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CIRCUMRADIUS-DIAMETER AND WIDTH-INRADIUS RELATIONS
FOR LATTICE CONSTRAINED CONVEX SETS

P O H WAH AWYONG AND PAUL R. SCOTT

Let K be a planar, compact, convex set with circumradius R, diameter d, width
w and inradius r, and containing no points of the integer lattice. We generalise
inequalities concerning the 'dual' quantities (2R — d) and (w — 2r) to rectangular
lattices. We then use these results to obtain corresponding inequalities for a planar
convex set with two interior lattice points. Finally, we conjecture corresponding
results for sets containing one interior lattice point.

1. INTRODUCTION

Let /C2 denote the set of all planar, compact, convex sets. Let K be a set in K?
with circumradius R(K) = R, diameter d(K) = d, inradius r(K) = r, and width
w{K) = w. Let K° denote the interior of K and let A.R(U, V) be a rectangular lattice
generated by the vectors u = (u, 0) and v = (0, v), u ^ v. In the case where u = v = 1,
we have the integral lattice, denoted by F. Let G(K, A) denote the number of points
of lattice A in K. A number of results concerning the 'dual' quantities (2i? — d) and
(w — 2r) have been obtained by Scott [2, 3,4] and Awyong [1]. In particular, Awyong
[1] proves

THEOREM 1 . Let K be a set in K? having G(K°,T) = 0. Then

2 J E d <

with equality when and only when K = Eo (Figure 1).

Figure 1: The equilateral triangle Eo.
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The purpose of this paper is to generalise Theorem 1 to rectangular lattices and
to use the result to obtain the corresponding inequalities for a set K e /C2 having
G(K°,V) - 2. We prove the following results:

THEOREM 2 . Let K be a set in K? with G{K°,AR) = 0. Then

(1)

(2)

2fl-^-(2-V^)(yU + !)

w~2r ^ - —u + v .

with equality when and only when K = ER (Figure 2).

Figure 2: The equilateral triangle ER .

COROLLARY 1. Let K be a set in K2 with G(K°, F) = 2. Then

2R - d ̂  i (5 - 2\/3) « 0.512,

with 'equality when and only when K = E2 (Figure 3).

2. PROOF OF THEOREM 2

In [1], it was proved that for a set K € K?,

(3)

(4)

2
3
w
-,
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Figure 3: The equilateral triangle E2 •

with equality when and only when K is an equilateral triangle.
By applying a result by Vassallo [6] to rectangular lattices, we have the result that

if K is a set in K.2 with G(K°, AR) = 0, then

(5)
v/3

w ^ — u + v.

Theorem 2 follows immediately by combining inequality (5) with (3) and (4).

3. PROOF OF COROLLARY 1

Let K now be a set satisfying the conditions of Corollary 1. Without loss of
generality, we may assume that the origin O is one of the lattice points. Let L denote
the other lattice point contained in K° and let the coordinates of L be (z\, z2), where
without loss of generality, z\ ^ 0, z2 ^ 0. By a reflection about y = x if necessary, it
suffices to consider those cases for which z\ ^ z2 • Since K° contains no other lattice
points, the open line segment OL contains no lattice points. Hence we may assume
that either z\ — \ and z2 — 0 or else z\ and z2 are relatively prime.

If z\ and z2 are both odd, we consider the sublattice

Clearly, O $ V, L g T' and G(K°,T') = 0. Here we have u = v = y/2 and by
Theorem 2

2R - d ^ ^ y/2 « 0.4714 < - U - 2-v/3~) ss 0.512,

-̂ r- w 0.955.
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If z\ is odd and Z2 is even, we consider the sublattice.

T" = {{x,y) :x = m,y = 2n + l, m,n,e Z } .

Clearly O <£ T", L & T" and G(K°,T") = 0. In the case where Zl is even and z2 is
odd, we consider the lattice

T'" = {(x,y) :x = 2m+l,y = n,m,n€Z}.

Here, we have G(K°, I"") = 0. By an appropriate transformation, this is equivalent to
the case where z\ is odd and z2 is even. In this case u = 1 and v = 2 and by Theorem
2, we have

2R - d ̂  ^ (5 - 2\/3) « 0.512,

w ~ 2 r ^ H 2 + " T / ~0955-
Equality is attained when and only when K = Ei (Figure 3).

4. A CONJECTURE

We now conjecture the corresponding inequalities for a set K having G(K°, F) = 1.

CONJECTURE. Let K be a set in K? having G{K°,T) — 1. Then

2R-d^ V2[ l-^- ) w 0.425,
V6 2 /

w - 2r < ^ (5 + v/3) « 0.793,

with equality when and only when K = Ei (Figure 4).

Figure 4: The equilateral triangle E\
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The difficulty which occurs here is that for a set K having G{K°, T) — 1, w ^
1 + \ / 2 , with equality when and only when K is congruent to the isosceles triangle
shown in Figure 5 [5]. As this set of largest width is not an equilateral triangle, (3) and
(4) do not give sharp inequalities.

Figure 5: The isosceles triangle

A simple calculation shows that the width of E\ is (\/2 (5 + %/3) J /4 « 2.38. Hence

if 0 < w ^ (\/2(5 + \/3~) J / 4 , it follows from (3) and (4) that for this given range of w,

^ - : Y J » 0.425,

w — 2r ^ ——

with equality when and only when K = E\ (Figure 4).

This leaves unresolved those cases for which (y/2{b + y/3) J /4 < w ^ 1 + \f2. We

believe that the set for which (2R — d) and (w — 2r) are maximal is congruent to the

equilateral triangle E\ (Figure 4).
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