, f ∈ PCI(QG) such that ker(ϕe) = ker(ϕf ). Set N =
ker(ϕe). Then G/N is also a group with at most one matrix component, which
does not have DK, namely it has two non-equivalent faithful representations. By
the minimality of G we conclude that N =1. By lemma 5.5, we know that neither
QGe nor QGf is a field. On the other hand at most one of them, say QGe, can be
a matrix-component. Hence QGf is a non-commutative division algebra D and as
ker(ϕf ) = 1, it follows that G is isomorphic to a multiplicative subgroup of D.

So we assume that G is a subgroup of a division algebra of characteristic 0. By
Proposition 5.13, many of those groups have DK independently from the prop-
erty of having one matrix component and we will be done once we see that the
three exceptions listed in the proposition do not have one matrix component. By
example 5.7, this is true for SL(2, 3) and also S 4, which is the image of the binary
octahedral group. Also Q SL(2, 5) contains a direct summand isomorphic to QA5,
which has more than one matrix component. �

We next show that another class of groups of interest in this article has DK.

Lemma 5.14. Let G be a nilpotent group with SSN. Then G has DK.

Proof. Assume first that G is a Dedekind group. As abelian groups have DK by
corollary 5.4 and Q8 has DK by example 5.6, the property DK for G follows from
Proposition 5.8.

So we can assume that G is one of the nine classes (BJ1)–(BJ9) listed in [27,
Theorem 4.1]. The groups in (BJ3) are a direct product of a quaternion group of
order 8 and a cyclic group of odd order, so they have DK by the same argument as
Dedekind groups. The groups (BJ2), (BJ6), (BJ7) have one matrix component by
[27, Lemma 4.5 & p. 11], so they have DK by Theorem 5.2. It remains to study the
groups in (BJ1), (BJ4), (BJ5), (BJ8), and (BJ9). All those groups are metabelian
and so we can apply lemma 2.5 to show that they have DK and by lemma 5.5
we can consider only strong Shoda pairs (H,K ) such that K does not contain
the commutator subgroup. For all groups, we will list a full set of non-equivalent
strong Shoda pairs based on lemma 2.5 and the kernels of the corresponding rep-
resentations which follow from Theorem 3.3. It will follow that kernels are pairwise
different and the groups have DK.

(BJ4) We have, cf. [27, p. 120],

G = 〈a, b, c | a9 = b3 = [a, b] = 1, ac = ab, bc = a−3b, c3 = a3〉,

so G′ = 〈a3, b〉. We let A = 〈a, b〉 ∼= C9 × C3 be a maximal abelian
subgroup containing G ʹ. As A is a maximal subgroup of G, we have
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H =A. The conjugacy classes of subgroups of A which have cyclic quo-
tients and do not contain G ʹ, i.e. which can play the role of K in the
strong Shoda pair (H,K ), are {〈b〉, 〈a−3b〉, 〈a3b〉} and {〈a〉, 〈ab〉, 〈a−1b〉}.
The corresponding kernels of the representations, i.e. coreG(K), are 〈a3〉
and 1, respectively.

(BJ5) We have

G = 〈a, b | a8 = 1, ab = a−1, a4 = b4〉,

so G′ = 〈a2〉. Let A = 〈a, b2〉 ∼= C8×C2. As A is a maximal subgroup of G,
we have H =A. The conjugacy classes of subgroups of A which have cyclic
quotients and do not contain G ʹ are {〈a2b2〉, 〈a−2b2〉} and {〈a4b2〉}. The
corresponding kernels of the representations are 1 and 〈b2〉, respectively.

(BJ8) We have

G = 〈a, b, c | a4 = b4 = [a, b] = 1, ac = ab2, bc = ba2, c2 = a2〉,

so G′ = 〈a2, b2〉. Let A = 〈a, b〉 ∼= C4 × C4. As A is a maximal subgroup
of G, we have H =A. The conjugacy classes of subgroups of A which
have cyclic quotients and do not contain G ʹ are {〈a〉, 〈ab2〉}, {〈b〉, 〈ba2〉},
{〈ab〉}, and {〈a−1b〉}. The corresponding kernels of the representations
are 〈a2〉, 〈b2〉, 〈ab〉, and 〈a−1b〉, respectively.

(BJ9) We have

G = 〈a, b, c, d | a4 = b4 = [a, b] = 1, ac = a−1, bc = b−1a2,

ad = a−1b2, bd = b−1, c2 = a2b2, d2 = a2〉,

so G′ = 〈a2, b2〉. Let A = 〈a, b〉 ∼= C4×C4. In this case, A is a not a maxi-
mal subgroup of G, but as all the proper subgroups containing it, namely
〈A, c〉, 〈A, d〉, and 〈A, cd〉, have derived subgroup G ʹ, we still have H =A.
The conjugacy classes of subgroups of A which have cyclic quotients and
do not contain G ʹ are {〈a〉, 〈ab2〉}, {〈b〉, 〈ba2〉}, and {〈ab〉, 〈a−1b〉}. The
corresponding kernels of the representations are 〈a2〉, 〈b2〉, and 〈a2b2〉,
respectively.

(BJ1) We have for p a prime, m ≥ 2 and n ≥ 1

G = 〈a, b | ap
m

= bp
n

= 1, ab = a1+pm−1

〉,

so G′ = 〈apm−1〉. Let A = 〈a, bp〉 ∼= Cpm × Cpn−1 . As A is a maximal
subgroup of G, we have H =A. The subgroups of A which have cyclic
quotients are K = 〈ajbp〉 for some integer j such that the order of aj

is at most pn−1. If p divides j, then ajbp ∈ Z(G) and K is itself the
kernel of the corresponding representation. If p does not divide j, then
the kernel is 〈ajpbp2〉. If k is also a number not divisible by p such that

〈ajpbp2〉 = 〈akpbp2〉, then j ≡ k mod pm−1 so that ajbp is conjugate to
akbp and hence the corresponding K give equivalent strong Shoda pairs.

�
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5.2. Nilpotent decomposition with specific idempotents or nilpotents

The proof of Theorem 3.15 works by constructing a particular type of nilpotent
element n ∈ ZG, which we will call bicyclic nilpotent, and a central idempotent
e ∈ QG such that ne /∈ ZG if and only if G has more than one matrix component.
We formalize this in the following way.

Definition 5.15. For elements g, h ∈ G and H a subgroup of G containing h we
call (1− h)gH̃ and H̃g(1− h) a bicyclic nilpotent element.

We call G bicyclic resistant, if for every bicyclic nilpotent element n ∈ ZG and
every central idempotent e ∈ QG one has ne ∈ ZG.

Interestingly, a group having SN will have DK exactly when all the bicyclic
nilpotent elements have a nilpotent decomposition. More precisely, in the remainder
of the section, we will work towards proving the following result.

Theorem 5.16. Let G be a finite group with SN. Then the following are equivalent:

(1) G is bicyclic resistant.
(2) G is supersolvable or QG has one matrix component.
(3) G has DK.

The methods of the proof of Theorem 3.15 in fact suggest that it might be
interesting to study analogues of the property ND only considering certain nilpotent
elements and certain central idempotents.

Definition 5.17. Let E be a set of central idempotents in QG and n ∈ ZG a
nilpotent element. We say that n has ND with respect to E, if ne ∈ ZG holds for
every e ∈ E.

With this terminology at hand, we can give a new characterization of property
SN in terms of such kind of local ND. This characterization implies that bicyclic
resistant groups have SN.

Proposition 5.18. Let G be a finite group. The following are equivalent:

(1) G has SN.
(2) All bicyclic nilpotent elements have ND with respect to {ε(G,N) | N EG}.
(3) All bicyclic nilpotent elements have ND with respect to {N̂ | N EG}.

Proof. Let Y ≤ G, x ∈ G, y ∈ Y and denote n = (1 − y)xỸ . Remark that

nN̂ = (1 − y).x.〈̃N,Y 〉. |Y ∩N |
|N | . This implies that one can choose N such that 0 6=

nN̂ exactly when YN is not normal, i.e. there exists a non-trivial x /∈ NG(Y N).

Moreover, when 0 6= nN̂ , it is in ZG exactly when |Y ∩N | = |N |. In other words,
when N ≤ Y . These two observations combined imply the equivalence between (1)
and (3).
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To see that (2) and (3) are equivalent note first that

nε(G,N) = nN̂
∏

M/N∈M(G/N)

(1− M̂) =
∑
MEG

aMnM̂

for certain integers aM. If (3) holds, then nM̂ ∈ ZG for every M E G and conse-
quently (2) holds. To see that (2) implies (3) we argue by induction on the minimal
length of a chain of normal subgroups from N to G. For the induction start notice
nε(G,G) = nĜ. Now let N EG. Then

nε(G,N) = nN̂
∏

M/N∈M(G/N)

(1− M̂) = nN̂ +
∑

N�MEG

aMnM̂,

for certain integers aM, is an element of ZG. As
∑

N�MEG aMnM̂ ∈ ZG by

induction, we conclude nN̂ ∈ ZG. �

Proposition 5.18 combined with Proposition 5.3 now yield the following.

Corollary 5.19. Let G be a finite group with DK. Then G has SN if and only if
it is bicyclic resistant.

We show that some other classes of interest are also bicyclic resistant using the
following lemma.

Lemma 5.20. Let p and q be primes and G a semi-direct product P oQ of a cyclic
p-group P and a cyclic q-group Q such that Gʹ is cyclic of prime order. Then G
is bicyclic resistant.

Proof. Let a, b ∈ G such that 〈a〉 = P and 〈b〉 = Q. We will separate two cases
which only differ in technical details though.

Assume first that p= q. Then our conditions imply that the action of Q on P
is of order p, i.e. bp ∈ Z(G). To construct a non-trivial bicyclic nilpotent element
in ZG, we need to find g, u ∈ G and a subgroup U of G containing u such that
ug /∈ U . In the present conditions, the only elements which generate non-normal
cyclic subgroups of G are those of shape 〈aib〉 for some integer i. Any subgroup of
G containing 〈aib〉 properly will also contain G ʹ and hence be normal. So, up to
left-right symmetry, the only non-trivial bicyclic nilpotent elements in ZG are of

shape (1− aib)g〈̃aib〉. We fix such a generic element n ∈ ZG.
The group G is metabelian, so we can use lemma 2.5 to construct all the elements

of PCI(QG). Fix A = 〈a, bp〉, a maximal abelian subgroup of G containing G ʹ.
Assume e ∈ PCI(QG) with e = e(G,H,K). If ne ≠ 0, then K does not contain G ʹ.
On the other hand, K does contain H ʹ and H contains A, which implies H =A.

Set S = 〈bp〉. Then we can write 〈̃aib〉 = g1S̃+ · · ·+gnS̃ for g1, . . . , gn a transversal

of S in 〈aib〉. So ne ≠ 0 implies S̃e 6= 0. As S is a central cyclic group and the sum
of all the roots of unity of the same order equals 0, this implies S ≤ ker(ϕe) and
so S ≤ K. As S is a maximal subgroup of A among those not containing G ʹ, we
obtain K =S. So e is uniquely determined by the property ne ≠ 0. Hence for every
f ∈ PCI(QG) one has nf =0 or nf =n. Overall, G is bicyclic resistant.
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Next assume p ≠ q. Then our conditions imply that P has order p. Similarly as
in the previous case, the only elements of G which do not generate normal cyclic
subgroups are those of shape 〈aibj〉 for some integers i and j such that bj /∈ Z(G).
A subgroup of G containing 〈aibj〉 either contains G ʹ or will be a cyclic q-group. So

a generic bicyclic nilpotent element n can be written as (1− aibj)gR̃, where R is a
cyclic q-group containing aibj . Again we want to use lemma 2.5. Let S = Z(G)∩Q.
Then A = 〈a〉 × S is a maximal abelian subgroup of G containing G ʹ. As before
choosing e = e(G,H,K) one concludes H =A. Moreover we note that S ≤ R, so

we can again write R̃ = g1S̃ + · · · + gnS̃ for g1, . . . , gn a transversal of S in R. So
ne ≠ 0 implies S̃ 6= 0, but this is only possible if S ≤ K. This means e = e(G,A, S),
so the element of PCI(QG) which satisfies ne ≠ 0 is unique. �

This implies on one hand that the work carried out for the proof of Theorem 3.5
could not be carried out using bicyclic nilpotent elements, as well as that these
elements cannot serve to solve the remaining case of SSN groups of unfaithful type.

Corollary 5.21. The groups G(p,m, n), defined in §3.2, are bicyclic resistant.
Also, the SSN groups of unfaithful type are bicyclic resistant.

We are finally ready to describe which groups with SN are bicyclic resistant.

Proof of Theorem 5.16. Following corollary 5.19 we know that (3) implies (1). Next
suppose (1), i.e. G is bicyclic resistant. Since SSN groups of unfaithful type and
nilpotent groups are supersolvable, it remains to consider the groups dealt within
Theorem 3.15. The proof of Theorem 3.15, in fact, constructs a bicyclic nilpotent
element n ∈ ZG and a central idempotent e ∈ QG such that ne /∈ ZG if and only if
G has more than one matrix component. In other words, those groups are bicyclic
resistant if and only if G has one matrix component, which finishes the proof that
(1) implies (2).

Now suppose (2). If QG has one matrix component, then it has DK by
Theorem 5.2. Therefore, we may assume that QG has more than one matrix com-
ponent and is supersolvable. If G is even nilpotent, then by Proposition 2.8 the
group G has SSN and so also DK by lemma 5.14. It remains to consider the case
that G is supersolvable but not nilpotent. It is easily verified that the group P oH
with H acting irreducibly and faithfully as in Proposition 2.17 is supersolvable if
and only if P is cyclic and so also H is cyclic. Using lemma 5.11, we now see that
supersolvable not nilpotent SN groups have DK. �

Remark 5.22. One could wonder in how far being bicyclic resistant is a property
of the group ring ZG defined independently of the group basis G. In general, this
is not clear, but at least for those groups where a positive answer to the second
Zassenhaus conjecture is known, this is the case. Recall that the second Zassenhaus
conjecture asked, if it is true that when H is a group of normalized units of ZG of
the same order as G, there necessarily exists a unit x ∈ QG such that Hx = G.
It is clear that if such a unit exists the bicyclic nilpotent elements which can be
defined using the elements of G are conjugate in QG to those which can be defined
using H. As the central idempotents of QG do not change under conjugation of
course, it follows that in this situation being bicyclic resistant does not depend on
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the chosen group basis. More strongly one could even take any two units of ZG
which generate a subgroup of finite order to construct a bicyclic nilpotent. This will
also not break bicyclic resistance at least when the third Zassenhaus conjecture has
a positive answer for G, i.e. if every finite subgroup of units in ZG is conjugate in
the units of QG to a subgroup of ±G.

We remark that nilpotent groups are known to satisfy the third Zassenhaus
conjecture [52] as well as metacyclic groups A o B when A and B have coprime
orders [47]. So neither could we have constructed bicyclic nilpotent elements with
respect to any finite subgroup of units of ZG for the groups G(p,m, n) in §3.2
to prove Theorem 3.5, nor will this be possible to resolve ND for SSN groups of
unfaithful type.

These observations might lead to wonder, if in fact the third Zassenhaus
Conjecture might hold for all groups with DK. This is, however, not the case:
it can be checked that the counterexample to the conjecture presented in [19] does
have property DK.

5.3. Concluding remarks on the Jordan decomposition

The motivation of the work of Jespers–Sun [27] was to contribute to the precise
classification of groups having Multiplicative Jordan Decomposition. Though many
contributions have been made here, the complete classification remains elusive. We
refer to [16] for a survey and to [29, 51] for the only results to have appeared since.

Remark that a first major difference between ND and MJD is that the latter
implies that the reduced degree of all simple components are at most 3 [1]. However,
there exists groups having ND with a simple component of arbitrary large reduced
degree, e.g. the groups Cpm o Cpn in [27, Theorem A].

Next, analysing all groups for which the Multiplicative Jordan Decomposition is
known to hold and those for which it remains open, using [37, Section 7.4] and [27],
one finds first that all groups which are known to have the Multiplicative Jordan
Decomposition have at most one matrix component. The only groups among those
for which it remains open with more than one matrix component are the groups of
type Cp o C2k with k ≥ 3 and p ≡ 1 mod 8 and where the action of the cyclic 2-
group is by inversion. Note that these groups are SSN groups of unfaithful type—so
exactly from the series for which the equivalence between property ND and having
at most one matrix component remains open. Hence an answer to the following
might solve the Multiplicative Jordan Decomposition for a new series and provide
an answer to whether the Multiplicative Jordan Decomposition for a group implies
that it has at most one matrix component.

Question 5.23. Let p and q be primes and G = CpoCqk for some natural number
k such that the action of Cqk is not faithful. Is it true that G has ND if and only
if it has one matrix component?

The smallest group with more than one matrix component for which the
Multiplicative Jordan Decomposition remains unknown is

〈x, a | x17 = a8 = 1, xa = x−1〉 ∼= C17 o C8.
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In [16, Section 4.1], it is called ‘a challenging open case’. We can confirm it is
challenging. Answering our question would also eliminate the last question mark in
[27, Figure 1].
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