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Abstract

We contribute to the literature on empirical macroeconomic models with time-varying conditional
moments, by introducing a heteroskedastic score-driven model with Student’s t-distributed innovations,
named the heteroskedastic score-driven t-QVAR (quasi-vector autoregressive) model. The t-QVAR model
is a robust nonlinear extension of the VARMA (VAR moving average) model. As an illustration, we apply
the heteroskedastic £-QVAR model to a dynamic stochastic general equilibrium model, for which we esti-
mate Gaussian-ABCD and t-ABCD representations. We use data on economic output, inflation, interest
rate, government spending, aggregate productivity, and consumption of the USA for the period of 1954 Q3
to 2022 Q1. Due to the robustness of the heteroskedastic £-QVAR model, even including the period of the
coronavirus disease of 2019 (COVID-19) pandemic and the start of the Russian invasion of Ukraine, we
find a superior statistical performance, lower policy-relevant dynamic effects, and a higher estimation pre-
cision of the impulse response function for US gross domestic product growth and US inflation rate, for the
heteroskedastic score-driven ¢-ABCD representation rather than for the homoskedastic Gaussian-ABCD
representation.

Keywords: Dynamic conditional score; generalized autoregressive score; score-driven location plus score-driven scale
models; heteroskedastic score-driven t-QVAR model; Maximum likelihood

1. Introduction

This paper contributes to the literature on empirical macroeconomic models with time-varying
conditional moments, by introducing the heteroskedastic score-driven state-space model with
Student’s t-distributed innovations, in which both location and scale are score-driven, and illus-
trating the model performance in an empirical macroeconomic model applied to a well-known
dynamic stochastic general equilibrium (DSGE) model [Kydland and Prescott (1982), Long and
Plosser (1983)].

From a methodological perspective, this paper contributes to the well-developed literature on
modeling time variation in multivariate econometric models. In the works of Canova (1993),
Sims (1993), Stock and Watson (1996), and Cogley and Sargent (2001), vector autoregressive
(VAR) models with drifting coefficients and homoskedastic errors are used. By using multivariate
stochastic volatility models [Harvey, et al. (1994)] for the innovations, the works of Cogley and
Sargent (2005) and Primiceri (2005) present VAR models with drifting coefficients and stochastic
volatility. In the work of Chan and Eisenstat (2018), the performances of VAR models with drift-
ing coefficients and stochastic volatilities, and VAR models with time-invariant coefficients and
stochastic volatilities are compared. Those authors find that, given conditional heteroskedasticity,
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there is no need for drifting coefficients in the VAR model. The empirical macroeconomic model
of our paper fits into that literature. In the heteroskedastic score-driven state-space model with
Student’s ¢-distributed innovations [also named heteroskedastic t-QVAR, quasi-VAR, model], the
coefficients are time-invariant and the error terms are conditionally heteroskedastic, similar to the
best-performing model of Chan and Eisenstat (2018). The -QVAR model is a nonlinear extension
of the VARMA (VAR moving average) model.

Score-driven models [Creal et al. (2008, 2011, 2013); Harvey and Chakravarty (2008), Harvey
(2013)] are observation-driven models [Cox (1981)], in which the filters are updated by the scaled
partial derivatives of the log-likelihood (LL) of the dependent variables with respect to dynamic
parameters (i.e., scaled score functions). The following statistical advantages of score-driven time
series models motivate their use in our paper: (i) score-driven models are robust to outliers and
missing data [Harvey (2013), Blazsek and Escribano (2016, 2022), Ayala et al. (2022)]. (ii) Score-
driven models are generalizations of observation-driven time series models [e.g., ARMA model;
generalized AR conditional heteroskedasticity model; VARMA model] [see in the work of Harvey
(2013)]. (iii) In the work of Blasques et al. (2015) it is shown for score-driven models that a
score-driven update locally reduces the Kullback-Leibler divergence in expectation at every step
asymptotically.

We use the heteroskedastic £-QVAR model to estimate a heteroskedastic score-driven -ABCD
representation of the DSGE model of An and Schortheide (2007). The t-ABCD representation is
an extension of the Gaussian-ABCD representation [Ferndndez-Villaverde et al. (2007)] and the
heteroskedastic score-driven Gaussian-ABCD representation [Angelini and Gorgi (2018)]. We
report results by using data on economic output, inflation, interest rate, government spending,
aggregate productivity, and consumption of the USA for the period of 1954 Q3 to 2022 Q1. We
find a superior statistical performance, lower policy-relevant dynamic effects, and a higher esti-
mation precision of the impulse response function (IRF) for US gross domestic product (GDP)
growth and US inflation rate, for the heteroskedastic score-driven t-ABCD representation rather
than for the homoskedastic Gaussian-ABCD representation. This is due to the robustness of the
heteroskedastic t--QVAR model.

The remainder of this paper is organized as follows: Section 2 presents the econometric model.
Section 3 presents the empirical application. Section 4 concludes.

2. Score-driven empirical macroeconomic models with heteroskedastic innovations
2.1. A Gaussian linear state-space model

For the purpose of explanation, we start with a Gaussian linear state-space model, which is
extended to the heteroskedastic t-QVAR model in this paper. The observable variables are col-
lected into the vector Y; (M x 1) and the state variables are collected into the vector X; (M x 1).
The first representation of the Gaussian linear state-space model is the following system of
equations:

Xy =AX; 1+ Be; (1

Y; = CX;_1 + De; (2)

where ¢, (M x 1) has an i.i.d. multivariate normal distribution €, ~ N(0, 2€’) and a diagonal
covariance matrix §2€’. The parameter matrices are A, B, C, and D, which are square matrices
with dimensions (N x N). If matrix D is non-singular, then, by using the reduced-form error
vt = De;, an equivalent representation of the system of Equations (1) and (2) is

X; =AX;_; + BD !y, (3)

Y, =CX;_1+ v (4)
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where v; ~ N(0, X) = N[0, DQ'D’] is the multivariate i.i.d. reduced-form error term. Moreover,
if C is non-singular, then we get the following Gaussian-VARMA(1,1) representation:

Yi=CAC™'Y;_1 + (CBD™! — CAC™ ") vi_y + ¢ ()

The reduced-form representation of Equations (3) and (4) is extended to the heteroskedastic
t-QVAR model according to the following points. In the heteroskedastic +~-QVAR model, (i) v;
has a multivariate ¢-distribution with degrees of freedom v, (ii) v; is conditionally heteroskedastic,
and (iii) the updating term v; in Equation (3) is replaced by the score function u;, for which we
have that u; —, v, if v — oo. The resulting heteroskedastic --QVAR model is presented in the
following section.

2.2. Heteroskedastic score-driven t-QVAR model
The first representation of the heteroskedastic £-QVAR model is

X; = AX;_1 +BD 'u (6)

Y =CX;—1 + De; (7)

where D is non-singular and e;|F;—; ~t(0, 2;Q},v) is a multivariate t-distribution with
scale matrix Q;Q} and degrees of freedom v >2, where the sigma algebra is F_; =
o(Yy,..., Y1, X1,Q1). We use parameter vector X, which is jointly estimated with the rest of
the time-invariant parameters, to initialize the state variables X;. Technical details for the updat-
ing term u; (i.e., scaled score function) are presented in Section 2.3. By using the reduced-form
error v; = De;, the second representation is

Xy =AX,—1 +BD 'y, (8)

Y =CXi—1+ v 9

where v¢|F;—1 ~ t(0, ¢, v) = t(0, D2;Q;D’, v). By comparing the models of Equations (8) and (9)
and Equations (3) and (4), the mathematical formulas indicate that v; of Equation (3) is replaced
by u, and the error term with normal distribution of Equation (4) is replaced by an error term with
t-distribution. If C is non-singular, then we get a nonlinear t~-VARMA(1,1) with heteroskedastic
errors representation:

Y, =CAC 'Y,_1 + CBD 'u;_; — CAC w1 + v, (10)

2.3. Score functions

The observation-driven updates of filter X; and the scale matrix Q€] of the ¢-distribution are
defined as follows, respectively: First, for the multivariate ¢-distribution, the log conditional
density of Y; is

v+N v N
lnf(Yt|.7-'t_1, @) =InT (T) —InT (E) — 7 In (JTV)
1 A
B <1+u> an
2 2 v

where v = Y; — CX;_; and O is the vector of the time-invariant parameters with dimension S.
The derivative of the log conditional density, with respect to the conditional mean CX;_;, is

[Harvey (2013)]:
-1
IInf(Yi|Fr1,0) v4+N__ vz VAN
J;([ct;ct_tl]l =" Ztlx(“r%t wE T E ()
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where the last equality defines the scaled score function u; with respect to location, that is,

—1 -1
v.x €.D'E ' De
m:(L+iJ—l) w=[1+i——L—i De; (13)
V v

which, asymptotically and at the true values of parameters ®g, is an uncorrelated white noise
vector; the conditions of which are presented in the Supplementary Material.

Second, the diagonal of the scale matrix ;€] is driven by score function e;. For the
heteroskedastic --QVAR model, €2,€2; is formulated as follows:

exp(2r1) O 0
QtQ; = 0 . 0 (14)
0 0 exp(Aipy)

where the filters within the diagonal of ,€2] are score-driven, and specified as follows:
Lig =i+ Bikig—1 + ajeig—1 + ol sgn(—e€ir—1)(eir—1 + 1) = i + Birip—1 + gleir—1)  (15)

fori=1,..., N, where sgn(x) is the signum function, and &] measures asymmetric effects in log-
scale. The specification of each element in the diagonal of €2 is the Beta-t-EGARCH(1,1) with
leverage effects model [Harvey and Chakravarty (2008)]. The score function e;; is defined in what
follows.

The marginal distribution of the multivariate ¢-distribution is the univariate Student’s
t-distribution, where the degrees of freedom parameters coincide. The partial derivatives of the
log marginal densities of the univariate Student’s ¢-distributions In f;(Y; (| Ft—1, ®), with respect

to Aip, fori=1,..., N, are the following score functions with respect to log-scale [Harvey and
Chakravarty (2008)]:
o _nfi(VlF,©) 0t v, 16)
it = oAit v exp (2Aiy) + V,%t

for i=1,...,N. These score functions update ;; within the scale matrix ;2. The updating
terms e;; and g(e;;) for i=1,..., N in Equation (15), asymptotically and at the true values
of parameters ®, are uncorrelated white noise; the conditions of which are presented in the

Supplementary Material.
If v — oo, then e;; of Equation (16) converges in probability to
dInfi(Yif| Fi1, © v;
eir = nfl( 1,t| t—1, ©) _ it 1 (17)
Iit exp (24i1)
fori=1,..., N, which are quadratic transformations of v;; as in the GARCH model [Bollerslev
(1986)].

If v— oo, then we also have that u; —,vs, € ~ (0, Q2:Q},v) =4 N(0, 2:Q}), and v;~
t(0, X¢, v) — 4 N(0, Z¢). Moreover, if we also assume homoskedastic innovations, that is X; = 3,
then we obtain a classical Gaussian linear state-space model (Section 2.1).

2.4. Impulse responses
For the reduced-form error term Var(v;| F;—1) = 3¢ x v/(v — 2), which is factorized as

1/2 v 1/2
) X DQtQ;D/ X <—2> (18)

Var(vi| Fr_1) = 8 x — =<

v—2 v—2
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For the IRF analysis, the multivariate i.i.d. structural-form error term € is introduced as
N 1 b\ 12
&= D' lv=(——) D'Q 'De 19
t <l) — 2) t t <\) — 2) t t ( )

where €; ~ t[0, I X (v — 2)/v, v] is an i.i.d. multivariate t-distribution with zero mean and an
identity covariance matrix. From Equations (12) to (19), the é; error term-based representation of
u; is

€t

=[(v—=2]"2DQy x ———
uy = [( ] t v—2+€;€t

(20)

The nonlinear MA(00) representation of Yy is
m .

Y, = Z CAI'B[(v — 2)v]"/2Q,_;

j=1
The IRFs for the heteroskedastic t-QVAR model are

SYH_]- % 1/2
—=— DQ; f =0 22

gt—j V 1/2
— = —= (Tt DQ;é 21
V=24 & & (v—2> tet (21)

Y14 . .
— — cAT'Bl(v — 2] 2Dy for j=1,...,00 (23)
€t

where Dy is

€ ding - dlj\/,t
~ v—2+€,é;

3¢
Ay o AN

V—2+E,6—282

—2€11€y;

(v—2+¢€,¢1)?

—2éy€y;

(v—2+€/¢1)?

v—2+&/¢,—2é2,

=| w—2+&&)?

—2€N €1t
L (v—2+é)?

(vV—2+E/&)?

—2€11€Nt
—2+8¢,)?

v—2+E,&—28%,

(v—2+¢&)?

(24)

Motivated by the work of Herwartz and Liitkepohl (2000), we replace the matrices €2; and

Q:D; by E(€2;) and E(Q.D;) in Equations (22) and (23), respectively, which are estimated by using
sample averages of the full sample period. In the literature, there are alternative approaches for
the estimation of nonlinear IRFs [Liitkepohl (2005)]. Future empirical applications could consider
other nonlinear IRF estimation approaches, which may be more appropriate than our approach
for specific policy analyses.

2.5. Statistical inference

We use the maximum likelihood (ML) method [Creal et al. (2013), Harvey (2013), Blasques et al.
(2018, 2022)]:

T
6= arg mélx LL(Yy,...,Yr,®)=arg mélx; In f(Y¢|Fi—1, ®) (25)
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where the log conditional density In f(Y¢|F;—;, ®) is Equation (11). The LL function is max-
imized numerically, by using alternative start values of parameters. The standard errors are
estimated using the inverse information matrix: {(1/T) Zthl [Gt(@)’ Gt(é)]}_l, where Gt(@) is
the gradient.

With respect to the sufficient conditions of the asymptotic properties of the ML estimator for
score-driven location plus score-driven scale models, such as the heteroskedastic --QVAR model,
we refer to the work of Blazsek et al. (2022), which is directly related to the present work from
the perspective of statistical inference. The heteroskedastic t-QVAR model is an extension of the
bivariate --QVAR model of Blazsek et al. (2022), because in the present paper we have multivariate
location plus multivariate scale filters, while in the work of those authors the model includes uni-
variate location plus univariate scale filters. Although most of the ML assumptions coincide for the
two models, due to the different levels of technical complexity at some points of model formula-
tion, we report the asymptotic theory for the heteroskedastic --QVAR model in the Supplementary
Material.

In the remainder of this section, we present some of those conditions for covariance stationarity
and invertibility. For the covariance stationarity of X;, asymptotically and at the true values of
parameters ®y, it is required that the maximum modulus of the eigenvalues of A, that is Stat,,, is
less than one. For the invertibility of X, that is X; converges almost surely (a.s.) to a unique strictly
stationary vector sequence for all ® € ® where © is the parameter set, one of the conditions of

invertibility of X; is
Inv, = inf {nlE <ln ) } <0 (26)
n>1
2

where the matrix norm [|W||; is the spectral norm. We present empirical estimates of Stat,, and
Inv,, in the application.

Covariance stationarity of A, for i=1,..., N, asymptotically and at the true values of
parameters ®y, requires |B;| <1 for i=1,..., N, respectively, which are denoted by Stat; ; for
i=1,...,N.Hence, E(Aiy) = w;i/(1 — B;), fori=1,..., N, which is applied to initialize A;; for
i=1,..., N, respectively. For the invertibility of A;; fori=1,..., N, thatis ;¢ fori=1,..., N
converge a.s. to a unique strictly stationary sequences for all ® € ©, one of the conditions of the

invertibility of A; is
” @)

Inv, ; = inf {n_lE |:ln
n>1

fori=1,...,N. For the invertibility of filters A;y, it is required that Inv, ; <0 fori=1,..., .
We present the estimates of Stat) ; and Inv, ;, fori=1, ..., N, in the empirical application.

" ou
A+BD 1L
E 0(Xi—1)

n
de;
[ ] 8+ [ + e} sgn(—vi)] -
t=1 it

3. Empirical application
3.1. The DSGE model of An and Schorfheide (2007)

In this paper, we assume that the number of observable variables Y; and the number of shocks ¢;
coincide. If Equations (1) and (2) are the minimal square ABCD representation of a DSGE model,
then Equations (6) and (7) represent the nonlinear extension of that minimal square ABCD rep-
resentation. We apply the heteroskedastic --QVAR model for the estimation of an analytically
tractable identified DSGE model with as many shocks as variables. For this purpose, we use the
DSGE model of An and Schorfheide (2007), which has a minimal square ABCD representation
[see Morris (2014)]. We recognize that this DSGE model is a very specific example of DSGE
models. We use the model of An and Schortheide (2007) to illustrate the performance of the
heteroskedastic t-QVAR model.
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The DSGE model of our application represents dynamic interactions among economic output,
inflation, interest rate, government spending, aggregate productivity, and consumption in a sys-
tem of nonlinear equations. The variables of the DSGE model of An and Schorfheide (2007) are
as follows: y; is the difference between current output and steady state output; 7, is the difference
between current inflation and steady state inflation; r; is the difference between current inter-
est rate and steady-state interest rate; g; is the difference between current government spending
and steady state government spending; z; is the error term in In Ay =y + In A;_; + z;, where A;
is aggregate productivity; and ¢; is the difference between current consumption and steady-state
consumption.

We present the following specification of the DSGE model, which in a log-linearized form
around the steady state is the following system of expectational difference equations [see
Giacomini (2013)]:

Zt = Pz2t—1 + €4 (28)
8t = Pg8t—1 + €gt (29)
re=prri—1 + (1= p)Ynme + (1 — p)¥2(ye — &) + €ns (30)
Yt =Et(yri1) + & — Er(gr1) — % [re — E(m41) — Er(z41)] (31)
me=CE(m1) + T;T_—;(f)()/t — &) = CE(mi1) + k(ye — g1) (32)
=yt — gt (33)

where E; denotes expected value, which is conditional on the values of all variables in the system
of equations until period ¢ (t included), and 7 is steady-state inflation.

In the literature on DSGE models, an i.i.d. €, ~ N(0, 2Q’) with diagonal covariance matrix is
used for €; = (e, €q,1 €,¢). For the heteroskedastic t-QVAR model, we extend the probability
distribution of €; = (€1, €g.1 €r1), by using €/ F;_1 ~ (0, ,€2}, v) with score-driven conditional
scale matrix.

3.2. Heteroskedastic t-ABCD representation

We present the heteroskedastic -ABCD representation which is adapted to the DSGE model of
An and Schortheide (2007). We specify the ABCD representation according to Morris (2014), as
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&= 0 Pg g-1 | T 0 1 0 Cy,z//oz 1 Cy,r/pr Ugt
Tt ¢z 0 ¢y re—1 Crz/pz 0 crr/pr Cnz/Pz O Cxr/pr Urt
X A Xi—1 B D1 Uy
(34)

Tt crz 0 crp 2t—1 Vzt
Jt Cyz Pg Gy -1 | T | Vet (35)

Tt crz 0 cnyp r—1 Vit

—_—— —_—— ——
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These equations correspond to Equations (8) and (9) of the heteroskedastic --QVAR model. The
parameters of the ABCD-matrices are identified, and the IRFs can be estimated according to the
nonlinear MA(o0) representation of the heteroskedastic t-QVAR model.

For the heteroskedastic t-ABCD representation, the following parameters are estimated:

© = (p, Pg> Pr> Cr,z> Crr> €25 Cys Cr 25 C > X0,25 X0,g> X0, @z, Wg> O Bz, By Bro
¥k x N/
az,ag,ar,az:ag) ar) V) (36)

The heteroskedastic t-ABCD representation is a generalization of the homoskedastic Gaussian-
ABCD representation of Fernandez-Villaverde et al. (2007) and the heteroskedastic score-driven
Gaussian-ABCD representation of Angelini and Gorgi (2018). By assuming that €; = and
v — 00, we get the homoskedastic Gaussian-ABCD representation [Fernandez-Villaverde et al.
(2007)]. Moreover, by assuming that Q; = €2, we get the new homoskedastic t-ABCD represen-
tation. In addition, we note that we provide the following contributions to the work of Angelini
and Gorgi (2018): (i) Angelini and Gorgi (2018) assume that only the scale filter is score-driven.
We use score-driven transition equation and scale filters. (ii) Angelini and Gorgi (2018) use a
score-driven multivariate Gaussian distribution, which we extend to the score-driven multivari-
ate t-distribution. (iii) We extend the score-driven scale filter of Angelini and Gorgi (2018) by
adding asymmetric effects to the updates.

3.3. Data

All quarterly time series data of this paper are from Federal Reserve Economic Data (FRED).
We use the following variables for the period of 1954 Q3 to 2022 Q1: (a) not seasonally adjusted
Effective Federal Funds Rate (in % points), (b) seasonally adjusted US GDP level y;, and (c) sea-
sonally adjusted US CPI (consumer price index) for all urban consumers. We use the maximum
period for which data are available from FRED for these variables. The sample period includes the
recent and on-going crisis periods of the coronavirus disease of 2019 (COVID-19) pandemic and
the Russian invasion of Ukraine.

The US inflation rate series is computed as quarterly log percentage change (in % points) of the
US CPI. The seasonally adjusted US GDP level is detrended by using the following model:

Inj;=InA,+Iny (37)

InA;=y +InAi 1+ 2z (38)

where log aggregate productivity In A; is the unobservable stochastic trend for US GDP level
[Giacomini (2013)], and the model is estimated as a Gaussian linear state-space model by using
the Kalman filter.

In this paper, the steady state of each observable dependent variable is estimated by using the
sample average [Morris (2014)]. There are some negative observations for the US inflation time
series. Hence, we do not use the logarithmic percentage difference between the value of the vari-
ables and their steady states [Giacomini (2013)], but the sample average is subtracted from each
variable [Morris (2014)]. Hence, the sample averages are subtracted from the US inflation rate and
the Effective Federal Funds Rate in the computations of 77; and 1y, respectively (both are measured
in % points). For percentage deviation of US GDP from its trend, we use y; = 100 x In y (hence
¥ is in % points), and E(y;) = 0 due to Equations (37) and (38).

Descriptive statistics are presented in Table 1. The evolution of the observable dependent
variables 7y, y¢, and 7y, for the period of 1954 Q3 to 2022 Q1, is presented in Figure 1.
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Table 1. Descriptive statistics

r¢ (Effective Federal Funds Rate) ¥t (detrended US GDP level) 7+ (US inflation rate)

Start date 1954 Q3 1954 Q3 1954 Q3
Enddate - 2022Q1 - 2m0 2022 Q1
.Frequency ofObservatlons ey ey ..quarterly... e
. e ofobservatlonsT o T R B
- B . 0‘000.0 S B 0'000.0 e 6.0600’
.Standard dewatlon e 36092 o e e
B T ”711 1039. e 73 1872 —
e .131580 T e -
R = e ._18626. o
P kurt05|s e 11774 25 4319 B e
.Corr(ymm 1) e 09723 T 07520.. .
. Y,t 1).. o '—o 2750. T
”Shaplro Wllktestpvalue T 00000 e
ADF-GLS test p-value R 01520 - oso 0.1990
I

Notes: Augmented Dickey-Fuller generalized least squares (ADF-GLS); autoregressive conditional heteroskedasticity (ARCH). For the ADF-GLS test
with constant, the modified Bayesian information criterion (BIC) is used for lag-order selection. For the ARCH test, lag-order 4 is used. Hy for the
Shapiro-Wilk test [Shapiro and Wilk (1965)] is the normal distribution (rejected for all variables at all levels of significance). Ho for the ADF-GFS test is
integration of order one (not able to reject for any variable at the 10% level of significance). Ho for the ARCH test is no ARCH effect is present (rejected
for all variables at all levels of significance).

3.4. Parameter estimates and model diagnostics

In the empirical application, we estimate the following models: (i) a homoskedastic Gaussian-
QVAR model which is called the homoskedastic Gaussian-ABCD representation; (ii) a het-
eroskedastic Gaussian-QVAR model which is called the heteroskedastic score-driven Gaussian-
ABCD representation; (iii) a homoskedastic t-QVAR model which is called the homoskedastic
score-driven t-ABCD representation; and (iv) a heteroskedastic t~-QVAR model which is called
the heteroskedastic score-driven t-ABCD representation. As aforementioned, models (i), (ii), and
(iii) are special cases of model (iv). In Table 2, the ML parameter estimates, likelihood-based
model performance metrics, and stationarity and invertibility statistics are presented for all ABCD
representations.

First, almost all parameters of the ABCD-matrices for all representations are significantly
different from zero in Table 2. By comparing the ML results for alternative ABCD represen-
tations, the estimate of the dynamic parameter p, is lower (though statistically significant)
for the heteroskedastic score-driven Gaussian-ABCD and heteroskedastic score-driven t-ABCD
representations (0, = 0.0077*** and p, = 0.0373™**, respectively), than for the homoskedastic
Gau551an ABCD and score-driven homoskedastic t-ABCD representations (0, = 0.7388"** and

Pr = 0.3384™**, respectively). As these results may suggest that the dynamic effects for r; are dif-
ferent for the homoskedastic and heteroskedastic ABCD representations, we return to this point
in Section 3.5 where the IRF estimates are presented. Moreover, the parameter estimates for the
score-driven heteroskedastic t-ABCD representation show that scale dynamics, that is 8, f,,
Br and oz, ag, o, o ocg, o, are significantly different from zero. In addition, the degrees of
freedom parameter v estimates for both -ABCD representations justify the use of the Student’s
t-distribution, as their estimates are significantly lower than 30.

Second, the statistical performances of the ABCD representations are compared by using the
LL, Akaike information criterion, Bayesian information criterion, and Hannan-Quinn criterion
metrics in Table 2. We find that the performances of the Gaussian-ABCD representations are
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(a) Effective Federal Funds Rate r; (in percentage points), centered at zero.
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(C) US inflation rate m; (in percentage points), centered at zero.
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Figure 1. Observable dependent variables for the period of 1954 Q3 to 2022 Q1.
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Table 2. Parameter estimates and model diagnostics

Homoskedastic Heteroskedastic Homoskedastic Heteroskedastic

Gaussian-ABCD Score-driven Gaussian-ABCD Score-driven t-ABCD Score-driven t-ABCD
0z 0.6116"*(0.0470) p; 0.4505"*(0.0175) p; 0.8745*(0.0375) p; 0.7555%*(0.0364)
by 00826*(0.0486) py  03323"(00121) p, 04858700675 pg  0.4213"(0.0750)
BT - e e
¢z 17089°(0.9705) cp;  01222"%(0.0399) ¢,  3.31887%(0.9632) . 27961 (1.9136)
o oo o osmernons o [
G T4279°(0.9349) . 0I7334(0.0365) ¢y 495997%(L2109) . 5.6437*(3.6881)
o 00798"(0.0269) ,  0.0620%(0.0270) ¢, 00637°*(0.0263) c,,  0.05147(0.0317)
Crz  109102°%(06212) Cr,  04637"(0.0593) Cr,  12.0257°%(04471) ¢y,  18.2881%(9.8584)
oy 01168(0.0205) Cr,  0.0436™(00179) Cr,  0.07TATT(0.0247) Cpy  0.0234(0.0213)
oz —00652*(0.0331) Xo,  —19689"*(0.0363) X,  —0.0724*(0.0268) Xo, —0.0563(0.1163)
Xog  36299(132357) Xog  20111"*(0.0363) Xog  02280(L3749) Xog  0.9708(5.2309)
P e e e e
@1 00263(0.0028) w,  —01856™*(0.0336) Qi  0.0276"%(0.0019) w,  —12153"*(0.5228)
Qp  11449°%(0.0425) w,  —0.0442(0.0350) p,  0.78957%(0.0418) wy  —0.0714*(0.0311)
Q33 06355"(0.0223) o  —03619"(0.0177) Q33  030917%(0.0075) —0.3563"*(0.0964)
S e e
...... A I
B oty s
L
S ]
)
0.0012°*%(0.0004)
~ 0.0704"(0.0211)
)
v 13.1399%**(1.8043)
LL —34356 LL 27977 LL ~3.1467 LL _2.6755
AIC 6.9819 AIC 57724 AIC 64115 AIC 5.5355
BIC 7.1813  BIC 6.0914 BIC 6.6241 BIC 5.8678
HQC 7.0620 HQC 59005 HQC 64968 HQC 5.6689
Stat,, 09718  Stat, 0.9474  Stat,, 0.9645  Stat,, 0.9605
Inv,, 0.0000  Inv,, 0.0000  Inv,, —04752 Inv, —0.4867
Stat; 0.8044 Stat;., 0.7632
Stat, g 0.7958 Stat; 0.7051
Stat;., 0.9334 Stat;., 0.9041
nv;., —0.4108 Inv;. —0.3950
Invs,g —0.4608 Invs. g —0.3066
Inv;., —0.1068 Inv;., —0.0813

Notes: AIC, Akaike information criterion; BIC, Bayesian information criterion; HQC, Hannan-Quinn criterion; LL, log-likelihood. Standard errors
are reported in parentheses. The bold likelihood-based model performance metrics indicate superior statistical performance. The heteroskedas-
tic score-driven Gaussian-ABCD representation is the DSGE model of Angelini and Gorgi (2018). The Gaussian-ABCD representations have VAR(1)
representations, hence Inv,, = 0.***,** * and * indicate parameter significance at the 1%, 5%, 10%, and 15% levels, respectively.
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improved by using the score-driven t-ABCD representations. We also find that the best statistical
performance is provided by the heteroskedastic score-driven t-ABCD representation.

Third, the empirical estimates of the covariance stationarity and Lyapunov exponent statistics
are also presented in Table 2. For the Gaussian-ABCD representations, covariance stationarity
is supported by the Stat,, statistic. For the -ABCD representations, covariance stationarity and
invertibility are supported by the Stat, and Inv,, statistics, respectively. For both heteroskedas-
tic ABCD representations, covariance stationarity and invertibility are supported by the Stat, ,,
Staty g, Staty,,, and Inv, ,, Invy g, Invy ,, respectively. We note that both Gaussian-ABCD rep-
resentations of the DSGE model of An and Schorfheide (2007) have VAR(1) forms [see Morris
(2014)], hence Inv,, = 0 for those models.

Fourth, in Figure 2, as a graphical illustration of heteroskedasticity for the DSGE model, the
evolution of €;; + oy (i.e., error & one standard deviation) is presented for the period of 1954 Q3
to 2022 Q1, by using the estimates for the best-performing heteroskedastic score-driven t-ABCD
representation. The figure shows that the standard deviations of the error terms are time-varying
for the DSGE model.

3.5. Impulse response analysis

IRFs are identified using sign restrictions, based on 10,000 Monte Carlo simulations of the matrix
2, in accordance with the procedure of Rubio-Ramirez et al. (2010). First, the ML estimates of
Q are used. Second, an A/ x A matrix K of i.i.d. N(0, 1) numbers is simulated. Third, the QR
decomposition of K is performed, and the resulting matrices are denoted Q and R. Fourth, we
define Q = Q x Q for each simulation. The parameter matrices 2 and €, are replaced by € in
the IRFs.

For each simulation of &, sign restrictions are used in accordance with Table 3, for which we
refer to the works of Leeper et al. (2009) and Cogan et al. (2010). For the simulations of Q that
satisfy the sign restrictions of Table 3, we report the 5%, 50%, and 95% percentiles of the IRFs
up to 20 leads in Figures 3 and 4 for the classical homoskedastic Gaussian-ABCD and the new
heteroskedastic score-driven t-ABCD representations, respectively.

We highlight the following IRF results: First, the relatively low estimate of p, for the het-
eroskedastic ABCD representations, compared to the homoskedastic ABCD representations
(Section 3.4), might be interpreted as a lower effect of an interest rate shock on subsequent inter-
est rates, but, as is shown in Panel (c) of Figures 3 and 4, that is not the case. The persistence of
interest rate shocks is similar for all ABCD representations [Panel (c) of Figures 3 and 4].

Second, a difference between the IRFs of the two ABCD representations, which may have policy
implications, is in relation to the effects of an aggregate productivity shock on the US inflation rate
€.t — Tt+j. For the homoskedastic Gaussian-ABCD representation, €, — ms; is negative, and
its contemporaneous value is —0.41[ — 0.11, —0.62] [Panel (g) of Figure 3]. For the heteroskedas-
tic t-ABCD representation, €, — 7t is also negative, but its effect is lower in absolute value,
that is, its contemporaneous value is —0.10[ — 0.02, —0.14] [Panel (g) of Figure 4].

Third, another difference between the IRFs of different ABCD representations is in relation
to the effects of government spending shocks on the US inflation rate €g; — m;1; [Panel (h) of
Figures 3 and 4]. For the homoskedastic Gaussian-ABCD representation, €g; — 7;; is positive
contemporaneously, and its value is 0.28[0.02, 0.61] [Panel (h) of Figure 3]. For the heteroskedas-
tic t-ABCD representation, €, — T4 is also positive, but its effect is lower in absolute value, that
is, its contemporaneous value is 0.07[0.01, 0.14] [Panel (h) of Figure 4].

Fourth, another difference between the IRFs of different ABCD representations is in relation to
monetary policy shocks, that is, effects of interest rate shocks on the US inflation rate €, ; — m¢+;
[Panel (i) of Figures 3 and 4]. For the homoskedastic Gaussian-ABCD representation, €, — m¢+;
is negative, and its contemporaneous value is —0.25[ —0.02, —0.61] [Panel (i) of Figure 3].
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Figure 2. Evolution of ¢; and ¢; =+ o¢ for score-driven heteroskedastic t-ABCD (1954 Q3 to 2022 Q1).
Notes: ojr = exp (Ai)[v/(v — 2)]¥2 fori=2z,g,r.
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Table 3. Sign restrictions on impact responses

Aggregate productivity shock €,,¢ Government spending shock eg ¢ Monetary policy shock € ¢
re Unrestricted F aF
Yt + + -
Tt — = -

For the heteroskedastic t-ABCD representation, €, — 714; is also negative, but its effect is
lower in absolute value, that is, its contemporaneous value is —0.06[ — 0.01, —0.13] [Panel (i) of
Figure 4].

Fifth, as measured by the IRF confidence intervals, the estimation precision of the IRF for
US GDP growth [Panels (d)—(f) of Figures 3 and 4] and US inflation rate [Panels (g)—(i) of
Figures 3 and 4] is higher for the heteroskedastic score-driven t-ABCD representation than for
the homoskedastic Gaussian-ABCD representation. This indicates that the score-driven updates
of the dependent variable may improve the statistical inferences of the impulse responses.

Finally, in Figure 5, we compare some of the IRF estimates for the homoskedastic Gaussian-
ABCD representation and the heteroskedastic score-driven t-ABCD representation, by using data
for the periods of 1954 Q3 to 2019 Q4 and 1954 Q3 to 2022 Q1 (i.e., data without and with
the COVID-19 pandemic, respectively). The IRF estimates show that the heteroskedastic score-
driven t-ABCD representation is robust to the COVID-19 pandemic, while for the homoskedastic
Gaussian-ABCD representation some of the IRF estimates are significantly different for the two
samples. These results indicate the robustness of the score-driven t-ABCD representation to
extreme observations.

4. Conclusions

In this paper, we have introduced the heteroskedastic score-driven state-space model with
Student’s t-distributed innovations, and we have applied the new nonlinear model in an empirical
macroeconomic way to a well-known DSGE model. In the heteroskedastic score-driven state-
space model with Student’s ¢-distributed innovations, the coefficients are time-invariant and the
error terms are conditionally heteroskedastic, similar to the best-performing model in Chan and
Eisenstat (2018).

We have used the robust empirical macroeconomic model with time-varying conditional
moments, to estimate a new heteroskedastic score-driven t-ABCD representation of the DSGE
model of An and Schorfheide (2007). We have reported estimation results by using data on
economic output, inflation, interest rate, government spending, aggregate productivity, and con-
sumption of the USA for the period of 1954 Q3 to 2022 Ql. We found a superior statistical
performance, lower policy-relevant effects, and a higher estimation precision of the IRF for US
GDP growth and US inflation rate for the heteroskedastic score-driven t-ABCD representation
rather than for the homoskedastic Gaussian-ABCD representation. These results are due to the
robustness of the heteroskedastic t-QVAR model, even including the period of the COVID-19
pandemic and the start of the Russian invasion of Ukraine, which may motivate its practical use
for empirical macroeconomic analysis.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
$1365100522000712.
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