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The motion of tracer particles is kinematically simulated around three elementary
flow patterns; a Burgers vortex, a shear-layer structure with coincident vortices and
a node-saddle topology. These patterns are representative for their broader class
of coherent structures in turbulence. Therefore, examining the dispersion in these
elementary structures can improve the general understanding of turbulent dispersion
at short time scales. The shear-layer structure and the node-saddle topology exhibit
similar pair dispersion statistics compared to the actual turbulent flow for times
up to 3–10τη, where, τη is the Kolmogorov time scale. However, oscillations
are observed for the pair dispersion in the Burgers vortex. Furthermore, all three
structures exhibit Batchelor’s scaling. Richardson’s scaling was observed for initial
particle pair separations r0 6 4η for the shear-layer topology and the node-saddle
topology and was related to the formation of the particle sheets. Moreover, the
material line orientation statistics for the shear-layer and node-saddle topology are
similar to the actual turbulent flow statistics, up to at least 4τη. However, only the
shear-layer structure can explain the non-perpendicular preferential alignment between
the material lines and the direction of the most compressive strain, as observed in
actual turbulence. This behaviour is due to shear-layer vorticity, which rotates the
particle sheet generated by straining motions and causes the particles to spread in
the direction of compressive strain also. The material line statistics in the Burgers
vortex clearly differ, due to the presence of two compressive principal straining
directions as opposed to two stretching directions in the shear-layer structure and
the node-saddle topology. The tetrad dispersion statistics for the shear-layer structure
qualitatively capture the behaviour of the shape parameters as observed in actual
turbulence. In particular, it shows the initial development towards planar shapes
followed by a return to more volumetric tetrads at approximately 10τη, which is
associated with the particles approaching the vortices inside the shear layer. However,
a large deviation is observed in such behaviour in the node-saddle topology and the
Burgers vortex. It is concluded that the results for the Burgers vortex deviated the
most from actual turbulence and the node-saddle topology dispersion exhibits some
similarities, but does not capture the geometrical features associated with material
lines and tetrad dispersion. Finally, the dispersion around the shear-layer structure
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shows many quantitative (until 2–4τη) and qualitative (until 20τη) similarities to the
actual turbulence.

Key words: topological fluid dynamics, turbulence theory, turbulent mixing

1. Introduction
The role of the carrier fluid in the transport of scalar quantities (e.g. particles and

chemicals) is important in many natural and industrial processes. Generally, turbulence
is implicitly present in the carrier fluid in processes such as cloud formation,
pollination and pollutant dispersion. In the case of combustion and chemical mixing,
induction of turbulence is desired to enhance the mixing of scalar quantities. Thus,
the understanding of the scalar transport by the turbulent carrier fluid is important.

Perhaps the simplest quantitative description of the scalar motion is the statistical
evolution of the displacement of two marked particles (Richardson 1926; Batchelor
1950, 1952a,b). This displacement, expressed in terms of the mean-square particle
separation, indicates the average distance travelled by the particles around their centre
of mass after time t. Batchelor (1950) conjectured that up to the Batchelor time
scale (for details see § 3.1), the two particles initially separated by r0 will remain
within the same flow structure of size r0. The mean-square pair separation statistics
scale with t2. This scaling, known as Batchelor’s scaling, has been supported by
many experimental and numerical observations (Yeung 1994; Yeung & Borgas 2004;
Bourgoin et al. 2006; Sawford, Yeung & Hackl 2008). The underlying assumption
that the particles are displaced within the same flow structure implies that this flow
structure exists without significant change up to at least the Batchelor time scale.
Basically, a structure needs to persist in order to have a notable effect on the initial
dispersion.

The persistence of the flow structure up to the Batchelor time scale seems consistent
with the concept of coherent structures, which seeks to describe turbulence in terms
of elementary fluid motions that are coherent in space and time (Cantwell 1981;
Adrian 2007). A well-known example of a coherent structure is the ‘worm’ vortex in
homogeneous isotropic turbulence (Jimenez et al. 1993). Such coherent structures are
long lived and may, therefore, have the capacity to contribute to particle dispersion.
However, at present little attention is given to understanding the contribution of the
coherent structures to the Lagrangian particle dispersion statistics (Salazar & Collins
2009), including the orientation of material lines (Batchelor 1952b; Drummond &
Münch 1990; Girimaji & Pope 1990; Guala et al. 2006) and four particle or tetrad
dispersion statistics (Chertkov, Pumir & Shraiman 1999; Biferale et al. 2005; Xu,
Ouellette & Bodenschatz 2008; Xu, Pumir & Bodenschatz 2011; Hackl, Yeung &
Sawford 2011; Devenish 2013; Pumir, Bodenschatz & Xu 2013). Moreover, the
dispersion statistics reveal a rich behaviour even at short time scales, i.e. within the
Batchelor time scale, which suggests they may be qualitatively understood from the
dispersion of particles within particular coherent structures. Additionally, Richardson’s
t3 scaling of the mean-square pair separation has been found to directly follow
Batchelor’s t2 scaling (Sawford et al. 2008; Bitane, Homann & Bec 2012) for small
initial separations and at relatively small time scales. Due to this small time scale,
the onset of Richardson’s regime can be explored qualitatively by studying dispersion
around these structures.
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Here, we explore these open issues by considering the evolution of pair dispersion,
material lines and tetrahedrons within the same coherent flow structure. The
orientation of material lines (Batchelor 1952b; Drummond & Münch 1990; Girimaji
& Pope 1990; Guala et al. 2006) is studied as it helps to understand the geometry of
turbulence and the orientation of passive scalar gradients. Similarly, the four-particle
or tetrad dispersion statistics characterise the evolution of the shape and the size of
the scalar field (Chertkov et al. 1999; Biferale et al. 2005; Xu et al. 2008, 2011;
Hackl et al. 2011; Devenish 2013; Pumir et al. 2013).

In this study we use elementary flow structures, which are representative for their
respective broader class of structures. Based on an analysis of the velocity gradient
tensor, which describes the flow in the neighbourhood of a point, Chong, Perry &
Cantwell (1990) distinguish two main topology classes, i.e. node-saddle topologies and
foci. Furthermore, they identify some degenerate topologies, in particular shear layers,
for which the discriminant of the velocity gradient tensor is zero. The foci correspond
to swirling motions, which may be interpreted as vortices. As already mentioned,
vortices are widely observed in turbulent flows (Jimenez et al. 1993; Jimenez & Wray
1998). The node-saddle topologies are associated with dissipative motions, which are
typically found adjacent to vortices (Chong et al. 1990; Chacin & Cantwell 2000;
Ganapathisubramani, Lakshminarasimhan & Clemens 2008). More recent work on
flow structures has highlighted the importance of shear-layer structures with coincident
vortices (Elsinga & Marusic 2010). These shear layers are associated with intense
vorticity and dissipation, and their existence appears furthermore consistent with
the k−5/3 scaling of the kinetic energy spectrum (Elsinga & Marusic 2010; Ishihara,
Kaneda & Hunt 2013; Hunt et al. 2014; Elsinga & Marusic 2016; Elsinga et al.
2017). Hence, we examine the particle dispersion in a generic vortex structure, i.e.
a Burgers vortex (Burgers 1921), a generic shear-layer structure (Elsinga & Marusic
2010) and a generic node-saddle topology. The latter contains the same strain field
as the shear-layer structure, but possesses no vorticity. Specific details on these
elementary structures are given in § 2. Presently the elementary structures are not
evolving in time, which is in line with the coherence assumed for short time scales
as discussed above. The dispersion statistics are studied for these structures and
compared with actual turbulent flows.

Additionally, the considered elementary flow structures contain a critical point at
their centre. Tracer particles remain close to a critical point for relatively long time,
because the magnitude of the flow velocity is low in its neighbourhood. Therefore, the
flow structure around critical points has a notable effect on dispersion, as opposed to
structures where the tracer particles pass through quickly. In the latter case, velocity
differences across the structure are insignificant with respect to the particle velocity
relative to the structure. Consequently, the particles move away from the structure
before they can be dispersed by it. However, if the flow structure advects with the flow
velocity at its centre, the particle dispersion is conveniently described in the moving
frame of reference attached to the structure, since a uniform velocity field does not
contribute to the relative motion between particles. In this frame of reference, the
structure centre is again a critical point.

Goto & Vassilicos (2004) linked the dynamics of the two particle statistics to
the flow around critical points in two-dimensional turbulence. They showed that the
particle pairs stayed together in the proximity of elliptical zero acceleration points
(vortex centres) and separated in the vicinity of hyperbolic zero-acceleration points
(saddle points). Furthermore, based on this observation, a model was constructed
to predict the temporal evolution of the pair dispersion statistics. However, this
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work was done in two dimensions. Hence, we explore the pair dispersion around
three-dimensional flow patterns containing similar critical points and, in addition,
consider material lines and tetrad dispersion.

The paper is structured as follows. The description of the different flow structures
and the method to generate them is described in § 2. In § 3, the details of the
particle simulation and the computed dispersion statistics are explained. First, the pair
dispersion (Richardson 1926; Batchelor 1950, 1952a,b; Yeung, Pope & Sawford 2006;
Sawford et al. 2008; Salazar & Collins 2009; Bitane et al. 2012; Bitane, Homann &
Bec 2013) is described in terms of the root mean square of relative separation, and
the compensated relative dispersion whose theory is discussed in § 3.1. Section 3.2
explains how the orientation of material lines is computed from the velocity gradient
tensor at the critical point. Finally, the tetrad dispersion (Biferale et al. 2005; Pumir
et al. 2013) is characterised by the evolution of the size and shape of a tetrahedron.
The quantification of the shape and size of the tetrahedrons is explained in § 3.3.
The results are presented in § 4, where at first the pair dispersion statistics are
established for the structures. Then, the advanced measures of dispersion, such as the
orientation of material lines and the evolution of the tetrad dispersion are explored in
these structures and compared to the statistics in actual turbulent flows. Furthermore,
the snapshots of the particle distribution at specific times are plotted to illustrate the
dispersion of the particles around the different flow structures. Finally, the conclusions
will be discussed in § 5.

2. Flow structures
The tracer particle motion is simulated around three different flow structures: a

Burgers vortex, a shear-layer structure and a node-saddle topology. The Burgers vortex
(BV) is computed from the equations, while the shear-layer structure (SLS) and the
node-saddle topology (NST) are extracted from an isotropic turbulent flow. The details
of generating and extracting these structures are discussed in the following paragraphs.

2.1. Burgers vortex (BV)
For the velocity field of a Burgers vortex (Burgers 1921), an exact solution of the
Navier–Stokes equation, is given by

uz = αz, ur =−
αr
2
, uθ =

Γ

2πr

[
1− exp

(
−
αr2

4ν

)]
, (2.1a−c)

where α, Γ and ν represent the rate of strain, vortex circulation and viscosity,
respectively. Furthermore, uz, ur and uθ correspond to the velocity components in the
axial (z), radial (r) and azimuthal (θ ) directions, respectively. The Reynolds number
of the vortex based on the circulation is defined as ReΓ = Γ/(2πν) and the radius
is given as rm = 2

√
ν/α. Jimenez & Wray (1998) and da Silva, dos Reis & Pereira

(2011), among others, have shown that the core of the intense vorticity structures
(IVS) in homogeneous isotropic turbulence and turbulent jet flows is well described
by the Burgers vortex model. The fact that the flow in the core region approaches
this steady solution of the governing equations, would explain why the vortices are
long-lived structures. The characteristics of the IVS, such as, the mean value of
the vortex core radius, the mean maximum azimuthal velocity and the Reynolds
number based on circulation (ReΓ ), have been reported in da Silva et al. (2011).
The Burgers vortex is described completely by three parameters. Here, we choose
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FIGURE 1. Burgers vortex in a Cartesian coordinate system. (a, b) Represent velocity
vector plots in λ1 = 0, and λ2 = 0, λ3 = 0 planes, respectively. All length scales are
normalised by the Kolmogorov length scale (η).

the vortex core radius (rm/η = 4.65), vortex circulation (Γ/uηη = 415.67) and rate
of strain (αη/uη = 0.25) whose values were computed using the data presented in
da Silva et al. (2011) for the forced homogeneous isotropic turbulence (HIT) at a
Taylor Reynolds number Reλ = 111. The vortices are small-scale structures, therefore
the Kolmogorov length (η) and velocity (uη) scales are used for normalisation. In
Kolmogorov scaling, the results are expected to be insensitive to the Reynolds number.

Figure 1 illustrates the Burgers vortex computed from (2.1) using the above
mentioned values. All the length and velocities scales are converted from the
cylindrical to a Cartesian coordinate system (λ1, λ2, λ3) to simplify the comparison
between different structures. Here λ2 and λ3 are radial/compressive strain directions
and λ1 corresponds to the stretching strain direction, which coincides with the
vortex axis, i.e. the z-axis in (2.1). Figure 1(a) shows the swirling flow in the
plane perpendicular to the vortex axis (λ1 direction), while figure 1(b) illustrates the
stretching motion along the vortex axis, and compression along the radial directions
(λ2 and λ3).

2.2. Shear-layer structure (SLS)
The shear-layer structure (SLS) is extracted from a direct numerical simulation (DNS)
of homogeneous isotropic turbulence (Li et al. 2008) at a Taylor Reynolds number
Reλ = 433 using the averaging procedure described in Elsinga & Marusic (2010).
Basically, this structure describes the average flow around a point when the observer
is aligned with the local directions of principal strain. The SLS appeared qualitatively
similar in different kinds of turbulent flows, as such, it is considered universal
(Elsinga & Marusic 2010). For homogeneous isotropic turbulence at Reλ > 250, it
was shown that the velocity within 60η distance from the origin of the SLS is
independent of the Reynolds number when using Kolmogorov scaling (Elsinga &
Marusic 2016). Furthermore, there exists an approximate balance between vorticity
stretching and diffusion within the core of the shear layer, which causes the material
derivative of vorticity to be small when compared to the peak vorticity magnitude
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squared (O(10−2) (Elsinga & Marusic 2016)). This means that the SLS evolves slowly,
which is consistent with the concept of coherent structures (see introduction). A brief
explanation of the averaging procedure to extract this structure is as follows.

First, the strain-rate tensor is computed from the velocity gradients (∂ui/∂xj) at
a point xp in the turbulent flow database. Then, the eigenvalues and the principal
directions (i.e. eigenvectors) of the strain-rate tensor are calculated. The principal
directions e1, e2 and e3 represent the most stretching, the intermediate and the most
compressing straining directions, respectively. Furthermore, the positive intermediate
straining direction (e2) is chosen such that its dot product with the vorticity vector is
positive. The vector e3 is fixed as the third direction. To complete the right-handed
coordinate system, the first direction (e1) is computed as the cross-product between
e2 and e3. Then the new coordinate system (λi) is defined along the corresponding
principal directions ei. The flow velocities (u) on the new grid (λ1, λ2, λ3) relative
to the point xp are computed by linear interpolation, where the grid spacing is one
Kolmogorov length scale in each direction. The components ui represent velocities
along the corresponding λi directions. This three-dimensional velocity field in the
new local coordinate system is then calculated for different points xp in the flow and
finally averaged over all points xp considered. The result is the shear-layer structure
illustrated in figure 2. One of the main features of this structure can be observed
in figure 2(b), where the shear layer spans from the top left corner in figure to the
bottom right corner. Figures 2(a) and 2(c) represent the velocity in the cross-planes
λ1 = 0 and λ3 = 0, respectively, where the flow is compressive along the λ3 direction
and stretching along the intermediate straining direction λ2 and along λ1. This leads
to a saddle topology at the origin in figure 2(a) and a node in figure 2(c).

2.3. Node-saddle topology
The node-saddle topology (NST) is obtained by applying planar symmetry to all
velocities (u1, u2, u3) in the previously discussed shear-layer structure. The velocity
component u1 is made symmetric about the plane λ1=0. Similarly, u2 and u3 are made
symmetric about the planes λ2= 0 and λ3= 0, respectively. This symmetric operation
maintains the strain of the shear-layer structure and removes its vorticity. The velocity
vectors in the different cross-planes are shown in figure 3. The difference between
the node-saddle topology and the shear-layer structure can be seen by comparing
figures 2 and 3. The shear layer in figure 2(b) vanishes in figure 3(b) due to the
planar symmetry, resulting in a pure node-saddle critical point with no vorticity at
the origin. As before, the flow in the other cross-planes shows a saddle (figure 3a)
and a node topology at the origin (figure 3c).

3. Particle simulation and statistics
The point particles considered in the pair and tetrad dispersion are passive tracers

or marked fluid parcels. Their motion is simulated according to

dxp(t)
dt
= u(xp(t)), (3.1)

where u(xp) represents the fluid velocity at the instantaneous particle position xp. The
explicit fourth-order Runge–Kutta scheme is employed to integrate the equation in
time. The velocity on the right-hand side is calculated by the tri-linear interpolation
of the velocity field of the shear-layer structure and the node-saddle topology. For
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FIGURE 2. Shear-layer structure extracted from the isotropic turbulent flow (Li et al.
2008) at Reλ= 433. (a–c) Represent velocity vector plots in the cross-planes λ1= 0, λ2= 0
and λ3= 0, respectively. (d) Illustrates the streamlines in λ2= 0 cross-plane. All the length
scales are normalised by the Kolmogorov length scale (η).

the Burgers vortex, the equations (2.1) are used to compute velocity at the particle
position. To study pair dispersion, 5000 particle pairs are initially uniformly distributed
on a sphere around the origin (Saff & Kuijlaars 1997), where the centre of the mass
of each pair coincides with the origin of the extracted flow structures, as shown
in figure 4. The particle distribution is chosen around the origin of the structures,
which correspond to critical points. These critical points have a notable effect on
the particle dispersion as discussed in the introduction. Subsequently, the particle
motion follows from the above equation. Due to the symmetries in the considered
flow structures the centre of the mass of a particle pair remains at the origin in all
cases and at all times. The initial separation distance between the two particles of
a pair is defined as the diameter of the sphere, i.e. twice the distance between the
particle and the origin, where the centre of the mass of the pair is located. Similar
to the pair dispersion, tetrad dispersion is studied by kinematically simulating 4000
regular tetrahedrons (same edge length) around the origin of the flow structures. The
origin of the structure coincides with the centroid of the tetrahedron. The quantities
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FIGURE 3. Node-saddle topology obtained by symmetrising the shear-layer structure
presented in figure 2. (a–c) Represent velocity vector plots in the cross-planes λ1 = 0,
λ2 = 0 and λ3 = 0, respectively. (d) Illustrates the streamlines in the λ2 = 0 cross-plane.
All the length scales are normalised by the Kolmogorov length scale (η).

to describe the pair and tetrad dispersion are explained in §§ 3.1 and 3.3, respectively.
The details concerning the simulations of material lines and the statistics of their
orientation will be discussed in § 3.2.

3.1. Pair dispersion

The pair dispersion describes the average separation of particles. This is characterised
by the evolution of the mean square of the relative separation (MSRS) between two
particles (Richardson 1926; Batchelor 1950), which is expressed as 〈|r(t) − r(0)|2〉,
where r(t) represents the separation vector at time t, r(0) is the initial separation vector
and 〈·〉 and | · | describe the mean and the Euclidean norm, respectively. The separation
vector r(t) is computed as x1(t)− x2(t), where x1(t) and x2(t) are the positions of the
two particles at time t. In the inertial range of the turbulent flow, Batchelor (1950)
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FIGURE 4. Projection of 5000 particles on the λ2= 0 plane at time t= 0. The particles are
distributed on the surface of a sphere centred at the origin of the shear-layer structure with
initial separation |r0| = η. The projection of particles onto a plane leads to the overlapping
of particles to form a circle.

predicted the mean square of the relative separation as

〈|r(t)− r(0)|2〉 =

{
11
3 C2(εr0)

2/3t2 for t� tB = r2/3
0 〈ε〉

−1/3

3
2 g ε t3 for tB� t� TL,

(3.2)

where C2 is the Kolmogorov constant in the second-order Eulerian structure function,
ε is the average dissipation rate of the flow, r0 is the initial separation between the
particle pair, tB is Batchelor’s time scale after which dispersion is not influenced by
r0, g is Richardson’s constant, which is assumed to be a fundamental constant in
turbulence, and TL is the integral time scale of the flow. The first sub-range where
t� tB (see (3.2)) is referred to as Batchelor’s ballistic regime or Batchelor’s scaling.
In the literature, tB is considered as the time where the two particles remain within the
same structure of size r0. When the particles leave the structure, i.e. at times t� tB,
the particle separation is supposed to transition into Richardson’s t3 scaling (see (3.2)).
However, Bitane et al. (2012) have shown that Richardson’s scaling regime follows
directly after Batchelor’s scaling (see also § 4.3).

The mean square of the relative separation is computed for different initial
separations in each structure. Then, the existence of the Batchelor ballistic regime and
a Richardson scaling regime is probed. Finally, the compensated relative dispersion
results are compared with the data from actual turbulence (Sawford et al. 2008) in
§ 4.1.

3.2. Material lines
A material line is an infinitesimal line composed of the same fluid particles when
evolved in time, hence studying their orientation aids in the understanding of
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turbulence mixing (Batchelor 1952b). Here, the evolution of the orientation of
the material lines is examined to understand the differences between different
structures. Furthermore, the results are compared with the actual turbulent flow
(Guala et al. 2006). Material lines evolve with time according to (Girimaji & Pope
1990; Dresselhaus & Tabor 1992; Guala et al. 2006):

dli(t)
dt
=
∂ui

∂xj
lj(t), (3.3)

where li represents the infinitesimal material line, ∂ui/∂xj refers to the velocity
gradient tensor computed at the centre of li. In the present study, material lines are
assumed to continuously evolve around the origin, as the flow structures are stationary
and the velocity at the origin is zero. This implies that the initially placed infinitesimal
line elements at the origin do not advect, but reorient according to the same stationary
velocity gradient tensor. Hence, the velocity gradient in (3.3) is constant in time and
is computed at the origin of each flow structure. The alignment of the material lines
with the straining directions is given by cos(l, ei)= (l · ei)/(|l||ei|), where ei represents
the eigenvectors of the strain-rate tensor at the origin of the structure. A total of
104 material lines are considered in the present study, and their alignment for all
structures is compared in § 4.4 with the data presented by Guala et al. (2006).

3.3. Four-particle dispersion
The tetrad dispersion is quantified by the evolution of its size and shape, which
are based on the separation between the different particles in the tetrahedron.
The procedure to characterise the size and shape of the tetrahedron is similar
to Biferale et al. (2005). At first, the coordinates are changed to obtain a new
set of separation vectors (Chertkov et al. 1999; Biferale et al. 2005; Hackl et al.
2011), which eliminates the statistical dependence on the centre of mass X0, where
X0 = (x1 + x2 + x3 + x4)/4 and xi represent the particle positions in the tetrahedron.
Note that the centre of mass X0 coincides with the origin of the structure initially.
The three separation vectors are defined as (Chertkov et al. 1999; Biferale et al.
2005; Hackl et al. 2011)

X1 = (x2 − x1)/
√

2,
X2 = (2x3 − x2 − x1)/

√
6,

X3 = (3x4 − x3 − x2 − x1)/
√

12.

 (3.4)

Then, an inertia matrix (I) is computed as I = ρρT where the columns of the matrix ρ

are the separation vectors (X1,X2,X3). Then the shape and size of the tetrahedron are
described by the three eigenvalues (gi) of the inertia matrix, where g1 > g2 > g3. The
size of the tetrahedron is given by the gyration radius R≡

√
Tr(I)=

√∑
gi and the

tetrahedron volume (V) is defined as V= (1/3)det(ρ)= (1/3)
√

g1g2g3. And finally, the
shapes are characterised by Si= gi/R2, where Si= 1/3 for i= 1, 2 and 3 for a regular
tetrahedron. If all four points are coplanar then S3 = 0 and if collinear S2 = S3 = 0.

The evolution of the shape and the size of the tetrahedrons around the structures is
computed in terms of the eigenvalues gi and compared to the actual turbulence cases
(Biferale et al. 2005; Hackl et al. 2011) in § 4.5.
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4. Results
The dispersion statistics are investigated by kinematically simulating the tracer

particles around different structures, namely the shear-layer structure (SLS), the
node-saddle topology (NST) and the Burgers vortex (BV) as explained in §§ 2 and 3.
The number of particle pairs (5000), material lines (104) and tetrahedrons (4000)
investigated are fewer, but sufficient to obtain converged statistics, compared to the
actual turbulent studies, where, the number is usually above 105. The statistics are
considered converged if the convergence rate is below 10−4. Here, the convergence
rate is defined as the change in statistical value with respect to the increase in the
number of particle pairs or material lines or tetrahedrons.

In the following paragraphs, first the pair dispersion statistics around the different
structures are examined to determine the Batchelor scaling range. Second, the
pair dispersion statistics are compared to the actual turbulent flows. Third, the
instantaneous distribution of particles is discussed and related to the observed pair
dispersion scaling regimes. Finally the advanced dispersion statistics, namely the
orientation of material lines and the tetrad dispersion, are studied and compared with
the actual turbulent flow statistics.

4.1. Pair dispersion
The pair dispersion is quantified in terms of the evolution of the mean square of
the relative separation (MSRS) 〈|r(t)− r(0)|2〉. A comparison of the MSRS for the
three different structures and for initial separations r0/η = 1, 4 and 16 is shown in
figure 5. The relative separation and time (t) are normalised by the Kolmogorov length
(η) and time scale (τη), respectively. Qualitatively, similar slopes are observed for the
MSRS for the Burgers vortex, the shear-layer structure and the node-saddle topology
for time t/τη < 1 and for all initial separations considered (see figure 5). However,
quantitatively the relative separation for the Burgers vortex is higher compared to
the SLS and the NST. This is because the BV is based on intense vortices, where
velocities and their gradients are higher compared to the SLS and the NST, which are
average structures. For time t/τη > 1, the MSRS increases smoothly for the SLS and
the NST. However, for the Burgers vortex the MSRS shows an oscillatory behaviour
before it increases rapidly at later times. This oscillatory behaviour is due to the
circular motion of the particles in the BV, which results in the particles approaching
their initial position after every revolution. With time the oscillation fades, as the
particles approach the vortex core and the stretching in the axial direction starts to
dominate the particle separation. It is also noted that the statistics for the SLS and the
NST are found to be approximately similar for all initial separations until t/τη = 20.

The Batchelor scaling is represented by the t2 curve in figure 5. In the Burgers
vortex case, the relative separation scales with t2 for time t/τη < 1. For the SLS and
the NST, the t2 scaling is observed until t/τη≈ 3–4 for the initial separations r0/η= 1
and 4. This time scale is consistent with the results in actual turbulence by Sawford
et al. (2008) and figure 1 of Bitane et al. (2012). For r0/η= 16, Batchelor’s regime is
observed for a longer time, up to t/τη ≈ 9–10. Approximate Richardson t3 scaling is
observed for r0/η6 4 for short times in the SLS and the NST. This will be discussed
in more detail in § 4.3. However, there is no evidence of Richardson’s regime in the
Burgers vortex. From all these observations, it is deduced that Batchelor’s regime,
where particles are influenced by their initial separation, is observed in the all
three flow structures, as expected. However, the statistics around the Burgers vortex
quantitatively and qualitatively differ from the SLS and the NST after time t/τη = 1.
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FIGURE 5. The comparison of the evolution of the mean square of relative separation,
normalised by the Kolmogorov length (η), for different structures and for different initial
separations (r0/η= 1, 4 and 16). Time t is normalised by the Kolmogorov time scale (τη).
The straight black dotted line corresponds to Batchelor’s t2 scaling and the dashed line to
Richardson’s t3 scaling. Dashed-dotted lines refer to the Burgers vortex, solid lines to the
shear-layer structure and lines with ‘+’ mark the node-saddle topology (NST).

Furthermore, the dispersion around the shear-layer structure and the node-saddle
topology is compared to actual homogeneous isotropic turbulence at Taylor Reynolds
number Reλ = 650 (Sawford et al. 2008). The evolution of the compensated relative
dispersion (〈r(t)2− r(0)2〉/εt3) with time is shown in figure 6. Here, the dissipation ε
is taken from the same database employed to extract structures (Li et al. 2008). The
initial separations investigated are r0/η= 1, 4 and 16.

The compensated relative dispersion (figure 6) in the actual turbulence case and the
SLS collapse onto each other until the time t/τη = 20 for the initial separation 1η
and until time 10τη for r0/η= 4 and 16. In the case of the node-saddle topology, the
compensated relative dispersion is similar to the actual turbulence case until 4–5τη for
initial separations r0/η= 1 and 4. For r0/η= 16, the NST shows a similar trend as the
SLS. Also, it can be observed that, qualitatively, the SLS is closer to actual turbulence
until t/τη ≈ 20 than the NST for r0/η= 1 and 4. During the time t/τη ≈ 30–100, the
compensated relative dispersion for different initial separations in the actual turbulence
case undergoes transition and attains a plateau. This plateau indicates Richardson’s
regime (Sawford et al. 2008) and the value of the compensated relative dispersion
is equal to the Richardson constant (g ≈ 0.6, see (3.2)). However, for ro = 16η the
scaling in the SLS and the NST changes to the diffusive regime, where the mean-
square separation of the particles scales with t. Additionally, the qualitative trend of
the transition from t2 to the point where the curves for the initial separations η and 4η
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FIGURE 6. Comparison of the compensated relative dispersion for the shear-layer structure,
node-saddle topology and actual isotropic turbulence (from Sawford et al. (2008)). Results
are shown for initial separation distances r0 = 1η, 4η and 16η.

approach each other is similar to actual turbulence, but much shorter. The transition
occurs at t/τη≈3–13 in the case of the SLS and the NST compared to t/τη≈3–40 for
actual turbulence (Sawford et al. 2008). This quantitative difference could be due the
absence of additional structures in the SLS and the NST, which is consistent with
Batchelor’s conjecture that the particles enter different structures when the scaling
changes from the Batchelor regime to the Richardson regime.

From all these observations, it is understood that the shear-layer structure and
the node-saddle topology have quantitatively similar pair dispersion statistics to the
actual turbulent flow up to t/τη ≈ 3–10, which corresponds to Batchelor’s regime.
Additionally, the SLS is observed to follow the actual turbulence more closely than
the NST until t/τη ≈ 20.

4.2. Instantaneous distribution of particles
While the relative dispersion of particles by the SLS and the NST is qualitatively
similar, the underlying particle distribution in physical space appears to be different,
which is illustrated in this section. The distribution of particles in time for the initial
separation distance r0/η = 1 is shown for the SLS and the NST in figures 7 and 8,
respectively. The three rows of plots in these figures represent the projections on the
three Cartesian planes, namely λ3=0, λ2=0 and λ1=0 from top to bottom. The three
columns from left to right show the time evolution of particles at times t/τη = 4, 10,
and 50, respectively.

The first rows in figures 7 and 8 show the particle distribution on the plane
spanned by the extensive principal straining directions λ1 and λ2 for the SLS and
the NST, respectively. Initially at t/τη = 0, the particles are distributed on a sphere
leading to the circular distribution in the projections (see figure 4). With time, the
projected distribution of particles develops an ellipsoidal shape due to the higher
rate of stretching in the λ1 direction compared to the intermediate principal straining
direction, λ2 (t/τη = 4 and 10). Furthermore, the size of the ellipse increases, because
the stretching rate in both directions is positive. At later times, the ellipsoid splits
into two (e.g. at t/τη = 50).

The second row in figure 7 corresponds to the particle distribution on the plane with
the most extensive and the compression principal strain rates. The particle distribution
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FIGURE 7. Evolution of 5000 particles in the shear-layer structure with time (columns)
projected on three different planes (rows). Initially, the particles are distributed on a sphere
with a radius of 0.5η, which corresponds to an initial pair separation of 1η. Columns from
left to right show the resulting particle distributions at times t/τη = 4, 10 and 50. The
projections of the 5000 particles overlap, and therefore initially appear as one ellipsoid.

gets stretched along the shear layer (see figure 9 for the associated velocity vectors)
with increasing time. In this projection, the particles are distributed along a line, which
is at an 18◦ angle with respect to the direction of the most stretching principle strain
λ1 at t/τη=4 (see figure 7d). At later time t/τη=50, the projected particle distribution
approaches the 45◦ diagonal (figure 7f ). However for the NST, the particles on the
same plane are stretched along the λ1 and compressed in the λ3 direction (figure 8).
This is attributed to the absence of rotation/vorticity in the node-saddle topology. The
NST particle distribution essentially forms a line in the λ1 direction, as observed
in figure 8(d–f ).

The distribution of particles for the SLS and the NST is also different in the
λ1 = 0 plane, which is shown in the third row of figures 7 and 8, respectively. The
difference is again attributed to the presence of rotation in the shear layer. Due to the
rotation, the particles get distributed along the shear layer, thereby, actually spreading
the particles in the direction of compressive strain (λ3). However, the absence of
rotation in the NST causes the particles to collapse onto a line along the λ2 axis at
time t/τη = 50 (see figure 8g–i).

From these observations, it is concluded that the particles in the node-saddle
topology at t/τη > 10 form a sheet spanning the λ1 and λ2 directions. In contrast, the
particle sheet in the shear-layer structure is at an angle with the λ1 and λ3 directions,
while it is still aligned with the λ2 direction. Hence, the particles actually spread in
the direction of the most compressive strain λ3. The pair dispersion statistics i.e. the
mean square of relative separation, of the NST and the SLS are found to be similar
even though the particles in the node-saddle topology do not move away from the
origin in the compression direction. However, the observed differences in particle
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FIGURE 8. Evolution of 5000 particles in the node-saddle topology with time (columns)
projected on three different planes (rows). Initially, the particles are distributed on a sphere
with a radius of 0.5η, which corresponds to an initial pair separation of 1η. Columns from
left to right show the resulting particle distributions at times t/τη = 4, 10 and 50. The
projections of the 5000 particles overlap, and therefore initially appear as one ellipsoid.

sheet formation are important when considering the orientation of material lines and
the geometry of four-particle dispersion in § 4.4 and § 4.5, respectively.

4.3. A comment on pair dispersion scaling
Besides the sheet forming characteristics, the particle distributions in § 4.2 also
provide important insights in the pair dispersion scaling regimes. The mean-square
relative separation scales according to t2 until t/τη ≈ 3–4 (§ 4.1), which is associated
with Batchelor’s ballistic regime where the particle velocity is assumed constant.
However, the particle distributions reveal that the particles have moved significantly
towards the end of the observed t2 scaling range. For example, figure 7(d) shows that
at t/τη= 4 some particles have approached the origin, where the velocity goes to zero,
while others have reached distances as large as 2η away from the origin, thereby
significantly increasing their velocity. Up to 5η distance from the origin of the SLS
and the NST, the velocity varies approximately linearly with distance (see Elsinga
et al. 2017), which means that at 2η distance from the origin the particle velocity
has increased approximately fourfold from its initial value when released at 0.5η
from the origin. Therefore, the individual particles are subjected to strong changes in
their velocity. This point is further illustrated in figure 10, which shows the temporal
evolution of the squared separation velocities, |δu|2(t), for several different pairs. Note
that δu/2 corresponds to the velocity of the individual particles due to symmetry of
the considered flow structures. It is seen that the changes in particle velocity are
small only for t up to order 0.1τη, which is considered the limit for the true ballistic
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FIGURE 9. (a–d) Distribution of particles in the shear-layer structure projected on the
plane λ2= 0 at times t/τη = 4, 8, 10 and 25, respectively. The initial pair separation is 1η.
With time, the particles align themselves along the shear layer, forming a sheet.

regime. Thus, while t2 scaling is observed for 0< t/τη < 4, the dispersion is not truly
ballistic over most of this range. The original assumptions made when deriving t2

scaling (Batchelor 1950) appear to hold only up to t = O(0.1τη). Then the question
remains, why do we still observe t2 scaling beyond that time scale?

In order to address this question consider the approximation of the rate of increase
of the mean-square relative separation, which was derived through different approaches
by Batchelor (1950) and Ouellette et al. (2006). It is given by

d〈|r(t)− r(0)|2〉
dt

≈ 2t〈δu(0) · δu(0)〉 (4.1)

and leads to t2 scaling for 〈|r(t)− r(0)|2〉. For the above approximation to be valid, it
is sufficient that the average 〈|δu|2〉 is constant as opposed to the ballistic assumption
of constant velocity for each particle (see equations (5.1) and (5.2) in Batchelor
(1950)). The former appears less restrictive, as 〈|δu|2〉 was observed to be constant up
to O(1τη) in actual turbulence for small r0 (figure 10 and also figure 3 in Bitane et al.
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FIGURE 10. Grey lines indicate the temporal evolution of normalised relative velocity
squared for individual particle pairs in the SLS (100 different particle pairs are shown).
The thick black line indicates the mean (〈|δu|2(t)〉− 〈|δu|2(0)〉)/〈|δu|2(0)〉 of 5000 particle
pairs. Two dashed lines indicate the minimum and maximum limit of the normalised
relative velocity squared for 5000 individual particle pairs. The time is normalised by
Kolmogorov time scale and the initial separation between the particle pair was 1η.

(2012)). The averaging compensates decreasing |δu|2 associated with compression,
i.e. particles approaching each other, with increasing |δu|2 associated with stretching,
i.e. separating particles. This effect is illustrated using figure 7(d), where all particle
pairs are sufficiently close to the origin to assume that their velocity depends linearly
on the separation distance, r. Some particles have moved closer to the origin, where
δu approaches zero, while simultaneously other particles have moved away from the
origin increasing the magnitude of δu.

Bitane et al. (2012) considered the scaling transition of 〈|r(t) − r(0)|2〉 and
suggested that the Richardson t3 scaling directly follows the Batchelor t2 scaling
regime. Though Richardson’s scaling was derived for r0 in the inertial range
by Batchelor (1950), their results show t3 scaling only for small initial particle
separations, r0 6 4η, at times of the order of 4τη. Their data for larger r0 did not
extent to sufficiently large times to reach a possible Richardson regime. On the other
hand, data from Sawford et al. (2008) for similar conditions seem to indicate that
the t3 scaling is approximate (see figure 6). Furthermore, measurements reveal no t3

scaling for r0 considerably larger than 4η (see Bourgoin et al. 2006; Ouellette et al.
2006). Higher Reynolds number flows and data over longer time scales may be needed
to address the issue of Richardson scaling in the inertial range. Consistent with the
above observations for r0 6 4η, the mean-square relative separation for the SLS and
the NST reveals approximate t3 scaling for r0 = 1η− 4η and 4< t/τη < 10 (figure 5).
The corresponding particle distributions in figure 7 show that nearly all particles
remain within 5η distance from the origin up to t= 10τη, which means r< 10η. The
10η length scale is the typical size for the core of small-scale flow structures, such
as the vortices (Jimenez et al. 1993) and the straining motions (Elsinga et al. 2017),
where the velocity varies linearly in space. Therefore, the particle pairs remain within
the core of the same small-scale flow structure, while still displaying approximate t3

scaling. This clearly violates the assumption that particles are far apart, which was
used when deriving t3 scaling (Batchelor 1950). The same derivation also assumes
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that the particles are not yet far enough apart for the separation to be affected by
energy-containing motions. The latter conflicts with recent observations of intense
shear layers, which are small-scale motions bound directly by large-scale energetic
motions (Ishihara et al. 2013; Elsinga et al. 2017). Initial separations larger than the
layer thickness (∼20η) are immediately affected by the large-scale motions adjacent
to the layer, which could explain why the Richardson scaling is not observed for
r0 > 20η (Bourgoin et al. 2006; Ouellette et al. 2006).

Here, we offer an explanation for the observed approximate t3 scaling for small r0
based on the observed particle distributions in the SLS (figure 7). However, a similar
argument can be constructed using the NST (figure 8). Initially, the particles are
located on a sphere of 1η diameter centred on the origin, which represents the case
of randomly orientated particle pairs (r0= 1η) with respect to the structure. Therefore,
pair statistics can be inferred from the temporal evolution of the particle distribution.
The approximate t3 scaling is observed for 4< t/τη<10. During this time the particles
are distributed on a sheet, whose orientation does not change much (figure 7d,e).
Furthermore, the particles remain within the core of the shear layer, where the
velocity varies linearly in space, as already mentioned. Based on these observations,
we assume that the separation velocity, δu, aligns with the separation vector, r, and
that they are linearly related according to: δui(t) = dri(t)/dt = (dδui/dri)ri(t) with a
constant strain rates dδui/dri. The general solution to the above differential equation
is an exponential. The indices i = 1 and 2 in this case refer to the components
along the principal stretching directions of the sheet, where the r2 direction coincides
with the λ2 direction, while the r1 direction is at a small angle with respect to the
λ1 direction (figure 7d). Furthermore, we define two time scales t∗i = (dδui/dri)

−1.
The smallest time scale, t∗1 , is representative of the time needed to form the particle
sheet, since the compressive strain rate producing the sheet is of similar magnitude
as dδu1/dr1. Then for the rate of increase of the mean-square relative separation and
t> t∗, we find

d〈|r(t)− r(0)|2〉
dt

= 2〈r(t) · δu(t)〉 ≈ 2
〈

dδu1

dr1
r2

1(t)
〉
+ 2

〈
dδu2

dr2
r2

2(t)
〉

≈ 2
dδu1

dr1
〈(r1(t∗1)e

((dδu1/dr1)t−1))2〉 + 2
dδu2

dr2
〈(r2(t∗2)e

((dδu2/dr2)t−1))2〉

≈ 2
(

dδu1

dr1

)3

〈r2
1(t
∗

1)〉t
2
+ h.o.t., (4.2)

which leads to initial t3 scaling for 〈|r(t)− r(0)|2〉 over a short time interval around
the sheet formation time t = t∗1 . In the last step of (4.2) a Taylor expansion is
introduced around t = t∗. Further note that for the SLS and the NST (dδu1/dr1)

3
�

(dδu2/dr2)
3. Previously, a similar t3 scaling range was derived for particle diffusion

in two-dimensional linear shear flow, which followed after the diffusive t scaling
on short time scales (Foister & Van De Ven 1980; Schütz & Bodenschatz 2016).
Here, we have initial Batchelor t2 scaling with a transition to approximate t3 scaling,
and we relate this transition to the development of particle sheets within the core
of three-dimensional coherent structures. While t3 scaling is obtained for a short
time interval around t∗, the longer time evolution is exponential as evident from
the second line in (4.2). A similar exponential behaviour was derived by Batchelor
(1952b) assuming that for large t the orientation of the particle pair is independent
of the initial orientation. The latter is explained here by the sheet formation process,
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FIGURE 11. Probability density function of cos(l, ei) at t/τη = 4.0 for the shear-layer
structure, the node-saddle topology and Burgers vortex. The lines ‘s’ and ‘∇u’ represent
the alignment computed using the strain-rate tensor and the velocity gradient tensor in
actual turbulence, respectively, which are data from Guala et al. (2006).

where all pairs end up having the same orientation with respect to the strain. Still,
the location of a particle pair within the sheet depends on its initial orientation with
respect to the shear-layer structure. Furthermore, the present analysis provides an
explanation and estimate for the effective origin of the exponential, i.e. t∗.

4.4. Material lines
The probability density function (p.d.f.) of the orientation of the material lines (l) with
respect to the straining directions (ei), as given by the cosine of the angle between the
vectors cos(l, ei), is computed for different structures. Initially, the material lines are
randomly oriented, hence, the p.d.f. of cos(l, ei) is flat for all angles and will not
be shown. With time, the alignment of the material lines changes with respect to the
straining directions. The alignment at time t/τη=4.0 is shown in figure 11 and will be
discussed in the following paragraphs. The material line alignment will be compared
to the particle distributions (figures 7 and 8) as the distance travelled by particles is
small and is still dependent on the initial conditions.

Figure 11(a) describes the p.d.f. of the alignment of the material lines with the most
stretching direction, i.e. cos(l, e1). The material lines develop a strong preferential
alignment with the most stretching direction for all structures. The alignment is
strongest in the case of the node-saddle topology compared to the shear-layer structure
and is weakest in the case of the Burgers vortex. This can also be observed in the
particle distribution plots in figures 7 and 8 at t/τη = 4, where, the particles are
strongly aligned in the most stretching direction in the NST (see figure 8) compared
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to the weaker alignment in the SLS (figure 7). Also, the peak in the p.d.f. occurs at
|cos(l, e1)| = 0.97 for the SLS, which corresponds to a 14◦ angle. Similarly in the
particle distribution plots at the corresponding time instant, the angle between the
particle distribution and the most stretching direction is 18◦ (figure 7d). For the NST,
however, the peak is at |cos(l, e1)| = 1, which corresponds to 0◦ . This is consistent
with the clustering of particles along the λ1 axis for the NST (figure 8d).

The p.d.f. of the alignment of the material lines with the intermediate principal
straining direction is shown in figure 11(b). The material lines in the shear-layer
structure and the node-saddle topology show a slight tendency for alignment with the
intermediate direction, which has a finite positive strain. This can also be observed
in the particle distribution at t/τη = 4 (figures 7 and 8). However, the material
line alignment with e2 in the Burgers vortex decreases as e2 corresponds to the
compressive strain.

Figure 11(c) shows material line alignment with the compression direction (e3). For
all structures, it can be observed that the material lines tend to align perpendicular
to the compression direction (e3). The material lines in the NST show the strongest
perpendicular alignment with the compression direction compared to the SLS and the
BV. This behaviour can also be observed in the λ2=0 plane of the particle distribution
plots at time t/τη = 4. In case of the NST, the particles are clustered and stretched
along the λ1 direction, which is perpendicular to the direction of the compressive
strain (see figure 8d). However in the SLS (see figure 7d), the projected particles on
the λ2 = 0 plane are distributed along a line at an angle of 72◦ with the compressive
strain direction. This is consistent with the p.d.f. of cos(l, e3) where the peak occurs
between 0.1 and 0.2, which corresponds to 84◦–78◦ . Since, this angle is computed in
three-dimensional space, it is slightly larger than the angle (72◦) computed based on
the two-dimensional projection of the particles.

The material line alignments reported for actual turbulent flow (Guala et al. 2006)
are also shown in figure 11. Guala et al. (2006) considered two different velocity
gradient tensors, namely the strain-rate tensor (s) and the velocity gradient tensor
(∇u), to compute the evolution of material lines (see right-hand side of (3.3)). For
the case studied by Guala et al. (2006), s and ∇u evolve in time, whereas for the
SLS, the BV and the NST the velocity gradient is fixed. From figure 11, it can
be observed that the alignments for the SLS and the NST are comparable to the
alignments computed using the ‘∇u’ and the ‘s’ in actual turbulent flows (Guala
et al. 2006), respectively. The similarity observed between the SLS and the actual
turbulent flow (∇u) could be due to the fact that the SLS represents the average
flow field around a point in a turbulent flow and includes both strain and rotation.
The NST is obtained by symmetrising the SLS (§ 2.3), so it only contains strain
and no rotation. Again due to the symmetrisation, the velocity gradient tensor used
to compute alignments in the NST is the same as the strain-rate tensor of the SLS.
Hence, this could explain the similarity between the NST and the alignment computed
from the strain-rate tensor (s) in actual turbulent flow (see figure 11).

From these observations, it is clear that the SLS and the NST show differences
in the alignment of material lines, which is consistent with the particle distributions
observed in § 4.2. These differences are explained by the fact that the SLS contains
vorticity, whereas the NST does not. On the other hand, the Burgers vortex (BV)
clearly differed from the SLS and the NST cases, because it has rotational symmetry
and two compression directions (e2, e3) leading to the identical alignment of material
lines with e2 and e3. In contrast, the SLS and the NST have two extensive directions
e1 and e2. Additionally, the alignments in the SLS and the NST, where the flow field
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FIGURE 12. The comparison of the eigenvalues (gi) of the inertia matrix with time (t/τη)
between the shear-layer structure (SLS), the node-saddle topology (NST), the Burgers
vortex (BV) and the data from the actual isotropic turbulence case by Biferale et al. (2005)
for the tetrahedrons of edge length η. Time (t) and eigenvalues are normalised by means
of the Kolmogorov time scale (τη) and length scale (η).

does not evolve in time, are comparable to the results of Guala et al. (2006), which
are computed in a continuously evolving turbulent flow. Therefore, it is concluded that
the SLS structure yields similar material line alignment as the actual turbulent flows,
at least up to t/τη = 4.

4.5. Four-particle dispersion

The evolution of four-particle dispersion is characterised by the shape and size of
the tetrahedrons, which is further quantified in terms of the eigenvalues (gi) of the
inertia matrix (I) as discussed in § 3. The initial edge length of the tetrahedron is
1η. Figure 12 shows the evolution of the eigenvalues 〈gi〉 for four cases namely, the
Burgers vortex (BV), the shear-layer structure (SLS), the node-saddle topology (NST)
and actual isotropic turbulence (Reλ = 280) from Biferale et al. (2005). The volume
(V = (1/3)

√
g1g2g3) of the tetrahedrons up to t= 4τη was found to be constant in the
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case of the BV, the SLS and the NST, which is similar to the results presented in
Biferale et al. (2005) for actual isotropic turbulence.

The largest eigenvalues, g1, are qualitatively and quantitatively similar until 10τη
in all considered cases (see figure 12a). However, for g2 and g3 the Burgers vortex
shows a different trend compared to the other cases (figure 12b,c). For the BV,
both eigenvalues, hence the shape parameters S2 and S3, approach zero with time.
This means that the particles of a tetrahedron become collinear, which is due to the
compression of the particles in two compressive straining directions (see § 3.3). This
result is in line with Jucha et al. (2014), who linked the initial evolution of tetrads to
the perceived initial strain rates, basically assuming the particle velocity is constant
for sufficiently short times. This assumption can be made at any scale, however, what
constitutes a sufficiently short time can be scale dependent. Thus, the Jucha et al.
(2014) ballistic arguments to predict initial development of inertial range tetrads will
remain valid at the small scales considered here even though quantitative differences
may exist. For the SLS and the NST, the second eigenvalue g2 increases with time
and follows the actual turbulence curve until t/τη ≈ 4–5. At later times, g2 remains
similar for the SLS and the NST, but deviates in terms of its magnitude from the
actual turbulence case (Biferale et al. 2005). Finally, the value of the third eigenvalue,
g3, decreases initially for all cases. While g3 decreases and tends to go to zero, g1
and g2 are increasing for the SLS, the NST, and the actual turbulence, which means
that the particles of the tetrahedron are becoming more coplanar. This is observed in
figures 7 and 8, where particles form a sheet in the case of the SLS and the NST,
respectively. Furthermore, the eigenvalue g3 for the NST continues to decrease, which
is different from the SLS, where g3 decreases at first, but then increases again after
time 10τη. The latter increase in g3 is qualitatively similar to actual turbulence. Here,
it should be noted that ballistic arguments (e.g. Jucha et al. 2014) explain the initial
decrease in g3, but fail to explain the subsequent increase in g3 after t/τη = 10. In
order to understand this increase, we need to consider flow structure. Specifically, the
eigenvalue g3 increases in the SLS, because the particles sheet deforms leading to
the loss of coplanarity. This is best seen in the plane λ2 = 0 in figure 9, where the
straight particles sheet (t/τη = 4) starts deforming and develops a slight undulation at
time t/τη= 10 and is fully deformed at t/τη= 25 leading to the loss of coplanarity, i.e.
increasing g3. The deformation of the sheet is associated with the particles moving
away from the saddle point at the origin of the SLS and approaching the adjacent
vortices (see figure 9). This causes a change in the particle velocity in the direction
perpendicular to the shear layer, which causes the loss in coplanarity. The formation
of two sheets (see figure 7f ) may be the reason for the decrease in eigenvalue g3
after t/τη = 25–30 in the SLS. Hence, the shear-layer structure qualitatively shows a
similar trend to that of the actual turbulence case up to t/τη = 20, whereas the NST
and the BV deviate.

5. Conclusions

The dispersion of tracer particles by elementary flow structures was studied and
compared to the actual turbulent flow with the aim of improving our qualitative
understanding of the dispersion statistics at short time scales. The dispersion was
described by the pair and the tetrad dispersion statistics, and the evolution of material
lines. The flow structures considered were the Burgers vortex (BV), the shear-layer
structure (SLS) and the node-saddle topology (NST). All the simulations were
kinematic in nature as the flow structures did not evolve in time.
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The mean square of relative separation revealed Batchelor’s scaling (t2 scaling) for
all flow structures, as expected. The statistics were found to be qualitatively similar
in all three structures for very short times, up to t = 1τη. However, the relative
separation for the Burgers vortex was qualitatively and quantitatively different from
the shear-layer structure and the node-saddle topology after time t/τη=1. In particular,
the separation showed an oscillatory behaviour for the Burgers vortex, which was
attributed to the circular motion of the particles, causing the particles to approach
their initial positions after every revolution. The compensated relative dispersion for
actual turbulence (Sawford et al. 2008) was compared to the SLS and the NST. The
SLS and the NST exhibited quantitatively similar statistics as actual turbulent flow
until t/τη ≈ 3–10 depending on the initial separation, which corresponded to the
Batchelor scaling regime. However, it was observed that the actual ballistic regime
for individual particle pairs was indeed much shorter (O(0.1τη)). The reason for
Batchelor scaling extending far beyond the ballistic regime was the averaging over
all particle pairs. The decrease in relative separation velocity along the compression
direction was compensated by the increase along the stretching direction, leading to a
constant average square separation velocity. Furthermore, an approximate Richardson
t3 scaling for small initial separations was observed and related to the formation
of particle sheets within the core of the SLS and the NST. After establishing the
Batchelor regime and the onset of a Richardson regime, the advanced geometrical
dispersion statistics were studied.

The probability density functions of the orientation of material lines with respect
to the principal straining directions were computed for the different structures and
compared to actual turbulent flow data (Guala et al. 2006). Again, the Burgers vortex
clearly differed due to the presence of two compressive straining directions as opposed
to two stretching directions in the case of the SLS and the NST. The SLS and the
NST exhibited similar p.d.f.s as the actual turbulence case at t = 4τη. As the SLS
represents the average flow around a point in the turbulent flow, the alignments in
the SLS were found to be comparable to the evolution of material lines computed
using the velocity gradient tensor in actual turbulent flows. On the other hand, the
NST only consists of the symmetric part of the velocity gradient tensor of the SLS.
Hence, the velocity gradient tensor in the NST only contains strain as opposed to
strain and rotation in the case of the SLS. This could be the reason for the similarity
between the NST and the evolution of material lines computed using the strain-rate
tensor in actual turbulent flows. Additionally, the preferential alignment angles for the
material lines in the SLS were found to be consistent with the angles at which the
particles clustered in the particle distribution plots.

The tetrad dispersion was quantified by the eigenvalues of the inertia tensor of
the tetrahedron, which characterised the evolution of the size and shape of the
tetrahedron. Their evolution was computed for all structures and compared to the
statistics for actual turbulent flow from Biferale et al. (2005). The largest eigenvalue
g1 was similar in all three cases. For the Burgers vortex the eigenvalues g2 and g3
approached zero with time, which meant the particles of the tetrahedron became
collinear. The intermediate eigenvalue g2 in the SLS and the NST was identical
to the actual turbulence case for time 4–5τη, after which the eigenvalue deviated
quantitatively. Finally, the third eigenvalue initially decreased for all cases. However,
it increased again for the SLS after t = 10τη, which is qualitatively similar to actual
turbulence. The initial decrease in g3 in the SLS and NST lead to coplanarity as the
shape parameter S3 tended to zero. This was also observed in the particle distribution
plots. Then, the increase in the third eigenvalue in the SLS was attributed to the loss
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of coplanarity due to the deformation of particle sheet by the shear-layer vortices, as
observed in the particle distribution plots at the corresponding times.

The present results yielded mostly qualitative insights in dispersion by considering
just a single BV, SLS or NST. In order to advance the quantitative modelling of
dispersion by coherent flow structures in the future, we need to include statistical
information on these structures, such as their occurrence and strength in actual
turbulence. There are already statistical data available for the vortices in actual
turbulent flows (Jimenez et al. 1993; Jimenez & Wray 1998; da Silva et al. 2011), but
for the shear-layer structures and the NST no such data are available yet. However, it
would be highly relevant to obtain the necessary statistical information on shear-layer
structures in actual turbulence given the qualitative similarities between the dispersion
in the SLS and in actual turbulence, as observed in the present paper. Then dispersion
by flow structures can be studied quantitatively by incorporating these characteristics
into the simulations.

Finally to conclude, the shear-layer structure showed many quantitative (until 2–4τη)
and qualitative (until 20τη) similarities when compared to the actual turbulence case
(see figures 6 and 12). The Burgers vortex deviated the most, both quantitatively and
qualitatively. The node-saddle topology did exhibit some similarities to actual turbulent
flow statistics in terms of the particle pair dispersion, but it did not capture a number
of geometrical features associated with the material lines and tetrad dispersion.
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