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Abstract

We present a method to obtain both exact values and sharp estimates for the total variation
distance between binomial and Poisson distributions with the same mean λ. We give a
simple efficient algorithm, whose complexity order is

√
λ, to compute exact values. Such

an algorithm can be further simplified for moderate sample sizes n, provided that λ is
neither close to l + √

l, l = 1, 2, . . . , from the left nor close to m − √
m, m = 2, 3, . . . ,

from the right. Sharp estimates, better than other known estimates in the literature,
are also provided. The 0s of the second Krawtchouk and Charlier polynomials play a
fundamental role.
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1. Introduction

Since the pioneering papers by Prohorov [17] and Le Cam [16], a lot of work has been done
on Poisson approximation for sums of independent random indicators, where the accuracy of
the approximation is usually measured in terms of the total variation distance. Many authors
have obtained sharp estimates for such a distance by using different approaches, such as the
Stein–Chen method (cf. [6], [8], and [10]), semigroup techniques (cf. [12] and [13]), and
Charlier expansions (cf. [18] and [19]), among others. By means of analytical techniques,
Kennedy and Quine [14] computed the exact total variation distance between binomial and
Poisson distributions when their common mean is less than or equal to 2 − √

2.
This paper is concerned with the most paradigmatic example of Poisson approximation,

namely, the evaluation of the total variation distance between binomial and Poisson distributions
having the same mean λ. Our purpose is twofold. On the one hand, our purpose is to delve into
the results of Kennedy and Quine [14]. These authors have obtained exact values for the total
variation distance for small values of λ (see Theorem 1 and the comments following Lemma 3.1
of [14]). In Theorems 2.1 and 2.2, below, we give an algorithm to compute exact values for
any arbitrary mean λ. On the other hand, our purpose is to present a unified method to provide
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both exact values and sharp estimates in the problem under consideration. The basic ideas are
the following. Suppose that we want to evaluate E φ(Y ) − E φ(X) for any given two random
variables X and Y , and suitable functions φ. Consider a stochastic process Z = (Z(t), t ≥ 0)

‘connecting’ X and Y , in the sense that Z(0) and X have the same law and that Z(t) converges
in law to Y as t → ∞. Under such circumstances, we can apply the differential calculus
for the linear operator represented by Z, as developed in [1], [3], and [5], in order to obtain a
closed-form expression for E φ(Z(t))−E φ(Z(0)), t ≥ 0, taking advantage of the probabilistic
structure of Z. Letting t → ∞, we obtain, under appropriate assumptions on φ,

E φ(Y ) − E φ(X) = lim
t→∞(E φ(Z(t)) − E φ(Z(0))). (1.1)

Let us sketch the method to compute the right-hand side of (1.1) for the case in which the
stochastic process Z takes values in the set Z+ of nonnegative integers. In such a case, the
problem is to find Z+-valued stochastic processes Vi = (Vi(t), t ≥ 0) and σ -finite measures
νi defined on [0, ∞), i = 1, 2, satisfying the differentiation formula

E φ(Z(t)) − E φ(Z(s)) =
∫

(s,t]
E �φ(V1(u)) dν1(u) −

∫
(s,t]

E �φ(V2(u)) dν2(u) (1.2)

for any 0 ≤ s < t < ∞ and any φ : Z+ → R satisfying appropriate integrability conditions,
where � is the first-order difference operator defined by �φ(n) = φ(n) − φ(n − 1), n =
1, 2, . . . . As shown in [1, Example 4.3], to find Vi and νi, i = 1, 2, it suffices to check (1.2)
for the family of test functions φζ (n) = eiζn, n ∈ Z+, ζ ∈ R, that is, to check that

E eiζZ(t) − E eiζZ(s) = (1 − e−iζ )

(∫
(s,t]

E eiζV1(u) dν1(u) −
∫

(s,t]
E eiζV2(u) dν2(u)

)

for any 0 ≤ s < t < ∞ and ζ ∈ R. Rewriting (1.2) as

E φ(Z(t)) − E φ(Z(s)) = E �φ(V1(s))ν1((s, t]) − E �φ(V2(s))ν2((s, t])
+

∫
(s,t]

(E �φ(V1(u)) − E �φ(V1(s))) dν1(u)

−
∫

(s,t]
(E �φ(V2(u)) − E �φ(V2(s))) dν2(u),

the preceding ideas can be applied again to the processes Vi , i = 1, 2, appearing in the
integrands of (1.2), arriving at a Taylor’s formula of second order for the original process Z,
and so on.

If, in addition, Z is a discrete-time process, i.e.

Z(t) =
∞∑

m=0

Z(m) 1(m−1,m](t), t ≥ 0,

where 1A stands for the indicator function of the set A, then Vi is also a discrete-time process
and νi, i = 1, 2, is a discrete measure with support on Z+ so that (1.2) has the form

E φ(Z(k)) − E φ(Z(n)) =
k∑

m=n+1

(E φ(Z(m)) − E φ(Z(m − 1)))

=
k∑

m=n+1

(E �φ(V1(m))ν1({m}) − E �φ(V2(m))ν2({m})) (1.3)

https://doi.org/10.1239/aap/1231340163 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1231340163


Exact total variation distance 1035

for any 0 ≤ n < k. Since there are many stochastic processes Z connecting X and Y , it seems
that the efficiency of the method depends on the right choice of Z. In this respect, the choice
Z(t) = tX+(1−t)Y, 0 ≤ t ≤ 1, where X and Y are taken to be independent random variables,
is not suitable in general.

The aforementioned differential calculus has been successfully applied in [2] and [4] to give
sharp estimates in Poisson and binomial approximations of Poisson and binomial mixtures,
respectively, and might find more applications in the future. The preceding ideas, particularly
(1.3), are close in spirit to the Lindeberg method considered in [9] to deal with Poisson
approximation of sums of independent integer-valued random variables. They are also close to
the probabilistic method to evaluate Stein’s factors introduced in [22] (see also [7] and [21]).
In fact, to estimate the total variation distance between two discrete random variables X and Y ,
these authors use a birth–death process Z whose initial and equilibrium distributions coincide
with those of X and Y , respectively.

To be more precise, let Z+ be the set of nonnegative integers and let N = Z+ \ {0}. Let
n ∈ N, and let 0 < t < 1. Denote by

Sn(t) =
n∑

k=1

1[0,t](Vk), S0(t) = 0,

where (Vk, k ∈ N) is a sequence of independent, identically distributed random variables having
uniform distribution on [0, 1]. Clearly, Sn(t) has the binomial distribution with parameters n

and t . We consider the orthogonal polynomials with respect to Sn(t) defined by

Q(n)
m (t; x) = 1(

n
m

)
(t (1 − t))m

m∑
k=0

(
n − x

m − k

)(
x

k

)
(−t)m−k(1 − t)k, (1.4)

where m = 0, 1, . . . , n. Up to a constant, each one of these polynomials coincides with the
Krawtchouk polynomial of the same degree, as defined in [11, p. 161]. As shown there, such
polynomials satisfy the orthogonality property

E Q(n)
m (t; Sn(t))Q

(n)
r (t; Sn(t)) = δm,r(

n
m

)
(t (1 − t))m

, m, r = 0, 1, . . . , n. (1.5)

On the other hand, let Nλ be a random variable having the Poisson distribution with mean
λ > 0. The orthogonal polynomials with respect to Nλ, named the Charlier polynomials, are
explicitly defined by (cf. [11, Chapter VI])

Cm(λ; x) =
m∑

k=0

(
m

k

)(
x

k

)
k! (−λ)−k, m ∈ Z+, (1.6)

or, equivalently, by the three-term recurrence relation

−λCm+1(λ; x) = (x − m − λ)Cm(λ; x) + mCm−1(λ; x), m ∈ N,

with initial conditions C−1(λ; x) = 0 and C0(λ; x) = 1. These polynomials fulfill the
orthogonality condition

E Cm(λ; Nλ)Cr(λ; Nλ) = m!
λm

δm,r , m, r ∈ Z+. (1.7)
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The orthogonal polynomials above, especially Q
(n)
2 (t; x) and C2(λ; x), will play an important

role in dealing with the total variation distance between binomial and Poisson distributions. We
refer the reader to the monograph by Schoutens [20] for further properties of general orthogonal
polynomials and their connections with stochastic processes and various topics in probability
theory.

Finally, for any m ∈ Z+, the mth forward differences of a function φ : Z+ → R are recur-
sively defined by �0φ = φ, �1φ(i) = φ(i + 1) − φ(i), i ∈ Z+, and �m+1φ = �1(�mφ) or,
equivalently, by

�m+1φ(i) =
m+1∑
k=0

(−1)m+1−k

(
m + 1

k

)
φ(i + k), i ∈ Z+. (1.8)

From now on, it will be assumed that n ∈ N, 0 < λ < n, and p = λ/n. The natural
choice of the stochastic process Z connecting Sn(p) and Nλ is the discrete-time process Z =
(Sk(λ/k))k≥n. As shown in (3.2) and (4.1), below, we have

E φ(Sn(p)) − E φ(Nλ) = −λ2
∞∑

k=n

1

k(k + 1)
E U�2φ(Sk−1(Tk))

= −λ2
∞∑

k=n

1

k(k + 1)
E Uφ(Sk+1(Tk))Q

(k+1)
2 (Tk; Sk+1(Tk)) (1.9)

for any function φ for which the preceding expectations exist, where

Tk = λ

k

(
1 − UV

k + 1

)
, k = n, n + 1, . . . , (1.10)

and U and V are independent, identically distributed random variables having uniform dis-
tribution on [0, 1]. Here and hereafter, all of the random variables appearing under the same
expectation sign are supposed to be mutually independent. Equation (1.9) is the main tool used
to obtain first-order estimates for E φ(Sn(p)) − E φ(Nλ). By applying the same procedure to
each one of the terms on the right-hand side of (1.9), we obtain second-order estimates for
E φ(Sn(p)) − E φ(Nλ), and so on. Replacing φ by an indicator function in (1.9), we are able
to estimate the total variation distance between Sn(p) and Nλ, as defined by

d(Sn(p), Nλ) = 1

2

∞∑
k=0

| P(Sn(p) = k) − P(Nλ = k)| (1.11)

or, equivalently, by

d(Sn(p), Nλ) = P(Sn(p) ∈ Dλ(n)) − P(Nλ ∈ Dλ(n)), (1.12)

where
Dλ(n) = {i ∈ {0, 1, . . . , n} : P(Sn(p) = i) ≥ P(Nλ = i)}. (1.13)

Looking at (1.9) and taking into account the fact that Q
(n)
2 (t; x) converges to C2(λ; x) as

n → ∞ and nt → λ, it is quite clear that both exact values and sharp estimates for d(Sn(p), Nλ)

depend on the second Krawtchouk and Charlier polynomials (more specifically, on the 0s of
such polynomials).
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The paper is organized as follows. In Section 2 we give exact values for d(Sn(p), Nλ) by
computing the set Dλ(n) by means of a simple efficient algorithm whose complexity order is√

λ (Theorem 2.1). In addition, it is shown in Theorem 2.2 that Dλ(n) can be easily described
for moderate values of n, provided that λ is neither close to l+√

l, l ∈ N, from the left nor close
to m − √

m, m = 2, 3, . . . , from the right. Finally, sharp estimates for d(Sn(p), Nλ), together
with a comparative discussion of known results in the literature, are provided in Theorem 2.3.
The proofs of these theorems are postponed to the remaining sections.

2. Main results

Let k ∈ N with k ≥ n, and let 0 < t < 1. We see from (1.4) that

Q
(k+1)
2 (t; x) = x2 − (1 + 2kt)x + k(k + 1)t2

k(k + 1)(t (1 − t))2 . (2.1)

The two 0s of this polynomial are given by

x
(k+1)
j (t) = 1

2 + kt + (−1)j
√

kt(1 − t) + 1
4 , j = 1, 2. (2.2)

As follows from (1.9), we are dealing with second Krawtchouk polynomials whose parameter
t is randomized by Tk , defined in (1.10). Observe that λ/(k + 1) ≤ Tk ≤ λ/k. For this reason,
we denote by

r1,k(λ) = x
(k+1)
1

(
λ

k

)
= 1

2
+ λ −

√
λ

(
1 − λ

k

)
+ 1

4
(2.3)

and by

r2,k(λ) = x
(k+1)
2

(
λ

k + 1

)
= 1

2
+ λ

k

k + 1
+

√
λ

(
1 − λ

k + 1

)
k

k + 1
+ 1

4
(2.4)

the smallest 0 of Q
(k+1)
2 (λ/k; x) and the largest 0 of Q

(k+1)
2 (λ/(k + 1); x), respectively (see

Figure 1). Also, we consider the nonempty set

Bλ(k) = [�r1,k(λ)	, 
r2,k(λ)�] ∩ Z+, (2.5)

where 
x� is the integer part of x and �x	 is the ceiling of x, that is, the smallest integer greater
than or equal to x.

In view of (1.10) and (2.1), the random polynomial Q
(k+1)
2 (Tk; x) converges as k → ∞ to

the second Charlier polynomial C2(λ; x) given by

C2(λ; x) = x2 − (1 + 2λ)x + λ2

λ2 , (2.6)

the 0s of which are

rj (λ) = 1
2 + λ + (−1)j

√
λ + 1

4 , j = 1, 2. (2.7)

Also, we define the nonempty set

Dλ = [
r1(λ)� + 1, �r2(λ)	 − 1] ∩ Z+. (2.8)
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Figure 1: Relative position of Q
(k+1)
2 (λ/k; x), Q

(k+1)
2 (λ/(k + 1); x), and C2(λ; x) for λ > 2.

Finally, for i = 0, 1, . . . , n, we write

P(Sn(p) = i) − P(Nλ = i) = P(Nλ = i)

(
c(n, λ)

gn,λ(i)
− 1

)
, (2.9)

where

c(n, λ) = n! eλ

(
1 − λ

n

)n

and gn,λ(i) = (n − i)! (n − λ)i . (2.10)

In our first main result we give an algorithm to determine the set Dλ(n) defined in (1.13),
thus allowing us to obtain exact values of d(Sn(p), Nλ).

Theorem 2.1. Let n ∈ N, and let 0 < λ < n. Then

(a) Bλ(n) ⊆ Dλ(n) ⊆ Dλ;

(b) Dλ(n) = [lλ(n), mλ(n)] ∩ Z+, where

lλ(n) = min{i ∈ [
r1(λ)� + 1, �r1,n(λ)	] ∩ Z+ : gn,λ(i) ≤ c(n, λ)}
and

mλ(n) = max{i ∈ [
r2,n(λ)�, �r2(λ)	 − 1] ∩ Z+ : gn,λ(i) ≤ c(n, λ)}.
Thanks to Theorem 2.1(a) and definition (1.12), we can give the following lower and upper

bounds for d(Sn(p), Nλ):

max{P(Sn(p) ∈ Bλ(n)) − P(Nλ ∈ Bλ(n)), P(Sn(p) ∈ Dλ) − P(Nλ ∈ Dλ)}
≤ d(Sn(p), Nλ)

≤ P(Sn(p) ∈ Dλ) − P(Nλ ∈ Bλ(n)).

On the other hand, an implementation of the backward–forward algorithm in Theorem 2.1(b)
should take into account the fact that the functiongn,λ(·)defined in (2.10) decreases in [0, λ]∩Z+
and increases in [λ, n] ∩ Z+, as well as the recurrence relations

gn,λ(i + 1) = n − λ

n − i
gn,λ(i), i = 0, 1, . . . , n − 1.
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In each step, the algorithm allows us to decide whether or not a point i belongs to Dλ(n). In
the positive case, the contribution of point i to the total variation distance is given in (2.9). We
note that Kennedy and Quine [14, p. 398] provided a different algorithm to compute the exact
total variation distance between binomial and Poisson distributions when their common mean
λ is smaller than 2 + √

2, approximately.
The Poisson approximation to the binomial law is usually applied for small or moderate

values of λ. In such circumstances, the algorithm in Theorem 2.1(b) gives us the exact value
of d(Sn(p), Nλ) in a very efficient way. The algorithm is also interesting from a theoretical
point of view when we assume that λ = λ(n) → ∞ and λ(n)/n → 0 as n → ∞. To see this,
observe that, by Theorem 2.1(a), #Dλ(n)(n) ≤ #Dλ(n) and that #Dλ(n) has the order of

√
λ(n),

as follows from (2.7) and (2.8). This means that if the total variation distance is computed by
applying (1.11), n differences of probabilities are needed, whereas if this distance is computed
using (1.12) and the algorithm in Theorem 2.1(b), only

√
λ(n) such differences are required.

In this sense, the complexity order of the proposed algorithm is
√

λ(n).
As follows from (2.5) and (2.8), the set Bλ(n) and, therefore, Dλ(n) approaches Dλ as

n → ∞. This implies that, under simple sufficient conditions, the set Dλ(n) can be computed
in an easier way than that in Theorem 2.1(b). In this regard, it will be of interest to describe
Dλ in more detail. Noting that the functions rj (λ) in (2.7) are increasing and that

r1(l + √
l) = l, l ∈ Z+, r2(m − √

m) = m, m ∈ N,

we see that

Dλ = [l + 1, m] ∩ Z+
if λ ∈ Al,m = [l + √

l, l + 1 + √
l + 1) ∩ (m − √

m, m + 1 − √
m + 1] (2.11)

for any l ∈ Z+ and m ∈ N. Observe that the family of sets (Al,m, l ∈ Z+, m ∈ N) is a partition
of (0, ∞) and that the set Dλ is the same for any λ ∈ Al,m. Table 1 displays the sets Dλ for
λ ∈ (0, 6].

We are in a position to state the following theorem.

Table 1: The set Dλ for λ ∈ (0, 6].
λ Dλ

(0, 2 − √
2] {1}

(2 − √
2, 3 − √

3] {1, 2}
(3 − √

3, 1 + √
1) {1, 2, 3}

{4 − √
4} {2, 3}

(4 − √
4, 5 − √

5] {2, 3, 4}
(5 − √

5, 2 + √
2) {2, 3, 4, 5}

[2 + √
2, 6 − √

6] {3, 4, 5}
(6 − √

6, 7 − √
7] {3, 4, 5, 6}

(7 − √
7, 3 + √

3) {3, 4, 5, 6, 7}
[3 + √

3, 8 − √
8] {4, 5, 6, 7}

(8 − √
8, 4 + √

4) {4, 5, 6, 7, 8}
{4 + √

4} {5, 6, 7, 8}
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Theorem 2.2. Let n ∈ N, and let 0 < λ < n. Assume that λ ∈ Al,m, as defined in (2.11), for
some l ∈ Z+ and m ∈ N. Then

(a) Bλ(n) = Dλ(n) = Dλ whenever

n ≥ max

{
λ2

l + 1 − (λ − (l + 1))2 ,
m(m − 1)

m − (λ − m)2

}
; (2.12)

(b) Dλ \ Dλ(n) ⊆ Dλ \ Bλ(n) ⊆ {l + 1, m} whenever

n ≥ max

{√
l + 1

2
(
√

l + 1 + 1)2,
(
√

m + 1)(m − 2)

2

}
.

Concerning Theorem 2.2(a), we mention the following examples (see Table 1). Suppose
that λ ∈ (0, 2 − √

2]. Since in this case l = 0 and m = 1, we have Dλ(n) = Dλ = {1} for
n ≥ λ/(2−λ), that is, for n ≥ 1. This has already been shown in [14]. Assume that λ = 4−√

4.
In this case, l = 1 and m = 3, and, therefore, Dλ(n) = Dλ = {2, 3} for n ≥ 3. Finally, assume
that λ ∈ [3 + √

3, 8 − √
8]. Since l = 3 and m = 7, we have Dλ(n) = Dλ = {4, 5, 6, 7} for

n ≥ max

{
λ2

4 − (λ − 4)2 ,
42

7 − (λ − 7)2

}
, (2.13)

in particular, for n ≥ 23, as follows by taking suprema in λ ∈ [3 + √
3, 8 − √

8] on the
right-hand side of (2.13).

In general, denote by n0(λ) the smallest integer such that Dλ(n) = Dλ for n ≥ n0(λ).
Numerical computations show that n0(λ) is not uniformly bounded when λ varies in a compact
set. This is reflected in (2.12). In fact, for each l ∈ Z+, n0(λ) tends to ∞ when λ approaches
l + 1 + √

l + 1 from the left. Similarly, for each m = 2, 3, . . . , n0(λ) → ∞ as λ tends to
m − √

m from the right. This explains why the set Dλ(n) has no simple form in general.
To illustrate Theorem 2.2(b), assume that λ ∈ (8 − √

8, 4 + √
4). In this case, l = 3 and

m = 8. Hence, we have from Theorem 2.2(a) and Table 1 that Dλ(n) = Dλ = {4, 5, 6, 7, 8}
for

n ≥ max

{
λ2

4 − (λ − 4)2 ,
56

8 − (λ − 8)2

}
.

Observe that n is large if λ is close to 4 + √
4 from the left or close to 8 − √

8 from the right.
However, Theorem 2.2(b) states that Dλ \ Dλ(n) ⊆ {4, 8} for n ≥ 12. Therefore, Dλ(n) can
be determined from Dλ by computing (2.9) for i = 4, 8, provided that n ≥ 12. The important
role played by the numbers l + √

l and m − √
m, that is, the endpoints of the set Al,m, l ∈ Z+,

m ∈ N, has already been noted in [14, p. 398].
Sharp estimates for d(Sn(p), Nλ) are given in the following theorem, where it is shown that

the set Dλ appears in the leading term of the estimate. To this end, denote by x∧y = min(x, y).
For any m ∈ N, n = 2, 3, . . . , and 0 < λ < n, we set

fm(n, λ) = 2m−1 ∧ 1

2

(
n + 2

n − 1

)3/2
√

m!
λm(1 − λ/n)m

, (2.14)

as well as

Kλ(n) = n + 2

2(n + 1)

(
2λ

3
f3(n, λ) + λ2

4
f4(n, λ)

)
. (2.15)

With this notation, we state the following theorem.
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Theorem 2.3. Let n = 2, 3, . . . , let 0 < λ < n, and let p = λ/n. Then∣∣∣∣d(Sn(p), Nλ) − p
λ E |C2(λ; Nλ)|

4

∣∣∣∣ ≤ Kλ(n)p2, (2.16)

where Kλ(n) is defined in (2.15).

Thanks to (6.4) and (6.5), below, we can write

1
2 E |C2(λ; Nλ)| = − E 1Dλ(Nλ)C2(λ; Nλ)

= E �1 1Dλ(Nλ)C1(λ; Nλ)

= C1(λ; 
r1(λ)�) P(Nλ = 
r1(λ)�)
− C1(λ; �r2(λ)	 − 1) P(Nλ = �r2(λ)	 − 1), (2.17)

where C1(λ; x) = (λ − x)/λ, as follows from (1.6). Essentially, the preceding equalities were
first obtained in [12].

As discussed in the introduction, several authors have shown similar estimates to that in
Theorem 2.3 in the context of Poisson approximation for sums of independent random indicators
(cf. [6], [13] and [15]). Specializing such estimates to the case at hand, we see the following.
The leading term is the same as that on the left-hand side of (2.16), although written in different
ways. However, instead of the upper bound on the right-hand side of (2.16), we find the
following alternatives:

2.6 p2 if p ≤ 1
4 (see [15]),

2(1 − e−λ)p2
((

1 ∧ 1.4√
λ

)
+ 1 − e−λ

)
(see [6]),

(2p)3/2

2(1 − √
2p)

if p <
1

2
(see [13]).

From (2.14) and (2.15), it is readily seen that, for n ≥ 10, we have

Kλ(n) ≤ 4

11

(
4

(
λ ∧

√
2

3
√

λ(1 − p)3

)
+

(
3λ2 ∧

√
2

(1 − p)2

))
. (2.18)

This, together with simple numerical computations performed with MAPLE� 9.01, shows that
the upper bound on the right-hand side of (2.16) is always better than the preceding ones for
0 < p ≤ 1

2 and n ≥ 10. On the other hand, Roos [19] obtained the estimate

d(Sn(p), Nλ) ≤ 3

4e
p + 7(3 − 2

√
p)

6(1 − √
p)2 p

√
p, (2.19)

where the leading constant 3/(4e) is the best possible (see also [18] for other estimates).
Applying the triangular inequality to (2.16), we obtain the upper bound

d(Sn(p), Nλ) ≤ p
λ E |C2(λ; Nλ)|

4
+ Kλ(n)p2. (2.20)

Observe that the leading constant in (2.20) satisfies (cf. [4] or [19])

1

4
sup

0<λ<n

λ E |C2(λ; Nλ)| = 1

4
E |C2(1; N1)| = 3

4e
.
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On the other hand, using (2.6), as well as the central limit theorem and the strong law of large
numbers for the standard Poisson process, we have

1

4
lim

λ→∞ λ E |C2(λ; Nλ)| = 1

4
lim

λ→∞ E

∣∣∣∣
(

Nλ − λ√
λ

)2

− Nλ

λ

∣∣∣∣ = 1

4
E |Z2 − 1| = 1√

2πe
,

where Z is a standard normal variable. Finally, for 0 < λ ≤ 2 − √
2, we have, from the first

equality in (2.17), Table 1, and (2.6),

λ E |C2(λ; Nλ)|
4

= −λ

2
E 1{1}(Nλ)C2(λ; Nλ) = 2 − λ

2
λe−λ.

In other words, the leading constant in (2.20) has the order of λ for a small λ. The preceding
comments show that the leading constant in (2.20) is better than 3/(4e).

Finally, the remainder term in (2.20) has the order of p2 with constant Kλ(n) satisfying
(2.18). This means that such a term is better than the second term in (2.19).

3. Auxiliary results

For the sake of concreteness, we always denote by φ a function φ : Z+ → [0, 1], although
the results in this section essentially hold for arbitrary exponentially bounded functions. It
follows from (1.8) that

|�m+1φ(i)| ≤ 2m, m, i ∈ Z+. (3.1)

We start with the following lemma.

Lemma 3.1. For any m ∈ N, n ∈ Z+, and 0 < t < 1, we have

|E �mφ(Sn(t))| ≤ 2m−1 ∧ 1

2
√(

n+m
m

)
(t (1 − t))m

.

Proof. From [2, Lemma 7] we have

E �mφ(Sn(t)) = E φ(Sn+m(t))Q(n+m)
m (t; Sn+m(t)). (3.2)

On the other hand, let A = {x ∈ R : Q
(n+m)
m (t; x) ≥ 0}. The orthogonality condition in (1.5)

gives us

1
2 E |Q(n+m)

m (t; Sn+m(t))| = E 1A(Sn+m(t))Q(n+m)
m (t; Sn+m(t))

= − E 1R\A(Sn+m(t))Q(n+m)
m (t; Sn+m(t)).

This, together with the fact that 0 ≤ φ ≤ 1, yields

|E φ(Sn+m(t))Q(n+m)
m (t; Sn+m(t))|

≤ max{E 1A(Sn+m(t))Q(n+m)
m (t; Sn+m(t)), − E 1R\A(Sn+m(t))Q(n+m)

m (t; Sn+m(t))}
= 1

2 E |Q(n+m)
m (t; Sn+m(t))|. (3.3)

Thus, the conclusion follows from (3.1)–(3.3) and Hölder’s inequality.
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Let n ∈ N, and let 0 < λ < n. Suppose that k ∈ N with k ≥ n. Let U and V be two
independent, identically distributed random variables having uniform distribution on [0, 1], and
consider a sequence (pl)l≥k ⊆ (0, 1). For any l ≥ k, we define

λl = lpl, Rl = pl + (pl+1 − pl)U, Tl = pl + (pl+1 − pl)UV . (3.4)

Lemma 3.2. Let m ∈ Z+ and k ∈ N. If λl → λ as l → ∞ then

E �mφ(Sk(pk)) − E �mφ(Nλ) =
∞∑
l=k

(λl − λl+1) E �m+1φ(Sl(Rl))

+
∞∑
l=k

λl(pl+1 − pl) E U�m+2φ(Sl−1(Tl)). (3.5)

If, in addition, (λl)l≥k is increasing, (pl)l≥k is decreasing, and λ/(l+2) ≤ pl ≤ λ/(l+1), l =
k, k + 1, . . . , then

|E �mφ(Sk(pk)) − E �mφ(Nλ)| ≤ (λ − λk)fm+1(k + 1, λ)

+ 1

2
fm+2(k + 1, λ)

∞∑
l=k

λl(pl − pl+1), (3.6)

where fm(·, ·) is defined in (2.14).

Proof. For any x, y ∈ (0, 1), we have, by calculus (see also [2, Theorem 1]),

E φ(Sn(x)) − E φ(Sn+1(y)) = (nx − (n + 1)y) E �1φ(Sn(x + (y − x)U))

+ nx(y − x) E U�2φ(Sn−1(x + (y − x)UV )), n ∈ N.

This, together with (3.4) and the telescoping sum,

E φ(Sk(pk)) − E φ(Nλ) =
∞∑
l=k

(E φ(Sl(pl)) − E φ(Sl+1(pl+1))),

shows (3.5). To show (3.6), observe that we have, by assumption and (3.4),

λ

l + 3
≤ pl+1 ≤ Ul ≤ pl ≤ λ

l + 1
, l = k, k + 1, . . . ,

where Ul = Rl or Ul = Tl . Hence, estimate (3.6) follows from Lemma 3.1, (2.14), and (3.5).
The proof is complete.

4. Proof of Theorem 2.1

Choosing m = 0, k = n, and pl = λ/l, l ≥ k, in (3.5), and recalling (3.2), we have

E φ(Sn(p)) − E φ(Nλ) = −λ2
∞∑

k=n

1

k(k + 1)
E Uφ(Sk+1(Tk))Q

(k+1)
2 (Tk; Sk+1(Tk)), (4.1)

where

Tk = λ

k

(
1 − UV

k + 1

)
, k ≥ n. (4.2)
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On the other hand, it follows from (2.3)–(2.8) that (Bλ(k))k≥n is a nondecreasing sequence of
sets such that

∞⋃
k=n

Bλ(k) = Dλ. (4.3)

We will firstly show that Bλ(n) ⊆ Dλ(n). Let i ∈ Bλ(n). We claim (see Figure 1) that

Q
(k+1)
2 (t; i) ≤ 0,

λ

k + 1
≤ t ≤ λ

k
, k ≥ n. (4.4)

Indeed, the functions x
(k+1)
j (t) defined in (2.2) are increasing in t . Therefore, if λ/(k + 1) ≤

t ≤ λ/k, we have, by virtue of (2.3) and (2.4),

x
(k+1)
1 (t) ≤ x

(k+1)
1

(
λ

k

)
= r1,k(λ) ≤ r2,k(λ) = x

(k+1)
2

(
λ

k + 1

)
≤ x

(k+1)
2 (t). (4.5)

As stated in (4.3), (Bλ(k))k≥n is nondecreasing and, therefore, i ∈ Bλ(k), k ≥ n. From (2.1),
(2.2), and (4.5), this means that Q

(k+1)
2 (t; i) ≤ 0, thus showing claim (4.4).

By (4.2), we have λ/(k + 1) ≤ Tk ≤ λ/k, k ≥ n. Thus, applying (4.1) with φ = 1{i},
and taking into account (4.4), we see that P(Sn(p) = i) ≥ P(Nλ = i). This shows that
Bλ(n) ⊆ Dλ(n).

Let i ∈ Z+ \ Dλ. To show that i ∈ Z+ \ Dλ(n), we distinguish the following two cases.
Case 1: λ > 2. Let k ≥ n, and let λ/(k + 1) ≤ t ≤ λ/k. It can be checked from (2.2)–(2.4)

and (2.7) that

r1(λ) < x
(k+1)
1

(
λ

k + 1

)
≤ x

(k+1)
1 (t) < x

(k+1)
2 (t) ≤ x

(k+1)
2

(
λ

k

)
< r2(λ).

By virtue of (2.1) and (2.2), this means that

Q
(k+1)
2 (t; i) > 0,

λ

k + 1
≤ t ≤ λ

k
, k ≥ n. (4.6)

As above, (4.6) implies that i ∈ Z+ \ Dλ(n).
Case 2: λ ≤ 2. The previous argument partially fails now, because in the case at hand we

have x
(k+1)
1 (λ/(k + 1)) ≤ r1(λ). As follows from Table 1, either i = 0 or i ≥ r2(λ). Since

0 /∈ Dλ(n), it can be assumed that i ≥ r2(λ). In such a case, (4.6) is again true and, therefore,
i ∈ Z+ \ Dλ(n). We have shown that Dλ(n) ⊆ Dλ.

To show part (b), observe that the function gn,λ(·) defined in (2.10) decreases in [0, λ] ∩ Z+
and increases in [λ, n] ∩ Z+. Also, it follows from (2.3) and (2.4) that r1,n(λ) < λ < r2,n(λ).
Therefore, part (b) follows from (2.5), (2.8), (2.9), and Theorem 2.1(a). This completes the
proof.

5. Proof of Theorem 2.2

Assume that λ ∈ Al,m, as defined in (2.11), for some l ∈ Z+ and m ∈ N. Clearly,
Bλ(n) = Dλ(n) = Dλ whenever Bλ(n) = Dλ or, equivalently, whenever

[�r1,n(λ)	, 
r2,n(λ)�] ∩ Z+ = [l + 1, m] ∩ Z+,
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l + 2

l + 1

l

r1,n(λ)

r1(λ)

l + √
l l + 1 + √

l + 1

Figure 2: Relative position of r1,n(λ) and r1(λ).

as follows from (2.5) and (2.11). By (2.3) and (2.7), the functions r1,n(λ) and r1(λ) are strictly
increasing in λ, and r1,n(λ) ≥ r1(λ) (see Figure 2). Thus, �r1,n(λ)	 = l + 1 if and only if
r1,n(λ) ≤ l + 1. By (2.3) and some straightforward computations, this is equivalent to

n ≥ λ2

l + 1 − (λ − (l + 1))2 . (5.1)

Similarly, the functions r2,n(λ) and r2(λ) are strictly increasing in λ, and r2,n(λ) ≤ r2(λ).
Hence, 
r2,n(λ)� = m if and only if r2,n(λ) ≥ m or, equivalently,

n ≥ m(m − 1)

m − (λ − m)2 , (5.2)

as follows from (2.4) and some easy computations. Thus, (2.12) follows from (5.1) and (5.2).
This shows part (a).

To show part (b), it follows from (2.5) and (2.11) that Dλ \ Bλ(n) ⊆ {l + 1, m} whenever
r1,n(λ) ≤ l+2 and r2,n(λ) ≥ m−1. In particular (see Figure 2), whenever r1,n(l+1+√

l + 1) ≤
l + 2 and r2,n(m−√

m) ≥ m− 1. Again, by (2.3) and (2.4), this last statement is equivalent to

n ≥ max

{
(l + 1 + √

l + 1)2

2
√

l + 1
,
(
√

m + 1)(m − 2)

2

}
,

thus showing (b). The proof is complete.

6. Proof of Theorem 2.3

We claim that ∣∣∣∣E φ(Sn(p)) − E φ(Nλ) + λ2

2n
E �2φ(Nλ)

∣∣∣∣
≤ n + 2

2(n + 1)
p2

(
2λ

3
f3(n, λ) + λ2

4
f4(n, λ)

)
. (6.1)
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In fact, as in the proof of Theorem 2.1, we have, from (3.5),

E φ(Sn(p)) − E φ(Nλ)

= −λ2
∞∑

k=n

1

k(k + 1)
E U�2φ(Sk−1(Tk))

= −λ2

2n
E �2φ(Nλ)

− λ2
∞∑

k=n−1

1

(k + 1)(k + 2)
E U(�2φ(Sk(Tk+1)) − �2φ(Nλ)), (6.2)

where Tk is defined in (4.2). Fix k ≥ n − 1, and consider the sequence (p̃l)l≥k given by
p̃l = Tl+1, l ≥ k. By (4.2), this sequence satisfies the requirements of Lemma 3.2 to obtain
estimate (3.6) and, in addition,

λ − kTk+1 ≤ λ

k + 1
(1 + UV ), lTl+1(Tl+1 − Tl+2) ≤ λ2

(l + 1)(l + 2)
, l ≥ k.

Hence, applying (3.6), we have

|E U(�2φ(Sk(Tk+1)) − �2φ(Nλ))|

≤ λ

k + 1
E U(1 + UV )f3(k + 1, λ) + λ2

4
f4(k + 1, λ)

∞∑
l=k

1

(l + 1)(l + 2)

≤
(

2λ

3
f3(n, λ) + λ2

4
f4(n, λ)

)
1

k + 1
, (6.3)

where the second inequality holds because fm(·, λ) is decreasing. Claim (6.1) follows from
(6.2) and (6.3).

On the other hand, it is known (cf. [8, Lemma 9.4.4]) that

(−1)m E �mφ(Nλ) = E φ(Nλ)Cm(λ; Nλ), m ∈ Z+. (6.4)

By (1.7), (2.7), and (2.8), we have

sup
A⊆Z+

| E 1A(Nλ)C2(λ; Nλ)| = − E 1Dλ(Nλ)C2(λ; Nλ) = 1
2 E |C2(λ; Nλ)|. (6.5)

Choosing φ = 1A in (6.1), taking suprema in A ⊆ Z+, and applying (6.4) and (6.5), we obtain
estimate (2.16). This concludes the proof.
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