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1. Theme and first variation

The theme of this paper is a. conjecture whose origins eo back to work of
B. H. Neumann ([5], Theorem 3.1) and his former students T. Wiepold ;>r>d
I. D. Macdonald ([7], [4]). B. H. Neumann proved that if there is a bound
to the sizes of conjugacy classes in the group G. that. is. if G is a BFC group.
then the derived group G' is finite; Wieg'old. a.nd later Ma.cdonald. produced
explicit upper bounds for \G'\ in terms of the maximum n of the si?,es of
the conjugacy classes in G. The coniecture is that

\G'\ < n*(I'"1+1»

where l(n) should be the arithmetic function 1 X(n) for a best possible
bound, or l(n) may be interpreted as logoM for a. smooth, rn.onot.onicorder-
of-magnitude estimate. However, the bounds produced in F7] and [4], and
even the vastly better upper bounds proved bv Sheooerd and Wieeold ffi]
for soluble groups, are very much bigger than fiMli-n)+x\ and it is mv aim
in this paper to take a first step towards closinp the eap. This first, step is
a study of BFC ^-groups: in a sequel I hope to show how the results proved
here can be used to obtain improved bounds for arbitrary BFC groups.

The breadth b of a. finite ^>-group G is defined by

p* = m3.x{\G:C(g)\\geG}

where C{g) is the centra.User of g in G. Equivalently, fib is the maximum
of the sizes of the conjugacy classes in G. For ^-groups the basic coniecture
takes the form

CONJECTURE A. If G is a finite p-group of breadth b. then

What I shall prove is

i If « = p1lp**. . . p1k where p } , pv...,pv are prime, then X(n) = a , + a ? . . . +«»..
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20 Peter M. Neumann [2]

THEOREM I. If G is a finite p-group of breadth b, then

\G'\^p»\

By completely different methods I. M. Bride has shown that Conjecture A
is correct for ^-groups of class 2 (see [1]), but even for this special case his
proof is long and difficult. It seems a good possibility that a combination
of his methods and the methods to be described below will produce a proof
of the conjecture, but certainly the splicing of the two lines of approach
cannot be altogether straightforward.

There is 2, as is well known, a strong similarity between groups and Lie
algebras (or Lie rings). It is not easy to pin down precisely what this analogy
entails. At its most concrete it is embodied in the classical relation between
a finite dimensional Lie group and its local Lie algebra; or it is the formal
connection obtained by associating with a residually nilpotent group one
of its associated graded Lie rings (cf. Lazard [2]). At its most insubstantial
it is perhaps simply a similarity between the category of groups and the
category of Lie algebras. However, for the quantitative problem in which
we are interested the similarity can be formulated quite explicitly.

Generally the analogy seems to arise from the formal similarity between
the operation of forming commutators (and multiplication) in groups and
the operation of multiplication (and addition respectively) in Lie algebras.
Thus the property of being abelian as a group (all commutators trivial)
corresponds to the property of being abelian as a Lie algebra (all products
zero); the derived group (the minimal normal subgroup with abelian factor
group) should correspond to the derived algebra in a Lie algebra; the fact
that the derived group G' in a group G is generated by all commutators
[x, y] = x~1y~1xy, x, y e G, corresponds to the fact that the derived
algebra L2 is spanned by the products xy of pairs of elements x, y in a Lie
algebra L; centralisers in a group (CG(X) = {y e G\[x, y] = 1}) should
correspond to annihilators in a Lie algebra (annL(x) = {y e L\xy — 0}).
Clearly nilpotence and solubility will correspond as they ought (see, for
example, [3] § 4 for a general setting in this case). There is less justification
for making the number of prime factors in the order of a group correspond
to the dimension of a Lie algebra, but at least for a soluble group G and a
soluble Lie algebra L, 1{\G\) and dim L are the lengths of composition series
in G and L respectively. It is a little harder still to justify the correspondence
between the number of prime factors in the index of a subgroup and the
codimension of a Lie subalgebra: but at least in the nilpotent case, X{\G : H\)
is the length of a composition series between G and its subgroup H, while

2 In what follows groups will be assumed to be finite, and Lie algebras will be finite
dimensional over some (unspecified) field. This restriction is for convenience only. It entails
no real loss, for the problems we are concerned with can quite easily be reduced to the study
of finite or finite dimensional cases (see, for example, [4] § 2).
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[3] An improved bound for BFC ^-groups 21

codim M is the length of a composition series between the Lie algebra L
and its subalgebra M.

These considerations suggested the following definition and conjecture.
If L is a Lie algebra, we define the breadth b of L by

b = max {codim ann (x)\x e L}.
Then

CONJECTURE B. In any Lie algebra L of breadth b,

dim!,2 ^ £6(6+1).

In this direction the analogue of Theorem 1 is

THEOREM 2. In any Lie algebra L of breadth b,

dim L2 ^ b2.

The problem is now ripe for generalisation: and indeed, it is only by
generalising from Lie multiplication to arbitrary bilinear maps, thereby in-
troducing the possibility of unsymmetry into the situation, that we get a
proof of Theorem 2; and it is only by generalising still further, almost
to breaking point, that we finally come full circle and obtain a proof of
Theorem 1.

2. Second variation: bilinear algebra

Let U, V and W be vector spaces (over some field which will remain
unspecified) and let (f>: Ux V -> W be a bilinear map. For u e U define

ann<j(M) = {i;e V\\u, v)<f> == 0} ̂  V
and f or v e V

ann^(w) = {«e U\(u, v)cf> = 0} <̂  U.

If (u, V)<f> = {(u, v)(f>\v e V} then (u, V)<f> is a linear subspace of W, and of
course (u, V)<f> ^ F/ann^(w). We put

b(u) = 6^(M) = codim (ann0(w)) = dim(w, V)<f>

and for v e V we define b(v) = b^{v) analogously. The basic result, of which
Theorem 2 is clearly only a very special case, is

THEOREM 2.1. / / <j>: UxV -> W is a bilinear map and k, I are integers

such that

• • (a) for all u eU, b(u) 5S k;

(b) for all veV, b(v) ̂  I;

then 3 d im <im <f>} ^ kl.

3 Throughout, <X> denotes the subspace spanned by the set X.
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22 Peter M. Neumann [4]

b or the proof we cieaiiy may assume tnat k^=L. it k = 0 then (u, v)<f> = 0
lor ail u e U and all v e V, so tnat nn<£ = {0}, and the result is surely
tiue in tins case, This piovio.es the start ol an induction: as inductive
hypothesis we assume that the statement is true for the given value of /
ana ail smaher values of k.

ii b(u) ?S, k~~ i for all u e U then our inductive hypothesis applies and

d i m < i m < / > > <L (k — l ) l <Z, k l .

Ineiriiore we may assume that there is an element ur in U for which
b^u-j.) = « and we put

X = ann0K) ^ V
and

Y = ann0(X) ^ U.

Let y)x : W -> VI/"/(M1, V) (̂  — M^ be the canonic epimorpnism, and deline <f>x

to be the composite map $x — tfrip^ : UxV —*• Wv Thus fa is bilinear and
ami0 \u) = k. Now we need

LKMMA 2.2. If u eU, u $ Y then b^ (u) ^ ^ — 1 .

PROOF. I I U $ Y then there is some element x in X for which (u, x)(f> =£ 0.
Then

(2.3) (u, x)(p -— (u-\-ult x)<f> ^ 0.

Let us put U* = <M, u±) — <M, w+%), and T = <([/*, F)^>, so that

= (

In the second line of (2.4) we have T expressed as the sum of two subspaces
each ol dimension k or less and which have (by (2.3)) non-zero intersection.
Thus dim T <, 2k—1. But dim(M1; V)<f> ~ b^Uj) --= k. Hence

^ (u) — dim (u,
— dim (u,
= dim {((

= dim {'iVK, F)^} ^ A;-l

This lemma provides the first step of an induction: the later steps are
a little different. We intend to find elements ult ..., ur in U with certain
special properties. To define these elements and describe their properties
we will need some more notation. Suppose that u1, . . ., uf are defined. We
will put
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[5] An improved bound for BFC ^-groups 23

and
5, - <(uit V)4>y £ w.

Since <f> is bilinear, S{ is the sum of its subspaces (%, V)j>, . . ., («,-, F)<£ each
of which has dimension k or less: hence

(2.5) dim St ^ ik.

Let y>{:W ->• WjSt = Wf be the canonic epimorphism, and put

Then of course <f>{ is bilinear, and since S,- = ker y>t ^ <im^>, we have

(2.6) dim <im<£> = dim <im

Notice that, if 6t : Wi_1 -*• W{ is the canonic epimorphism with kernel
SJS^, t h e n <f>( = <f>i_1Bi a n d

(2.7) kerei = S i /S ,_ 1 =(« < > 7)^_ 1 .

The conditions that are to be satisfied in the choice of the elements
ux, . . ., uT are that for 1 5S i ^ r,

(a) Ut £ Y;
(b) b^u) ^ k-i for all u e U-Y.

The choice of ux is already made: that (a) holds for i = 1 is in the
definition of Y; and (b) is the content of Lemma 2.2. Suppose therefore
that i ^ 1 and that w1( . . . ,« , - are already chosen. If i = & we put r = k
and CALL A HALT. If i < k and & .̂(w) ^ &—i for ail weY, then we put
r = i and CALL A HALT. Otherwise, let ui+1 be any element of Y such that
bj.(ui+1) 5: A—t'+l. Condition (a) is then automatically satisfied by Ui+1,
and only (b) needs discussion. If u $ Y then also u-\-ui+1 $ Y and we do
know that

dim (u, V)4t ^ k-i
,2 g)

dim {u+ui+1, V)^ ^ k-i;

while on the other hand

(2.9) dim (ui+1, V)<f>{ > k-i+1

If U* = <M, ui+1} = (u, u-\-ui+iy then, since <f>( is bilinear,

[ ' = (u.V)*t+(u+ut+1,V)4t
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The second line in (2.10) coupled with (2.8) shows that (u, V)(f>i has codi-
mension at most k—i in <(£/*, F)<^>. Then the first line of (2.10) coupled
with (2.9) shows that

(u, ¥)<(,, n(ui+1,

Thus (u, V)<f>{ has non-zero intersection with the kernel of 6i+1 (see (2.7)),
so that

dim (u, F)<M*+i < dim (u, V)<f>t ^ k-i.

That is b(j>( (u) sS k—i— 1, and this is the required inequality.
The last stage of the proof uses the information which we have acquired

with the elements ult . . ., ur. There are two cases to consider, corresponding
to the two possible reasons for having called a halt on the preceding page.

CASE 1. If r < k then we stopped simply because b$ (u) fS, k—r for
all u e Y. By (b) this inequality also holds for all u $ Y: thus b^ (u) 5S k—r
for all u eU.

Now certainly k—r < k, and furthermore, if v e V then

Therefore our inductive hypothesis applies,

dim <im^r> ^ (k—r)l,
and -{2.5), (2.6) give

dim <im <f>} r£j {k—r)l-\-rk

= kl.

CASE 2. If r = k then for all u $ Y, (u, V)<f>k = 0. This means that
for u 4 Y,

and so <(£/, V)<f>y = <(Y, V)<f>}. If vlt v2, ...,vk together with X span V,
then

= (Y, vJi+iY, v2)$+. .. + (Y, vt)4>+<(Y,

Each of the first k summands has dimension at most /, and the last summand
is zero by definition of Y. Thus in this case also, dim <im $> 5S kl, and the
proof of Theorem 2.1 is complete.

A better bound than that given in Theorem 2.1 can certainly not be
produced. For, if we take U to be a vector space of dimension I, V to be a
space of dimension k, W the tensor product U ® V, and <f>: UxV -+U (8) V
the canonical bilinear map, then <im <f>} = W and so in this case dim <im <f>}
= kl. Therefore further progress towards a proof of Conjecture B must
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necessarily use more than just the bilinear property of multiplication in a
Lie algebra. It looks very likely that the following is true:

CONJECTURE B*. If <f> : UxU -> W is an alternating 4 bilinear map
and if b(u) 5S 6 for all u eU, then

dim<im(£> ^ £6(6+1).

Probably a preliminary for an understanding of this conjecture should be a
more symmetrical proof of Theorem 2.1. However, the last part of the present
paper is devoted to exploiting the unsymmetry in the given proof.

3. Further variations and a proof of Theorem 1

The linear algebra described in § 2 is capable of generalisation in several
ways. First, let R be a commutative ring with unit element, and replace
vector spaces by /^-modules and dimension 5 by composition length. The
corresponding generalisation of Theorem 2.1 still holds, and the proof given
in §2 needs only trivial grammatical adjustment. Next, observe that the
proof requires of V only that k 5S / and that V is spanned by elements of
breadth at most /. Incorporating this fact also, and making the necessary
verbal changes at the end of the proof, we get

LEMMA 3.1. Let U, V, W be modules over the ring R, let <f>:UxV->-W
be a bilinear map, and suppose that k, I are integers snch that k ^ I and

(i) for all ueU, b^u) ^ k;
(ii) {veV\bt(v) £1} spans V.

Then rf«im<£» ^ kl,

where d(X) denotes the composition length of the R-module X.

We shall apply the lemma in the case where R = Z, the ring of integers,
and U, V, W are finite abelian /(-groups. Notice that, if X is an abelian
group of order pm, then m is the composition length of Xtas Z-module. Our
variations now return to their starting point with the *

PROOF OF THEOREM 1. Let G be a finite />-group of breadth b. If c
is the nilpotency class of G, then the lower central series is

G = y e + 1 =

* That is, («, u)<f> — 0 for all u e U. An alternating bilinear map is antisymmetric,
(u, v)j> = —(v, u)4> for all u, veU. The converse holds unless the characteristic of the under-
lying field is 2.

• Codimension of the submodule B in A becomes composition length of the factor
module AjB.
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26 Peter M. Neumann [8]

where yi+1 — [G, y{\ for i ^ 1. Now put

U = G/G'

^ - y«/y,+1 i ^ * ^ c

F = Fx © F2 © . . . 0 Vc

and W = F2 © . . . © Ve.

Then (7, F, W are finite abelian ^-groups, and \W\ — \G'\. Commutation in
G can be used to define a bilinear map <f>: (7 X F -> W in the following way.
Li g e G, h e yt then [g, A] e y<+1, and we define

It is easy to prove (and well known) that this definition is unambiguous
and defines <j> as a bilinear map, (see, for example, [2]) and we extend to a
map on UxV to W by linearity. Furthermore, from the definition of
Yi+i w e s e e t n a t Vi+i — ((U> Vi)<f>}, so that <im^>> = W. Two more facts
complete the picture:

(3.2) if ueU t h en b^(u) 5g b;

(3.3) if veVf then b#(v) <=, b.

To prove (3.2) let w = gG', g eG and let C = CG(g). Then, by our original
hypothesis, \G : C\ ^ pb. Now

c

2 (Ff n

and so

|F : ann0(M)| ^ n |Ff : (C n
i=l

c

= IT l/< : (C n

That is, &,}(«) ^ 6.
The proof of (3.3) is even simpler. If v e Vt, say v = hyi+1 with h eyit

and if CG{h) = C, then

)| ^ |C7 : CG'/G'\ = |G : CG'| ^ |G : C| ^ ^ 6 ,

so that i(i(w) ^ 6 as required.
Now we apply Lemma 3.1 to conclude that |<im<£>| 5g pb*, that is,

and the proof of Theorem 1 is complete.
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