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CIRCUMRADIUS-DIAMETER AND WIDTH-INRADIUS RELATIONS
FOR LATTICE CONSTRAINED CONVEX SETS

Pon WAH AwYONG AND PAuL R. ScoTT

Let K be a planar, compact, convex set with circumradius R, diameter d, width
w and inradius r, and containing no points of the integer lattice. We generalise
inequalities concerning the ‘dual’ quantities (2R — d) and (w — 2r) to rectangular
lattices. We then use these results to obtain corresponding inequalities for a planar
convex set with two interior lattice points. Finally, we conjecture corresponding
results for sets containing one interior lattice point.

1. INTRODUCTION

Let K2 denote the set of all planar, compact, convex sets. Let K be a set in K2
with circumradius R(K) = R, diameter d(K) = d, inradius r(K) = r, and width
w(K) = w. Let K° denote the interior of K and let Ag(u,v) be a rectangular lattice
generated by the vectors u = (u,0) and v = (0,v), © € v. In the case where u = v =1,
we have the integral lattice, denoted by I'. Let G(K,A) denote the number of points
of lattice A in K. A number of results concerning the ‘dual’ quantities (2R — d) and
(w — 2r) have been obtained by Scott [2, 3,4] and Awyong [1]. In particular, Awyong
(1] proves

THEOREM 1. Let K be a set in K? having G(K°,T") = 0. Then
1
2 —dS a?
R 3
1
w—2r < g(2+\/§),

with equality when and only when K & E, (Figure 1).

Figure 1: The equilateral triangle Ejp.
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The purpose of this paper is to generalise Theorem 1 to rectangular lattices and
to use the result to obtain the corresponding inequalities for a set K € K? having
G(K°,T') = 2. We prove the following results:

THEOREM 2. Let K be a set in K? with G(K°,AR) =0. Then
(2 - \/5) (?u + v)

(2) w—2r<%(?u+v),

with equality when and only when K = Eg (Figure 2).

(1) 2R—d<

Wl N

.

¢

Figure 2: The equilateral triangle Eg.

COROLLARY 1. Let K be a set in K? with G(K°,T') = 2. Then

SR—d < 1(5-2\/3) ~ 0.512,
3
w—2r < %(2+ ?) = 0.955,

with equality when and only when K = E, (Figure 3).

2. PROOF oF THEOREM 2

In (1], it was proved that for a set K € K?,

(3) 2R—d<§(z-¢@w,

(4) w—2r<-§,
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Figure 3: The equilateral triangle F,.

with equality when and only when K is an equilateral triangle.
By applying a result by Vassallo [6] to rectangular lattices, we have the result that
if K is a set in K2 with G(K° Ag) =0, then

(5) w < ?u+v.

Theorem 2 follows immediately by combining inequality (5) with (3) and (4).

3. PROOF OF COROLLARY 1

Let K now be a set satisfying the conditions of Corollary 1. Without loss of
generality, we may assume that the origin O is one of the lattice points. Let L denote
the other lattice point contained in K° and let the coordinates of L be (z;, z2), where
without loss of generality, z; > 0, z2 > 0. By a reflection about y = z if necessary, it
suffices to consider those cases for which z; 2> z,. Since K° contains no other lattice
points, the open line segment OL contains no lattice points. Hence we may assume
that either z; = 1 and 22 = 0 or else z; and 2, are relatively prime.

If 2; and 2, are both odd, we consider the sublattice

I'={(z,y): z+y=1(mod 2)}.

Clearly, O ¢ IV, L ¢ TV and G(K°,I') = 0. Here we have u = v = v/2 and by

Theorem 2
1 1
2R-d< 3VEm04TI4< 3 (5 - 2\/5) ~ 0.512,
7 3 1 3
w=2r< %(H‘/T—) ~ 0.879 < 5(2+‘—2C) ~ 0.955.
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If z; is odd and z; is even, we consider the sublattice.
I ={(z,y):x=m, y=2n+1, m,n, € Z}.

Clearly O ¢ T, L ¢ T” and G(K°,T”) = 0. In the case where z, is even and z, is
odd, we consider the lattice

' = {(z,y) rx=2m+l,y=n,m,n¢€ Z}-

Here, we have G(K°,I"") = 0. By an appropriate transformation, this is equivalent to
the case where 2; is odd and z; is even. In this case u = 1 and v = 2 and by Theorem

2, we have
1
—-—d< =-(5- ~
2R-d <3 (5 2\/37) 0.512,
1
w—2r < §(2+ 12-5) ~ 0.955.

Equality is attained when and only when K = E, (Figure 3).

4. A CONJECTURE

We now conjecture the corresponding inequalities for a set K having G(K°,T') = 1.
CONJECTURE. Let K be a set in K? having G(K°,I') = 1. Then

2R—d<\/§(g—‘/7§> ~ 0.425,

w—2r < ‘1/—25(5+ \/5) ~ 0.793,

with equality when and only when K = E; (Figure 4).

Figure 4: The equilateral triangle E,.
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The difficulty which occurs here is that for a set K having G(K°,I') =1, w <
1 + V2, with equality when and only when K is congruent to the isosceles triangle
shown in Figure 5 [5]. As this set of largest width is not an equilateral triangle, (3) and
(4) do not give sharp inequalities.

Figure 5: The isosceles triangle I .

A simple calculation shows that the width of F; is (\/ﬁ (5+ \/5)) /4 = 2.38. Hence
fo<wcg (\/5(5 + \/§))/4, it follows from (3) and (4) that for this given range of w,

2QR—d < \/i(ga-‘/—g> ~ 0.425,

)
V2
w—2r< —15(5+\/§) ~ 0.793,

with equality when and only when K = E; (Figure 4).

This leaves unresolved those cases for which (\/5 (5 + \/?:)) /A<w<K 1+ V2. We

believe that the set for which (2R — d) and (w — 27) are maximal is congruent to the
equilateral triangle F; (Figure 4).
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